JPH0734486B2 - Hydrogen flow control valve - Google Patents

Hydrogen flow control valve

Info

Publication number
JPH0734486B2
JPH0734486B2 JP14291887A JP14291887A JPH0734486B2 JP H0734486 B2 JPH0734486 B2 JP H0734486B2 JP 14291887 A JP14291887 A JP 14291887A JP 14291887 A JP14291887 A JP 14291887A JP H0734486 B2 JPH0734486 B2 JP H0734486B2
Authority
JP
Japan
Prior art keywords
hydrogen
vacuum
pipe
maser
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14291887A
Other languages
Japanese (ja)
Other versions
JPS63306680A (en
Inventor
正紀 小林
正宏 津田
正朗 植原
弘彦 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP14291887A priority Critical patent/JPH0734486B2/en
Publication of JPS63306680A publication Critical patent/JPS63306680A/en
Publication of JPH0734486B2 publication Critical patent/JPH0734486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Flow Control (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素メーザ周波数標準器に係り、特に、水素
の流量に起因するメーザ発振周波数と発振電力の変動を
抑えるため、該水素の流量を温度により制御できる素材
を内蔵した管部材を用いて制御精度を向上させた水素流
量制御弁に関するものである。
Description: TECHNICAL FIELD The present invention relates to a hydrogen maser frequency standard, and in particular, in order to suppress fluctuations in the maser oscillation frequency and oscillation power due to the flow rate of hydrogen, the flow rate of hydrogen is reduced. The present invention relates to a hydrogen flow control valve in which control accuracy is improved by using a pipe member containing a material that can be controlled by temperature.

〔従来の技術〕[Conventional technology]

水素メーザ周波数標準器(以下、単に「水素メーザ」と
いう)は、周波数確度の点でセシューム(Cs)原子ビー
ム周波数標準器より劣ってはいるが,周波数安定度の点
では現用の周波数標準器の中でも最も優れている。その
ため,VLBI(超長基線電波干渉計),深宇宙人工衛星の
追跡用などの高安定周波数信号源として必須の機器とな
っている。
The hydrogen maser frequency standard (hereinafter simply referred to as “hydrogen maser”) is inferior to the cesium (Cs) atomic beam frequency standard in terms of frequency accuracy, but is more stable than the current frequency standard in terms of frequency stability. The best of all. Therefore, it is an indispensable device as a highly stable frequency signal source for VLBI (Very Long Baseline Interferometer) and tracking of deep space satellites.

しかるに,このような最先端の技術分野では、水素メー
ザの周波数安定度が高ければ高いほど測定精度が向上す
るため,周波数安定度の向上が強く要望されている。ま
た、水素メーザの出力周波数の正確さも併せ重要であ
る。このため,水素メーザでは、発振スペクトル幅を狭
くするための手段として水素蓄積球を用い,この蓄積球
内の水素原子の衝突を減少するよう真空排気を行うとと
もに,水素原子ビーム量を高精度に制御する方法を採用
している。
However, in such a state-of-the-art technical field, the higher the frequency stability of the hydrogen maser, the higher the measurement accuracy, so there is a strong demand for improvement in frequency stability. The accuracy of the output frequency of the hydrogen maser is also important. Therefore, in the hydrogen maser, a hydrogen storage sphere is used as a means for narrowing the oscillation spectrum width, and vacuum evacuation is performed so as to reduce collisions of hydrogen atoms in the storage sphere, and the hydrogen atom beam amount is accurately adjusted. The control method is adopted.

以下、かかる水素メーザの概要について,第7図に示し
た従来の水素メーザ本体の模式図により説明する。
Hereinafter, the outline of the hydrogen maser will be described with reference to the schematic view of the conventional hydrogen maser body shown in FIG.

23は水素分子が供給されている放電管、27は放電管23内
の水素分子を解離し,水素原子とするための放電用高周
波発振器、29は解離された水素原子の中からエネルギー
準位の高い水素原子を選別するための準位選別マグネッ
ト、30は注入された水素原子を蓄積するための内面をテ
フロンで被覆した水素蓄積球、31は空胴共振器、32は該
空胴共振器31の温度を制御する温度制御用ヒータ、33は
静磁場を与えるソレノイドコイル円筒、34は外部磁場の
影響を遮蔽するための磁気シールド、35は真空ベルジャ
ー、36は前記空胴共振器31内の発振出力を取り出すため
の出力用ループアンテナ、37はイオンポンプを示す。
23 is a discharge tube to which hydrogen molecules are supplied, 27 is a high-frequency oscillator for discharge that dissociates hydrogen molecules in the discharge tube 23 to form hydrogen atoms, and 29 is an energy level of the dissociated hydrogen atoms. A level selection magnet for selecting high hydrogen atoms, 30 is a hydrogen storage sphere whose inner surface is coated with Teflon for storing injected hydrogen atoms, 31 is a cavity resonator, and 32 is the cavity resonator 31. A temperature control heater for controlling the temperature of the, 33 is a solenoid coil cylinder that gives a static magnetic field, 34 is a magnetic shield for shielding the influence of an external magnetic field, 35 is a vacuum bell jar, 36 is an oscillation in the cavity resonator 31 An output loop antenna for taking out the output, 37 is an ion pump.

