JPH0735704U - Combined power generation system using HTGR - Google Patents

Combined power generation system using HTGR

Info

Publication number
JPH0735704U
JPH0735704U JP064592U JP6459293U JPH0735704U JP H0735704 U JPH0735704 U JP H0735704U JP 064592 U JP064592 U JP 064592U JP 6459293 U JP6459293 U JP 6459293U JP H0735704 U JPH0735704 U JP H0735704U
Authority
JP
Japan
Prior art keywords
gas
power generation
gas turbine
steam
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP064592U
Other languages
Japanese (ja)
Inventor
昇 谷口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP064592U priority Critical patent/JPH0735704U/en
Publication of JPH0735704U publication Critical patent/JPH0735704U/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

(57)【要約】 【目的】 プラントコストを低減できる。設置スペ
ースを節減できる。冷却材圧力バウンダリの使用を圧
力容器のみに限定できる。圧力容器内の構造を単純化
できる。 【構成】 高温ガス炉13により加熱した高温高圧ガス
を二重管内管7内を経てガスタービン発電ユニット内へ
導いて、膨張させることにより、ガスタービン3を回
し、コンプレッサー3と発電機4とを回転させて、ガス
タービン発電を行う。また同ガスタービン3から出たガ
スを蒸気発生器6内へ管外流体として導く一方、給水管
11からの給水を蒸気発生器6の各伝熱管内へ管内流体
として導いて、熱交換を行い、給水を加熱して、蒸気に
し、蒸気タービンへ送って、蒸気タービン発電を行う。
また給水を加熱して温度の低下した低温ガスを蒸気発生
器6から圧力容器1と内胴2との間に形成した上昇通路
へ導いて、上昇させ、コンプレッサー4へ導いて、昇圧
させ、昇圧後のガスを二重管内外管7、8の間のガス通
路を経て高温ガス炉13へ戻す。
(57) [Summary] [Purpose] The plant cost can be reduced. The installation space can be saved. The use of the coolant pressure boundary can be limited to pressure vessels only. The structure inside the pressure vessel can be simplified. [Structure] The high-temperature high-pressure gas heated by the high-temperature gas furnace 13 is introduced into the gas turbine power generation unit through the double-pipe inner tube 7 and expanded, thereby rotating the gas turbine 3 and connecting the compressor 3 and the generator 4 to each other. Rotate to generate gas turbine power. In addition, the gas discharged from the gas turbine 3 is introduced into the steam generator 6 as an external fluid, while the feed water from the water supply pipe 11 is introduced into each heat transfer pipe of the steam generator 6 as an internal fluid to perform heat exchange. , Heating the feed water to steam and sending it to the steam turbine for steam turbine power generation.
Further, the low-temperature gas whose temperature has been lowered by heating the feed water is guided from the steam generator 6 to the ascending passage formed between the pressure vessel 1 and the inner case 2, and is raised to the compressor 4, where the pressure is increased and the pressure is increased. The latter gas is returned to the high temperature gas furnace 13 through the gas passage between the double pipe inner and outer pipes 7 and 8.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、高温ガス炉を用いたコンバインド発電装置に関するものである。 The present invention relates to a combined power generator using a high temperature gas furnace.

【0002】[0002]

【従来の技術】[Prior art]

従来、高温ガス炉からの高温ガスによりガスタービン発電を行う発電装置は、 公知である。この発電装置では、各構成機器の間を配管により連結している。 BACKGROUND ART Conventionally, a power generation device that performs gas turbine power generation using high temperature gas from a high temperature gas furnace is known. In this power generator, each component is connected by piping.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

