JPH0735265B2 - Oxynitride glass fiber - Google Patents

Oxynitride glass fiber

Info

Publication number
JPH0735265B2
JPH0735265B2 JP3919088A JP3919088A JPH0735265B2 JP H0735265 B2 JPH0735265 B2 JP H0735265B2 JP 3919088 A JP3919088 A JP 3919088A JP 3919088 A JP3919088 A JP 3919088A JP H0735265 B2 JPH0735265 B2 JP H0735265B2
Authority
JP
Japan
Prior art keywords
glass
glass fiber
fiber
nitrogen
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3919088A
Other languages
Japanese (ja)
Other versions
JPH01157434A (en
Inventor
勝彦 加田
博義 水口
潤也 小林
昌昭 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3919088A priority Critical patent/JPH0735265B2/en
Publication of JPH01157434A publication Critical patent/JPH01157434A/en
Publication of JPH0735265B2 publication Critical patent/JPH0735265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は,オキシナイトライドガラス繊維に関する。さ
らに詳しくは、本発明はFRP,繊維補強をセメントなどの
複合材料用の補強繊維として用いるに適した高弾性のガ
ラス繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to oxynitride glass fibers. More specifically, the present invention relates to a glass fiber having high elasticity, which is suitable for using FRP and fiber reinforcement as reinforcing fibers for composite materials such as cement.

(ロ) 従来の技術 近年,プラスチック,あるいはセメントなどの構造材を
強化する有力な手段として、これらの材料にガラス繊維
を混合する材料の複合化が進められている。このような
複合材料に用いられるガラス繊維には高い強度が求めら
れているが,従来はEガラス,Sガラスを繊維化したもの
が広く用いられてきた。
(B) Conventional technology In recent years, as a powerful means for strengthening structural materials such as plastics and cement, compounding of materials into which glass fibers are mixed has been advanced. Although high strength is required for the glass fiber used in such a composite material, conventionally, glass fibers of E glass and S glass have been widely used.

オキシナイトライドガラスは,酸化物ガラスの酸素原子
が窒素に置き換わった構造を有しており、窒素原子の結
合原子価が3であるところから従来のガラスに比べ,高
弾性率を有する。かかるオキシナイトライドガラスの製
造方法には,ゾル・ゲル法,溶融法,N2ガス吹き込み
法,多孔質ガラスのNH3ガス処理法などがある。
Oxynitride glass has a structure in which oxygen atoms of oxide glass are replaced with nitrogen, and since the bond valence of nitrogen atoms is 3, it has a higher elastic modulus than conventional glass. Examples of the method for producing such oxynitride glass include a sol-gel method, a melting method, an N 2 gas blowing method, and an NH 3 gas treatment method for porous glass.

しかしながら,その繊維化にあたっては,前記のうちゾ
ル・ゲル法を用いたものおよび−たんバルク状のオキシ
ナイトライドガラスを作成し,それを再溶融して繊維化
したもの(U.S.Patent4,609,631)が存在するのみであ
る。
However, regarding the formation of fibers, there are the ones prepared by using the sol-gel method and the one prepared by making bulk oxynitride glass and remelting it into fibers (USPatent 4,609,631). Only to do.

(ハ) 発明が解決しようとする問題点 従来,用いられている強化用ガラス繊維の強度はなお充
分でなく,弾性率についてはEガラスで最大7500kg/mm2
であり、もっとも高い弾性率を有するImperial N−672
で12110kg/mm2に過ぎない。また高弾性を有するオキシ
ナイトライドガラス繊維にあっても,これまでゾル・ゲ
ル法により得られた繊維の弾性率は約8000kg/mm2と複合
材料の強化用ガラス繊維としてはなお充分とは言えな
い。一方バルク状オキシナイトライドガラスの再溶融法
により作製したものは窒素を最大15at%含み140〜185GP
aの高弾性率を有する(U.S.Patent4,609,631)が高価な
原料であるイットリウムを42.6〜45.4Wt%を含むために
非常に高価なガラス繊維である。
(C) Problems to be solved by the invention The strength of the glass fiber for strengthening conventionally used is still insufficient, and the elastic modulus of E glass is 7500 kg / mm 2 at maximum.
And has the highest elastic modulus, Imperial N-672.
It is only 12110 kg / mm 2 . Moreover, even for oxynitride glass fiber having high elasticity, the elastic modulus of the fiber obtained up to now by the sol-gel method is about 8000 kg / mm 2, and it can be said that it is still sufficient as a reinforcing glass fiber for composite materials. Absent. On the other hand, the bulk oxynitride glass produced by the remelting method contains nitrogen at a maximum of 15 at%, and is 140 to 185 GP.
It has a high elastic modulus of a (USPatent 4,609,631), but is a very expensive glass fiber because it contains 42.6 to 45.4 Wt% of yttrium, which is an expensive raw material.