かかる構造からなる従来の水素メーザの水素ビーム系で
は、準位選別マグネット29により水素原子のエネルギ準
位で F=0,mF=0の状態及び F=1,mF=−1の状態
にある水素原子は発散し,F=1,mF=0,mF=+1の状態に
ある水素原子は水素蓄積球30内に集束する。
In the hydrogen beam system of the conventional hydrogen maser having such a structure, the hydrogen in the state of F = 0, mF = 0 and the state of F = 1, mF = -1 at the energy level of the hydrogen atom by the level selection magnet 29. The atoms diverge, and the hydrogen atoms in the state of F = 1, mF = 0, mF = + 1 are focused in the hydrogen storage sphere 30.

水素蓄積球30内に注入された水素原子は,該水素蓄積球
30の内面のテフロン膜壁と衝突を繰り返しながら約1秒
間近く該水素蓄積球30内に留まり,空胴共振器31内の電
磁波により励振を受ける。この場合、標準周波数として
利用されるエネルギ準位は F=1,mF=0の状態からF
=0,mF=0の状態に遷移する周波数で,約1,420,405,75
2Hz(以下、「標準周波数fo」という)である。
Hydrogen atoms injected into the hydrogen storage sphere 30 are
While repeatedly colliding with the Teflon film wall on the inner surface of 30, it stays in the hydrogen storage sphere 30 for about 1 second and is excited by the electromagnetic wave in the cavity resonator 31. In this case, the energy level used as the standard frequency is from F = 1, mF = 0 to F
Approximately 1,420,405,75 at the frequency of transition to the state of = 0, mF = 0
2 Hz (hereinafter referred to as "standard frequency fo").

いま、空胴共振器31の共振器周波数fcが標準周波数foの
近傍に調整されているとすると,水素蓄積球30内の F
=1,mF=0の状態にある水素原子は,前記空胴共振器31
内で標準周波数foに近い電磁波の励振を受け,エネルギ
準位の低い F=0,mF=0の状態に遷移する。
Now, assuming that the cavity frequency fc of the cavity resonator 31 is adjusted near the standard frequency fo, the F in the hydrogen storage sphere 30 is
= 1, mF = 0, the hydrogen atom is
It is excited by an electromagnetic wave close to the standard frequency fo in the inside, and transits to the state of low energy level F = 0, mF = 0.

このとき、水素メーザは,放射する電磁波によりメーザ
発振周波数fmで自己発振を起す。そして、この自己発振
によるメーザ発振周波数の出力は、出力用ループアンテ
ナ36から取り出され,水素メーザの出力水晶発振器を制
御するのに用いる。このメーザ発振周波数の安定度は、
水素原子の共鳴周波数の変動により判断するものと,雑
音による変動で判断するものとがある。この共鳴周波数
の変動要因としては、磁場によるZeemanシフト,水素原
子の水素蓄積球の壁との衝突や水素原子同志及び他の分
子との衝突によるシフトなどがある。
At this time, the hydrogen maser self-oscillates at the maser oscillation frequency fm by the radiated electromagnetic waves. Then, the output of the maser oscillation frequency due to this self-oscillation is taken out from the output loop antenna 36 and used to control the output crystal oscillator of the hydrogen maser. The stability of this maser oscillation frequency is
There are two types, one is based on fluctuations in the resonance frequency of hydrogen atoms and the other is based on fluctuations due to noise. The factors of variation of the resonance frequency include Zeeman shift due to a magnetic field, collision of hydrogen atoms with the wall of a hydrogen storage sphere, and shift due to collision of hydrogen atoms with each other and other molecules.