前記従来の高温ガス炉からの高温ガスによりガスタービン発電を行う発電装置 には、次の問題があった。即ち、 (1)各構成機器の間を配管により連結しており、配管の中を高温ガスが流れる ために、配管が熱膨張し、これを吸収するために、配管を複雑に引き回す必要が ある。また配管を高温ガスから保護するために、内部断熱配管という高価な配管 を使用する必要があり、上記のように配管を複雑に引き回す点と相挨って、プラ ントコストが嵩む。 (2)各構成機器の配置も複雑になって、設置スペースが増大する。 (3)配管と各構成機器とが放射性物質を閉じ込める冷却材圧力バウンダリとな って、これら配管、構成機器の設計、製作には、原子力仕様の様々な規制を受け る。 (4)高温ガスを導く配管、及び各構成機器の冷却材圧力バウンダリ壁が高温に なるので、内部に断熱材を貼って、配管、各構成機器の冷却材圧力バウンダリ壁 の温度を下げる必要があるという問題があった。 The above-mentioned conventional power generator that performs gas turbine power generation using the high temperature gas from the high temperature gas furnace has the following problems. That is, (1) the components are connected to each other by pipes, and high-temperature gas flows through the pipes, so the pipes thermally expand, and in order to absorb this, it is necessary to route the pipes in a complicated manner. . Further, in order to protect the pipes from high temperature gas, it is necessary to use expensive pipes called internal heat insulating pipes, which is complicated with the above-mentioned complicated piping, which increases the plant cost. (2) The arrangement of each component becomes complicated and the installation space increases. (3) The piping and each component serve as a coolant pressure boundary for confining radioactive materials, and the design and production of these pipes and components are subject to various regulations of nuclear power specifications. (4) Since the temperature of the piping that guides the high temperature gas and the coolant pressure boundary wall of each component becomes high, it is necessary to attach a heat insulating material inside to lower the temperature of the pipe and the coolant pressure boundary wall of each component. There was a problem.

【0004】 本考案は前記の問題点に鑑み提案するものであり、その目的とする処は、プラ ントコストを低減できる。また設置スペースを節減できる。また冷却材圧力バウ ンダリの使用を圧力容器のみに限定できる。さらに圧力容器内の構造を単純化で きる高温ガス炉を用いたコンバインド発電装置を提供しようとする点にある。The present invention is proposed in view of the above problems, and the object of the present invention is to reduce the plant cost. Also, the installation space can be saved. Further, the use of the coolant pressure boundary can be limited to only the pressure vessel. Another point is to provide a combined power generation system using a high temperature gas furnace that can simplify the structure inside the pressure vessel.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

上記の目的を達成するために、本考案は、高温ガス炉からの高温ガスによりガ スタービン発電と蒸気タービン発電とのコンバインド発電を行う発電装置であっ て、圧力容器内に内胴を配設して、これらの圧力容器と内胴との間に後記蒸気発 生器から出る低温ガスの上昇通路を形成し、上部に吸入口を有し下部に吐出口を 有するガスタービン発電ユニットのガスタービンを前記内胴内に配設し、上部に 吸入口を有し下部に吐出口を有するコンプレッサーを前記ガスタービンよりも上 方の内胴内に配設し、発電機を前記コンプレッサーよりも上方の前記圧力容器内 に配設するとともに、これらのガスタービンとコンプレッサーと発電機とを同軸 に連結し、前記ガスタービンよりも下方の前記内胴内に蒸気発生器を配設し、前 記高温ガス炉と前記ガスタービンの吸入口とを圧力容器壁を貫通する二重管内管 により連結し、前記コンプレッサーの吐出口と前記高温ガス炉とを前記二重管内 外管間により連結し、前記蒸気発生器への給水管を前記圧力容器壁を貫通して設 け、前記蒸気発生器からの蒸気管を前記圧力容器壁を貫通して設けている。 In order to achieve the above-mentioned object, the present invention is a power generation device that performs combined power generation of gas turbine power generation and steam turbine power generation using high temperature gas from a high temperature gas furnace, and has an inner shell provided in a pressure vessel. A gas turbine of a gas turbine power generation unit that has an ascending passage for the low-temperature gas that emerges from the steam generator described below between these pressure vessels and the inner shell, and has a suction port in the upper part and a discharge port in the lower part. A compressor having an intake port at the upper part and a discharge port at the lower part, which is arranged in the inner case, is arranged in the inner case above the gas turbine, and a generator is provided above the compressor. The high temperature gas reactor is installed in the pressure vessel, the gas turbine, the compressor, and the generator are coaxially connected, and the steam generator is installed in the inner shell below the gas turbine. When The inlet of the gas turbine is connected by a double pipe inner pipe penetrating the wall of the pressure vessel, and the outlet of the compressor and the high temperature gas furnace are connected by the double pipe inner and outer pipes to the steam generator. The water supply pipe is provided through the pressure vessel wall, and the steam pipe from the steam generator is provided through the pressure vessel wall.