(ニ) 問題点を解決するための手段 本発明者らは、強化用繊維として優れた強度を有するガ
ラス繊維を得るべく種々検討を重ねた結果,安価なCaO
を増量する事により多重の窒素をガラスに含有させる事
ができ,さらには微量のY2O3を添加する事により極めて
高強度高弾性のガラス長繊維が得られるとの知見を得本
発明を完成するに至った。
(D) Means for Solving Problems The present inventors have conducted various studies to obtain glass fibers having excellent strength as reinforcing fibers, and as a result, inexpensive CaO
It has been found that by increasing the amount of the compound, multiple nitrogen can be contained in the glass, and further, by adding a trace amount of Y 2 O 3 , it is possible to obtain glass filaments of extremely high strength and high elasticity. It came to completion.

すなわち,本発明は,安価な原料粉末を溶融し,直接紡
糸することにより窒素含有量15at%〜30at%を有し,弾
性率12500kg/mm2以上を有するガラス長繊維を提供する
ものである。
That is, the present invention provides a continuous glass fiber having a nitrogen content of 15 at% to 30 at% and an elastic modulus of 12500 kg / mm 2 or more by melting an inexpensive raw material powder and directly spinning it.

本発明のガラス繊維は,従来のガラス繊維では達成でき
なかった窒素含有量5at%〜30at%を得ることが可能に
なった。
With the glass fiber of the present invention, it has become possible to obtain a nitrogen content of 5 at% to 30 at% which could not be achieved with conventional glass fibers.

本発明のオキシナイトライドガラスの組成としては,Ca
−Si−Al−O−N,Na−Ca−Si−O−N,La−Si−Al−O−
N,Na−B−Si−O−N,Mg−Si−Al−O−N,Si−Al−O−
N,Y−Al−Si−O−N,Na−B−Al−P−O−N,Ca−Mg−S
i−Al−O−N,Sr−Ca−Mg−Si−Al−O−N,Ba−Ca−Mg
−Si−Al−O−N,Y−Ca−Mg−Si−Al−O−N,Si−Ca−M
g−Al−Ce−O−N,Si−Ca−Mg−Al−Sb−O−Nなどが
挙げられる。
The composition of the oxynitride glass of the present invention includes Ca
-Si-Al-O-N, Na-Ca-Si-O-N, La-Si-Al-O-
N, Na-B-Si-O-N, Mg-Si-Al-O-N, Si-Al-O-
N, Y-Al-Si-O-N, Na-B-Al-P-O-N, Ca-Mg-S
i-Al-O-N, Sr-Ca-Mg-Si-Al-O-N, Ba-Ca-Mg
-Si-Al-O-N, Y-Ca-Mg-Si-Al-O-N, Si-Ca-M
g-Al-Ce-ON, Si-Ca-Mg-Al-Sb-ON, etc. are mentioned.

このような組成のオキシナイトライドガラスを得るに
は,金属酸化物に金属窒化物を加え,高温で溶融する。
To obtain an oxynitride glass having such a composition, a metal nitride is added to a metal oxide and melted at a high temperature.

金属酸化物の例としては,SiO2,CaO,MgO,Sb2O3SrO,Na2O,
K2O,La2O3,Y2O3,ZrO2,TiO2,Na2O,CeO2K2O,B2O3などが挙
げられる。
Examples of metal oxides are SiO 2 , CaO, MgO, Sb 2 O 3 SrO, Na 2 O,
Examples thereof include K 2 O, La 2 O 3 , Y 2 O 3 , ZrO 2 , TiO 2 , Na 2 O, CeO 2 K 2 O and B 2 O 3 .

また,金属窒化物の例としては,Si3N4,AlN,BNなどが用
いられる。
In addition, Si 3 N 4 , AlN, BN, etc. are used as examples of metal nitrides.