水素メーザでは、高い遮蔽率を有する磁気シールドと高
い精度を有する静磁場電源を用い,また水素蓄積球内を
高真空度に排気するとともに水素原子の流量の制御をし
て水素メーザそのものの周波数安定度の向上を図ってい
る。また,水素メーザでは,空胴共振器の共振周波数が
水素原子の共鳴周波数と異なるときは、メーザ発振周波
数は原子の共鳴周波数からシフトする(この現象を共振
器引込み現象という)。このため,水素メーザでは、か
かる現象などによる共振器の堅牢化が生ずるのを防ぐた
めに高精度の温度制御や共振器周波数を原子共鳴周波数
に合わせる手段が必要となることから共振器自動同調法
などを用いている。
In the hydrogen maser, a magnetic shield with a high shielding rate and a static magnetic field power supply with high accuracy are used, and the hydrogen sphere is evacuated to a high degree of vacuum and the flow rate of hydrogen atoms is controlled to stabilize the frequency of the hydrogen maser itself. I am trying to improve the degree. Further, in the hydrogen maser, when the resonance frequency of the cavity resonator is different from the resonance frequency of the hydrogen atom, the maser oscillation frequency shifts from the resonance frequency of the atom (this phenomenon is called the resonator pull-in phenomenon). For this reason, in the hydrogen maser, it is necessary to provide highly accurate temperature control and a means for adjusting the resonator frequency to the atomic resonance frequency in order to prevent the resonator from becoming robust due to such a phenomenon. Is used.

いま、水素流のないときの水素蓄積球内の真空度を10-8
Torrオーダに真空排気し,水素メーザの代表的動作時の
該水素蓄積球内の原子数密度を約3×10-8/cm3とする
と,水素原子の共鳴周波数のシフト要因のうち,該水素
原子が他の分子と衝突することによって生ずるシフト量
は水素原子同志の衝突(スピン交換)により生ずるシフ
ト量に対し省略できる程度の少ないものである。
Now, the degree of vacuum in the hydrogen storage sphere when there is no hydrogen flow is 10 -8.
When the gas is evacuated to the Torr order and the number density of atoms in the hydrogen storage sphere during a typical operation of the hydrogen maser is set to about 3 × 10 -8 / cm 3 , the hydrogen is one of the factors that shift the resonance frequency of the hydrogen atom. The amount of shift caused by collision of atoms with other molecules is small enough to be omitted relative to the amount of shift caused by collision of hydrogen atoms (spin exchange).

すなわち、上記条件のとき,該スピン交換による共鳴周
波数のシフト量ΔνSEは ΔνSE/νo≒−1.2×10-11……(1) である。ここに,νoは水素原子の固有共鳴周波数を示
す。
That is, under the above conditions, the resonance frequency shift amount ΔνSE due to the spin exchange is ΔνSE / νo≈−1.2 × 10 −11 (1). Here, vo represents the natural resonance frequency of the hydrogen atom.

VLBIなどに用いる水素メーザでは、測定時間τが102〜1
03秒で周波数安定度5×10-15以上が必要であり,1日〜
1年の長期で周波数安定度1×10-12以上が要求され
る。したがって、水素原子ビーム量は τ=102〜103se
cで1×10-3以上,τ=1日〜1年で1×10-1以上の精
度により流量を制御する必要がある。
With a hydrogen maser used for VLBI, etc., the measurement time τ is 10 2 to 1
Frequency stability of 5 × 10 -15 or more is required in 0 3 seconds, 1 day ~
Frequency stability of 1 × 10 -12 or more is required for a long term of one year. Therefore, the amount of hydrogen atom beam is τ = 10 2 to 10 3 se
1 × 10 -3 or more c, it is necessary to control the flow rate by 1 × 10 -1 or more precision tau = 1 day to 1 year.

このため,水素メーザでは、放電管に入る水素流量をパ
ラジウム弁17で精度高く制御する。
Therefore, in the hydrogen maser, the flow rate of hydrogen entering the discharge tube is accurately controlled by the palladium valve 17.

このパラジウム弁17は一般に銀とパラジウムとの合金結
晶の管を用い,格子定数は常温で約4Åであり,このパ
ラジウム管の温度を制御することにより水素ボンベ18か
ら供給される水素分子の透過量を制御する。
This palladium valve 17 generally uses a tube of an alloy crystal of silver and palladium, and has a lattice constant of about 4 Å at room temperature. By controlling the temperature of this palladium tube, the permeation amount of hydrogen molecules supplied from the hydrogen cylinder 18 To control.

VLBIなどに用いる水素メーザでは、放電管23の圧力を水
素圧制御用電流源28で精度高く検出するとともに,その
検出した水素圧の変動をパラジウム弁17としてのパラジ
ウム管を加熱するための電流の制御をすることにより1
×10-3以上の高い精度で制御するものである。
In the hydrogen maser used for the VLBI or the like, the pressure of the discharge tube 23 is accurately detected by the hydrogen pressure control current source 28, and the fluctuation of the detected hydrogen pressure is detected by the current for heating the palladium tube as the palladium valve 17. 1 by controlling
It controls with high accuracy of × 10 -3 or more.