【0006】[0006]

【作用】[Action]

本考案の高温ガス炉を用いたコンバインド発電装置は前記のように構成されて おり、高温ガス炉により加熱した高温高圧ガスを二重管内管内を経てガスタービ ン発電ユニット内へ導いて、膨張させることにより、ガスタービンを回し、コン プレッサーと発電機とを回転させて、ガスタービン発電を行う。また同ガスター ビンから出たガスを蒸気発生器内へ管外流体として導く一方、給水管からの給水 を蒸気発生器の各伝熱管内へ管内流体として導いて、熱交換を行い、給水を加熱 して、蒸気にし、蒸気タービンへ送って、蒸気タービン発電を行う。また給水を 加熱して温度の低下した低温ガスを蒸気発生器から圧力容器と内胴との間に形成 した上昇通路へ導いて、上昇させ、コンプレッサーへ導いて、昇圧させ、昇圧後 のガスを二重管内外管の間のガス通路を経て高温ガス炉へ戻す。 The combined power generator using the high temperature gas furnace of the present invention is configured as described above, and guides the high temperature high pressure gas heated by the high temperature gas furnace into the gas turbine power generation unit through the inside of the double pipe and expands it. With this, the gas turbine is rotated and the compressor and the generator are rotated to generate gas turbine power. The gas from the gas turbine is introduced into the steam generator as an external fluid, while the feed water from the water supply pipe is introduced into each heat transfer pipe of the steam generator as an internal fluid to perform heat exchange and heat the supply water. Then, it is turned into steam and sent to the steam turbine for steam turbine power generation. In addition, the low temperature gas whose temperature has been lowered by heating the feed water is guided from the steam generator to the ascending passage formed between the pressure vessel and the inner case, and is then raised to the compressor to raise the pressure and to raise the gas after the pressure increase. It is returned to the high temperature gas furnace through the gas passage between the double tube inner and outer tubes.

【0007】[0007]

【実施例】 次に本考案の高温ガス炉を用いたコンバインド発電装置を図1、図2に示す一 実施例により説明すると、図2の13が高温ガス炉(高温ヘリウムガス冷却型原 子炉)である。 図1、図2の1が圧力容器、2が圧力容器1内に配設した内胴で、これらの圧 力容器1と内胴2との間には、蒸気発生器6から出る低温ガスの上昇通路が形成 されている。EXAMPLE Next, a combined power generation apparatus using a high temperature gas furnace of the present invention will be described with reference to an example shown in FIGS. 1 and 2. In FIG. 2, 13 is a high temperature gas reactor (high temperature helium gas cooled type nuclear reactor). ). In FIGS. 1 and 2, 1 is a pressure vessel, and 2 is an inner cylinder arranged in the pressure vessel 1. Between these pressure vessel 1 and the inner case 2, low temperature gas from a steam generator 6 is discharged. An ascending passage is formed.