つぎに,これらの混合物を溶融紡糸するには電気炉,イ
メージ炉などの加熱炉を用い,窒素,アルゴン雰囲気下
温度1400〜1950℃で1〜45min溶融しその場で1100〜160
0の温度に降下させるかまたはその温度に保持した紡糸
部へ溶融ガラスを導き,紡糸速度20〜3000m/minにて紡
糸し連続繊維を得る。
Next, in order to melt-spin these mixtures, a heating furnace such as an electric furnace or an image furnace is used, and the mixture is melted for 1 to 45 minutes at a temperature of 1400 to 1950 ° C under a nitrogen or argon atmosphere and then heated to 1100 to 160
The molten glass is introduced into the spinning section where the temperature is lowered to 0 or is maintained at that temperature, and spinning is performed at a spinning speed of 20 to 3000 m / min to obtain continuous fibers.

得られたガラス繊維の窒素含有量は15〜30at%,弾性率
は12,500以上,引張り強度70〜700kg/mm2である。ガラ
ス繊維の繊維径は3〜50μmであるのが好ましい。繊維
径がこれより小さいと,紡糸が困難であり,一方これを
越えると強度が極端に低下し好ましくない。
The nitrogen content of the obtained glass fiber is 15 to 30 at%, the elastic modulus is 12,500 or more, and the tensile strength is 70 to 700 kg / mm 2 . The fiber diameter of the glass fiber is preferably 3 to 50 μm. If the fiber diameter is smaller than this, spinning is difficult, while if it exceeds this, the strength is extremely reduced, which is not preferable.

ガラス繊維の窒素含有量は5〜30at%であるのが好まし
い。
The nitrogen content of the glass fiber is preferably 5 to 30 at%.

窒素含有量が30at%を越えると結晶化し好ましくなく,1
5at%以下だと弾性率が弱い。窒素含有量の調整は窒化
物原料の添加割合により行なう。
When the nitrogen content exceeds 30 at%, crystallization is not preferable and 1
If it is 5 at% or less, the elastic modulus is weak. The nitrogen content is adjusted by the addition ratio of the nitride raw material.

(ホ) 作用 本発明により窒素含有量の多い,高弾性の連続ガラス繊
維が得られる。
(E) Action According to the present invention, a highly elastic continuous glass fiber having a high nitrogen content can be obtained.

(ヘ) 実施例 まず,本発明に係るガラス繊維を得るための紡糸炉を説
明する。
(F) Example First, a spinning furnace for obtaining the glass fiber according to the present invention will be described.

第1図は紡糸炉の断面図である。ガラス繊維紡糸炉1
は,下部に3mmφの繊維取り出し用細孔を有する窒化ホ
ウ素製ルツボ2,該ルツボ2の側面を包囲する長いグラフ
ァイト製発熱体3,前記ルツボ2および発熱体3を収容し
ガラス繊維4が通過する窒素ガス室5を備えたケーシン
グ6を有する。
FIG. 1 is a sectional view of a spinning furnace. Glass fiber spinning furnace 1
Is a boron nitride crucible 2 having a fiber taking-out pore of 3 mmφ at the bottom, a long graphite heating element 3 surrounding the side surface of the crucible 2, the crucible 2 and the heating element 3, and the glass fiber 4 passes through. It has a casing 6 with a nitrogen gas chamber 5.

該ルツボ2は,中央にガラス繊維が通過する開口を備え
た窒化ホウ素製絶縁体7上に配置された円筒状のグラフ
ァイト管8にルツボ台9を介して載置される。
The crucible 2 is mounted via a crucible stand 9 on a cylindrical graphite tube 8 arranged on a boron nitride insulator 7 having an opening through which glass fibers pass.

ケーシング6は,内部側面全体に断熱材10,下面および
上面に冷却用ジャケット11,12を備え,内部空間を形成
して前記ルツボ2および発熱体3を収容する。下面冷却
用ジャケット11は前記発熱体3下部に接して電極をな
す。一方,上面冷却用ジャケット12は中央に開口を有し
該開口には下面に保護用石英ガラス板13を設けた放射温
度計14が配置される。さらに,ケーシング6の側面には
ルツボが収容された内部空間である窒素ガス室5に窒素
を供給する窒素ガス流入口15が設けられるとともに,前
記下面冷却用ジャケット11のさらに下方には開閉自在の
繊維引き出し口16が設けられ,ガラスが接触する雰囲気
を窒素ガス雰囲気に保持する。
The casing 6 is provided with a heat insulating material 10 on the entire inner side surface and cooling jackets 11 and 12 on the lower surface and the upper surface to form an internal space to accommodate the crucible 2 and the heating element 3. The lower surface cooling jacket 11 is in contact with the lower portion of the heating element 3 to form an electrode. On the other hand, the upper surface cooling jacket 12 has an opening at the center, and a radiation thermometer 14 having a protective quartz glass plate 13 on the lower surface is arranged in the opening. Further, a nitrogen gas inlet 15 for supplying nitrogen to a nitrogen gas chamber 5 which is an internal space accommodating the crucible is provided on a side surface of the casing 6, and a lower surface of the lower surface cooling jacket 11 is openable and closable. A fiber outlet 16 is provided to maintain the atmosphere in which the glass comes into contact with the nitrogen gas atmosphere.