【0008】 3がガスタービン発電ユニットのガスタービンで、同ガスタービン3は、上部 に吸入口を有し、下部に吐出口を有し、内筒2内に配設されてている。 4がコンプレッサーで、同コンプレッサー4は、上部に吸入口を有し、下部に 吐出口を有し、前記ガスタービン3よりも上方の内胴2内に配設されている。 5が発電機で、同発電機5は、コンプレッサー4よりも上方の圧力容器1内( 隔壁により仕切られた圧力容器1内)配設されている。Reference numeral 3 denotes a gas turbine of the gas turbine power generation unit. The gas turbine 3 has an intake port in an upper part and a discharge port in a lower part, and is arranged in the inner cylinder 2. Reference numeral 4 denotes a compressor. The compressor 4 has an intake port at an upper part and a discharge port at a lower part, and is arranged in the inner case 2 above the gas turbine 3. Reference numeral 5 denotes a generator, which is arranged in the pressure vessel 1 above the compressor 4 (in the pressure vessel 1 partitioned by a partition wall).

【0009】 そしてガスタービン3とコンプレッサー4と発電機5とが同軸に連結されてい る。 9がガスタービン3よりも下方の内胴2内に配設されたセンターパイプで、セ ンターパイプ9と内胴2との間に環状空間部が形成され、この環状空間部に蒸気 発生器6が配設されている。同蒸気発生器6は、センターパイプ9を中心として ヘリカルコイル状に巻かれた多数の伝熱管(図示せず)を有している。The gas turbine 3, the compressor 4, and the generator 5 are coaxially connected. Reference numeral 9 denotes a center pipe arranged in the inner case 2 below the gas turbine 3, and an annular space is formed between the center pipe 9 and the inner case 2, and the steam generator 6 is formed in the annular space. It is arranged. The steam generator 6 has a large number of heat transfer tubes (not shown) wound around a center pipe 9 in a helical coil shape.

【0010】 図1、図2の7が高温ガス炉13とガスタービン3の吸入口とを連結する二重 管内管、図1、図2の8が二重管外管で、内管7と外管8との間がコンプレッサ ー4の吐出口と高温ガス炉13とを連結している。 11が蒸気発生器6への給水管で、同給水管11が圧力容器1を貫通して設け られている。12が蒸気発生器6の蒸気管で、同蒸気管12が圧力容器1を貫通 して設けられている。1 and 2 are double pipe inner pipes that connect the high temperature gas furnace 13 and the suction port of the gas turbine 3, and 8 in FIGS. 1 and 2 are double pipe outer pipes, which are the inner pipe 7 and The discharge port of the compressor 4 and the high temperature gas furnace 13 are connected to the outer pipe 8. Reference numeral 11 is a water supply pipe to the steam generator 6, and the water supply pipe 11 is provided so as to penetrate the pressure vessel 1. Reference numeral 12 is a steam pipe of the steam generator 6, and the steam pipe 12 is provided so as to penetrate the pressure vessel 1.

【0011】 次に前記図1、図2に示す高温ガス炉を用いたコンバインド発電装置の作用を 具体的に説明する。 高温ガス炉(高温ヘリウムガス冷却型原子炉)13により加熱された高温高圧 のヘリウムガスが二重管内管7内を経てガスタービン発電ユニット内へ入り、膨 張することにより、ガスタービン3が回され、コンプレッサー4と発電機5とが 回転して、ガスタービン発電が行われる。Next, the operation of the combined power generation device using the high temperature gas furnace shown in FIGS. 1 and 2 will be specifically described. The high-temperature and high-pressure helium gas heated by the high-temperature gas reactor (high-temperature helium gas-cooled reactor) 13 enters the gas turbine power generation unit through the double-tube inner tube 7 and expands, whereby the gas turbine 3 is rotated. Then, the compressor 4 and the generator 5 rotate, and gas turbine power generation is performed.