本実施例では,前記繊維引き出し口16下部にこれに隣接
して,脱着可能な補助雰囲気室17を取り付け,より完全
な不活性ガス雰囲気下に紡糸を行なう。18がワインダー
である。
In this embodiment, a removable auxiliary atmosphere chamber 17 is attached to the lower part of the fiber outlet 16 and adjacent thereto, and spinning is carried out in a more complete inert gas atmosphere. 18 is a winder.

つぎに実施例により本発明をさらに具体的に説明する。Next, the present invention will be described more specifically with reference to Examples.

実施例1. SiO217.3mol%,およびCaO56,1mol%MgO6.5mol%Al2O
35.0mol%を混合し,空気中1500℃で40min熱処理した。
Example 1. 17.3 mol% SiO 2 , and CaO 56,1 mol% MgO 6.5 mol% Al 2 O
3 5.0 mol% was mixed and heat-treated in air at 1500 ° C for 40 min.

混合物を冷却後ボールミルを用いて約10μmに粉砕し,S
i3N415.1mol%を加え,窒化ホウ素ルツボを用い窒素中1
790℃20min溶融し,つぎに1500℃まで降温紡糸しワイン
ダーに巻き取った。紡糸速度1200m/minにて直径18μm
の連続繊維を得た。得られたガラス繊維の引張り弾性率
は13500kg/mm2であった。また窒素含有量は18.9at%
で,繊維長は3kmであった。
After cooling the mixture, it was crushed to about 10 μm using a ball mill and S
i 3 N 4 15.1mol% was added, and the boron nitride crucible was used.
It was melted at 790 ℃ for 20 minutes, then spun down to 1500 ℃ and wound on a winder. 18 μm diameter at spinning speed of 1200 m / min
Of continuous fibers were obtained. The tensile modulus of elasticity of the obtained glass fiber was 13500 kg / mm 2 . The nitrogen content is 18.9at%
The fiber length was 3 km.

実施例2. オキシナイトライドガラスの原料としてSiO24.0mol%Ca
O65.5%MgO6.8mol%,Al2O35.5mol%,Si3N418.2mol%を
ボールミルを用いて約10μmに粉砕および混合し,これ
を窒化ホウ素ルツボに入れ窒素中1790℃で30min溶融
し,つぎに1490℃まで降温し紡糸した。紡糸速度1350m/
minにて直径15μmの連続繊維を得た。得られたガラス
繊維の引張り弾性率は14700kg/mm2であった。また窒素
含有量は23.1at%で,繊維長は4.5kmであった。
Example 2. SiO 2 4.0 mol% Ca as a raw material for oxynitride glass
O6 5.5% MgO 6.8mol%, Al 2 O 3 5.5mol%, Si 3 N 4 18.2mol% were crushed and mixed to about 10μm in a ball mill, put in a boron nitride crucible and put in nitrogen at 1790 ℃ for 30min. It was melted, then cooled to 1490 ° C and spun. Spinning speed 1350m /
A continuous fiber having a diameter of 15 μm was obtained at min. The tensile modulus of elasticity of the obtained glass fiber was 14700 kg / mm 2 . The nitrogen content was 23.1 at% and the fiber length was 4.5 km.

以下実施例1と同様の方法にてガラス繊維を得たので,
その組成,製造条件および窒素含有量を表1に示した。
Since glass fibers were obtained in the same manner as in Example 1 below,
The composition, manufacturing conditions and nitrogen content are shown in Table 1.

また図2には得たガラス繊維の引張り弾性率を測定した
結果で,横軸には繊維のN含有量(at%)縦軸には弾性
率の測定結果を示した。
In addition, FIG. 2 shows the results of measuring the tensile elastic modulus of the obtained glass fiber. The abscissa shows the N content (at%) of the fiber, and the ordinate shows the elastic modulus measurement result.

(ト) 効果 本発明によれば,安価な原料粉末により弾性率12500kg/
mm2以上を達成できると共に,従来のガラス繊維では成
し得なかった窒素含有量15at%〜30at%を得ることがで
きる。
(G) Effect According to the present invention, elastic modulus 12500 kg /
In addition to achieving mm 2 or more, it is possible to obtain a nitrogen content of 15 at% to 30 at% that could not be achieved with conventional glass fibers.

【図面の簡単な説明】[Brief description of drawings]

第1図は,本発明に係るガラス繊維を製造するための紡
糸炉を示す図,第2図は窒素含有量と弾性率の関係を示
す図である。
FIG. 1 is a diagram showing a spinning furnace for producing glass fibers according to the present invention, and FIG. 2 is a diagram showing the relationship between nitrogen content and elastic modulus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大田 昌昭 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 (56)参考文献 特開 昭63−176340(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Masaaki Ota 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto City, Kyoto Prefecture Shimazu Corporation Sanjo Plant (56) References JP-A-63-176340 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】弾性率が12500Kg/mm2以上で、かつ窒素を1
5〜30原子%含むことを特徴とするオキシナイトライド
ガラス繊維。
1. A modulus of elasticity of 12500 Kg / mm 2 or more and a nitrogen content of 1
Oxynitride glass fiber characterized by containing 5 to 30 atomic%.
JP3919088A 1987-09-07 1988-02-22 Oxynitride glass fiber Expired - Lifetime JPH0735265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3919088A JPH0735265B2 (en) 1987-09-07 1988-02-22 Oxynitride glass fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22339187 1987-09-07
JP62-223391 1987-09-07
JP3919088A JPH0735265B2 (en) 1987-09-07 1988-02-22 Oxynitride glass fiber

Publications (2)

Publication Number Publication Date
JPH01157434A JPH01157434A (en) 1989-06-20
JPH0735265B2 true JPH0735265B2 (en) 1995-04-19

Family

ID=26378516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3919088A Expired - Lifetime JPH0735265B2 (en) 1987-09-07 1988-02-22 Oxynitride glass fiber

Country Status (1)

Country Link
JP (1) JPH0735265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425701B2 (en) * 1993-10-14 2003-07-14 株式会社島津製作所 Nitrogen-containing glass, its production method and glass fiber
JP5582381B2 (en) * 2009-06-25 2014-09-03 日東紡績株式会社 Oxynitride glass fiber and method for producing the same

Also Published As

Publication number Publication date
JPH01157434A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
Cooke Inorganic fibers—a literature review
US4957883A (en) Oxynitride glass and the fiber thereof
EP0939065A1 (en) Fused-cast alumina-zirconia-silica refractory and glass melting furnace employing it
US4888310A (en) Pulverulent silicon nitride composition including oxidized silicon carbide whiskers
JP3425701B2 (en) Nitrogen-containing glass, its production method and glass fiber
JPH034491B2 (en)
JPH0735265B2 (en) Oxynitride glass fiber
JPH035343A (en) Fiberglass composition
JP2595669B2 (en) Oxynitride glass short fiber
US4609631A (en) Oxynitride glass fibers
JPH0729815B2 (en) Glass fiber
SU1273339A1 (en) Glass for glass fibre
DE3463491D1 (en) A process for manufacturing ceramic fibres consisting mainly of alumina and silica
Ohishi et al. Influence of humidity during the fibre preparation process on transmission loss for ZrF4-based optical fibres
JPS623785B2 (en)
JPS58167444A (en) Alkali-resistant glass fiber
JPS61124626A (en) Aluminum nitride fiber and production thereof
JP3158504B2 (en) Fiber reinforced glass and method for producing the same
JP3707937B2 (en) Glass and optical fiber manufacturing method
JPH0579617B2 (en)
JP2673142B2 (en) High heat resistant high strength alumina silica fiber
JP2000160434A (en) High purity alumina filament and its fiber product and fire-resistant insulating material
JP2638889B2 (en) Pressurized container
JP4275384B2 (en) Low carbon high zirconia electroformed refractory and method for producing the same
JP2829882B2 (en) Fiber filler material