【0012】 ガスタービン3から出たヘリウムガスが蒸気発生器6内へ管外流体として流入 する一方、給水管11からの給水が蒸気発生器6の各伝熱管内へ管内流体として 流入して、互いの間で熱交換が行われ、給水が加熱されて、蒸気になり、蒸気タ ービン(図示せず)へ送られて、蒸気タービン発電が行われる。 また給水を加熱して温度の低下した低温ヘリウムガスが蒸気発生器6を出た後 、圧力容器1と内胴2との間に形成した上昇通路を上昇し、圧力容器1を冷却し ながら、コンプレッサー4へ入って、昇圧され、昇圧後のヘリウムガスが二重管 内外管7、8の間のガス通路を経て高温ガス炉(高温ヘリウムガス冷却型原子炉 )13へ戻る。Helium gas discharged from the gas turbine 3 flows into the steam generator 6 as an out-of-tube fluid, while feed water from the water supply pipe 11 flows into each heat transfer tube of the steam generator 6 as an in-tube fluid, Heat exchange is performed between each other, and the feed water is heated into steam, which is then sent to a steam turbine (not shown) for steam turbine power generation. Further, after the low temperature helium gas whose temperature has been lowered by heating the feed water exits the steam generator 6, the ascending passage formed between the pressure vessel 1 and the inner case 2 is raised to cool the pressure vessel 1, After entering the compressor 4, the pressure is increased, and the pressure-increased helium gas returns to the high-temperature gas reactor (high-temperature helium gas-cooled reactor) 13 through the gas passage between the double pipe inner and outer pipes 7 and 8.

【0013】 なお本実施例では、ガスタービン3とコンプレッサー4と発電機5とが1軸で 連結されており、圧力容器1内の構造が単純化される。また発電機に電気を送る ことにより、発電機が後記起動用モータの代わりを果たして、起動モータが不要 になるが、2軸方式の場合、例えば発電機+タービンと、コンプレッサー駆動用 タービン+コンプレッサー+起動用モータとになり、新たに起動用モータが必要 になる。また起動用モータと発電機とは、電気品のため、高温下に配置できず、 そのため、圧力容器の上下端の一方及び他方にそれぞれを配置する必要があり、 結局、圧力容器内のヘリウムガスの流路が複雑になって、製作が面倒になる。In this embodiment, the gas turbine 3, the compressor 4 and the generator 5 are connected by a single shaft, and the structure inside the pressure vessel 1 is simplified. Also, by sending electricity to the generator, the generator replaces the starting motor described later, and the starting motor is no longer required. However, in the case of the two-shaft system, for example, the generator + turbine and the compressor driving turbine + compressor + It becomes a starting motor, and a new starting motor is required. Also, the starter motor and generator cannot be placed at high temperature because they are electrical components, so it is necessary to place them at one and the other of the upper and lower ends of the pressure vessel. The flow path of becomes complicated and the production becomes troublesome.

【0014】[0014]

【考案の効果】[Effect of device]

本考案の高温ガス炉を用いたコンバインド発電装置は前記のように高温ガス炉 により加熱した高温高圧ガスを二重管内管内を経てガスタービン発電ユニット内 へ導いて、膨張させることにより、ガスタービンを回し、コンプレッサーと発電 機とを回転させて、ガスタービン発電を行う。また同ガスタービンから出たガス を蒸気発生器内へ管外流体として導く一方、給水管からの給水を蒸気発生器の各 伝熱管内へ管内流体として導いて、熱交換を行い、給水を加熱して、蒸気にし、 蒸気タービンへ送って、蒸気タービン発電を行う。また給水を加熱して温度の低 下した低温ガスを蒸気発生器から圧力容器と内胴との間に形成した上昇通路へ導 いて、上昇させ、コンプレッサーへ導いて、昇圧させ、昇圧後のガスを二重管内 外管の間のガス通路を経て高温ガス炉へ戻すので、各構成機器を1つの圧力容器 内に収めることができて、プラントコストを低減できる。設置スペースを節 減できる。冷却材圧力バウンダリの使用を圧力容器のみに限定できる。 The combined power generator using the high temperature gas furnace of the present invention introduces the high temperature high pressure gas heated by the high temperature gas furnace into the gas turbine power generation unit through the inside of the double pipe as described above, and expands the gas turbine. Turn to rotate the compressor and generator to generate gas turbine power. The gas from the gas turbine is introduced into the steam generator as an external fluid, while the feed water from the water supply pipe is introduced into each heat transfer pipe of the steam generator as an internal fluid to perform heat exchange and heat the supply water. Then, it is turned into steam and sent to the steam turbine for steam turbine power generation. In addition, low temperature gas whose temperature has been lowered by heating the feed water is introduced from the steam generator to the ascending passage formed between the pressure vessel and the inner case, and is then elevated to the compressor to increase the pressure and the gas after the pressure increase. Since it is returned to the high temperature gas furnace through the gas passage between the double pipe inner and outer pipes, each component can be housed in one pressure vessel, and the plant cost can be reduced. Installation space can be saved. The use of the coolant pressure boundary can be limited to pressure vessels only.

【0015】 またガスタービンとコンプレッサーと発電機とを同軸に連結したので、圧力容 器内の構造を単純化できる。Further, since the gas turbine, the compressor and the generator are coaxially connected, the structure inside the pressure vessel can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の高温ガス炉を用いたコンバインド発電
装置の一実施例を示す縦断側面図である。
FIG. 1 is a vertical sectional side view showing an embodiment of a combined power generation apparatus using a high temperature gas furnace of the present invention.

【図2】高温ガス炉とコンバインド発電装置との関係を
示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a high temperature gas furnace and a combined power generation system.

【符号の説明】[Explanation of symbols]

1 圧力容器 2 内胴 3 ガスタービン発電ユニットのガスタービン 4 コンプレッサー 5 発電機 6 蒸気発生器 7 二重管内管 8 二重管外管 9 センターパイプ 11 給水管 12 蒸気管 13 高温ガス炉 1 pressure vessel 2 inner shell 3 gas turbine of gas turbine power generation unit 4 compressor 5 generator 6 steam generator 7 double pipe inner pipe 8 double pipe outer pipe 9 center pipe 11 water supply pipe 12 steam pipe 13 high temperature gas furnace

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21D 1/00 GDT 5/06 GDT 9117−2G Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G21D 1/00 GDT 5/06 GDT 9117-2G

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 高温ガス炉からの高温ガスによりガスタ
ービン発電と蒸気タービン発電とのコンバインド発電を
行う発電装置であって、圧力容器内に内胴を配設して、
これらの圧力容器と内胴との間に後記蒸気発生器から出
る低温ガスの上昇通路を形成し、上部に吸入口を有し下
部に吐出口を有するガスタービン発電ユニットのガスタ
ービンを前記内胴内に配設し、上部に吸入口を有し下部
に吐出口を有するコンプレッサーを前記ガスタービンよ
りも上方の内胴内に配設し、発電機を前記コンプレッサ
ーよりも上方の前記圧力容器内に配設するとともに、こ
れらのガスタービンとコンプレッサーと発電機とを同軸
に連結し、前記ガスタービンよりも下方の前記内胴内に
蒸気発生器を配設し、前記高温ガス炉と前記ガスタービ
ンの吸入口とを圧力容器壁を貫通する二重管内管により
連結し、前記コンプレッサーの吐出口と前記高温ガス炉
とを前記二重管内外管間により連結し、前記蒸気発生器
への給水管を前記圧力容器壁を貫通して設け、前記蒸気
発生器からの蒸気管を前記圧力容器壁を貫通して設けた
ことを特徴とする高温ガス炉を用いたコンバインド発電
装置。
1. A power generation device for performing combined power generation of gas turbine power generation and steam turbine power generation using high temperature gas from a high temperature gas furnace, wherein an inner shell is provided in a pressure vessel,
A gas turbine of a gas turbine power generation unit having a suction passage in the upper part and a discharge port in the lower part is formed between the pressure vessel and the inner case by forming an ascending passage of low temperature gas from a steam generator described later. A compressor having a suction port in the upper part and a discharge port in the lower part is disposed in the inner case above the gas turbine, and the generator is in the pressure vessel above the compressor. Along with the arrangement, these gas turbine, compressor and generator are coaxially connected, and a steam generator is arranged in the inner shell below the gas turbine, and the high temperature gas reactor and the gas turbine The suction port is connected by a double pipe inner pipe penetrating the pressure vessel wall, the discharge port of the compressor and the high temperature gas furnace are connected by the double pipe inner and outer pipes, and a water supply pipe for the steam generator is connected. The above Provided through the force container wall, combined power generation apparatus the steam pipe from the steam generator using a high-temperature gas furnace, characterized in that provided through the pressure vessel wall.
JP064592U 1993-12-02 1993-12-02 Combined power generation system using HTGR Withdrawn JPH0735704U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP064592U JPH0735704U (en) 1993-12-02 1993-12-02 Combined power generation system using HTGR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP064592U JPH0735704U (en) 1993-12-02 1993-12-02 Combined power generation system using HTGR

Publications (1)

Publication Number Publication Date
JPH0735704U true JPH0735704U (en) 1995-07-04

Family

ID=13262688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP064592U Withdrawn JPH0735704U (en) 1993-12-02 1993-12-02 Combined power generation system using HTGR

Country Status (1)

Country Link
JP (1) JPH0735704U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143220B1 (en) * 2010-09-02 2012-05-18 한국수력원자력 주식회사 Pressure vessel cooling device
WO2013065807A1 (en) * 2011-11-02 2013-05-10 有限会社サンワールド Steam turbine power-generating apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143220B1 (en) * 2010-09-02 2012-05-18 한국수력원자력 주식회사 Pressure vessel cooling device
WO2013065807A1 (en) * 2011-11-02 2013-05-10 有限会社サンワールド Steam turbine power-generating apparatus
JPWO2013065807A1 (en) * 2011-11-02 2015-04-02 有限会社サンワールド Steam turbine generator

Similar Documents

Publication Publication Date Title
US3213833A (en) Unitized vapor generation system
CN111105883B (en) Heat pipe reactor system with supercritical carbon dioxide as thermoelectric conversion working medium
WO2007034290A1 (en) Nuclear reactor, in particular a liquid-metal-cooled nuclear reactor
CN113205894B (en) High-temperature gas cooled reactor primary loop device
US3929188A (en) Heat exchanger installation for a closed gas circulatory system, such as a thermal power plant, for example
US3444038A (en) Nuclear power station with carbon dioxide cooling system
JPH0585040B2 (en)
CN102980422A (en) Wound tube type heat exchanger for low-temperature circulating methanol coolers
CN201126717Y (en) Pool type natrium cold fast reactor accident waste heat discharging system
JPH0735704U (en) Combined power generation system using HTGR
CN112814748A (en) Helium-carbon dioxide heat exchange system and method
US4299660A (en) Heat-extraction system for gas-cooled nuclear reactor
JPS62185192A (en) Nuclear reactor pressure vessel
CN108981427B (en) A kind of tubular heat exchanger
JP3950517B2 (en) Steam generator and cooling system for liquid metal cooled reactor
CN206492484U (en) A kind of straight tube header coil pipe reactor of water route Natural Circulation
US4073267A (en) Vapor generator
CN111933315A (en) Passive residual heat removal system and method for pool type lead-based reactor
JP4344839B2 (en) Equipment equipped with HTGR gas turbine power generation system with twin double pipe arrangement
US3115449A (en) Heat transfer device
CN219328067U (en) Electric steam generator
US4303475A (en) Nuclear reactor system with aligned feedwater and superheater penetrations
CN114220574B (en) System and method for quickly cooling steam generator of high-temperature gas cooled reactor
EP0014499A1 (en) Vapour generator
CN214303961U (en) Helium-carbon dioxide heat exchange system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980305