したがって,該パラジウム弁はできるだけ熱容量が少な
く,他への熱損失の小さい,そして少ない加熱電流で応
答速度の早い構造でなければならない。
Therefore, the palladium valve must have a structure with a small heat capacity as much as possible, a small heat loss to others, and a fast response speed with a small heating current.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら,従来の水素流量制御弁では、管部材の素
材であるパラジウム管を直接には加熱せずに該パラジウ
ム管に被せたガラス管にヒータを巻き,間接的に該パラ
ジウム管を加熱していた。そのため,素材への熱伝導効
率が良くなかった。
However, in the conventional hydrogen flow control valve, the palladium tube, which is the material of the tube member, is not directly heated, but a heater is wound around the glass tube covered with the palladium tube to indirectly heat the palladium tube. . Therefore, the heat transfer efficiency to the material was not good.

また、素材を内蔵した管部材を固定する基盤としてステ
ンレス製の真空フランジを用いていたため熱容量が大き
くなり、制御電流の増大をまねくとともに制御時定数が
長くなり,制御精度を劣化させるという欠点も有してい
た。
In addition, since a stainless steel vacuum flange was used as the base for fixing the pipe member containing the material, the heat capacity becomes large, which leads to an increase in the control current and the control time constant becomes long, thus degrading the control accuracy. Was.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明では,かかる従来の水素流量制御弁の欠
点を解消すべく管部材として熱伝導の良い金属パイプを
用い,該金属パイプの外周に電気的絶縁処理を施し,加
熱線(加熱体)を巻き,かつ,素材の外壁からの水素流
通を良くするために前記管部材の内壁面に溝を施し,さ
らに,水素分子の流量の制御をするための素材と該管部
材とを熱絶縁部材でなる基盤に取り付ける構造とし,温
度により水素流量の制御ができるようにして,メーザ発
振の発振周波数と発振電力において優れた安定度が得ら
れる水素流量制御弁を提供することを目的とする。
Therefore, in the present invention, in order to eliminate the drawbacks of the conventional hydrogen flow rate control valve, a metal pipe having good thermal conductivity is used as a pipe member, and the outer circumference of the metal pipe is electrically insulated to form a heating wire (heating body). And a groove is formed on the inner wall surface of the tube member to improve the flow of hydrogen from the outer wall of the material, and the material for controlling the flow rate of hydrogen molecules and the tube member are heat insulating members. An object of the present invention is to provide a hydrogen flow rate control valve which has a structure to be attached to a base made of (4) and which can control the hydrogen flow rate depending on temperature, and which can obtain excellent stability in the oscillation frequency and oscillation power of maser oscillation.

〔実施例〕〔Example〕

以下、本発明に係る水素流量制御弁の構成例について、
第1図と第2図に示す一実施例に基づき説明する。
Hereinafter, for the configuration example of the hydrogen flow control valve according to the present invention,
Description will be made based on an embodiment shown in FIGS. 1 and 2.

本発明に係る水素流量制御弁は、素材(金属パイプ)1
が熱絶縁部材でなる熱絶縁基盤2にロー付けして取り付
けられ,さらに,該素材1には、水素分子流のみを通過
させ,その通過した水素分子の流量を温度により制御で
きる管部材3が被せられ,そのつば部分3aを前記熱絶縁
基盤2に止めネジ4で固定して,内壁面に溝を施した管
部材3の外部(外周)に前記温度を制御する加熱体5を
巻き付けたものである。ここに、管部材3は熱良導体の
金属パイプでなり,アルミニウムをアルマイト処理して
絶縁皮膜を施したものである。
The hydrogen flow control valve according to the present invention is made of a material (metal pipe) 1
Is brazed and attached to a heat insulating substrate 2 made of a heat insulating member, and further, a pipe member 3 capable of passing only a hydrogen molecule flow and controlling the flow rate of the passed hydrogen molecules by temperature is attached to the material 1. The cover 3 is secured to the thermal insulation base 2 with the set screw 4 and the heating member 5 for controlling the temperature is wound around the outside (outer periphery) of the pipe member 3 having the groove on the inner wall surface. Is. Here, the pipe member 3 is made of a metal pipe having a good thermal conductivity, and is formed by subjecting aluminum to an alumite treatment and applying an insulating film.

すなわち、水素分子流のみを通過させ,温度変化により
通過流量を制御できる素材1を内蔵する管部材3と、該
管部材の外部に備えられた加熱体(以下、加熱線とい
う)5と、前記素材1を該管部材3内に止めネジ4で保
持し,かつ,前記水素分子流を通過させるとともに,熱
的に該管部材3側と他側(水素ボンベ側)とを絶縁する
熱絶縁部材でなる熱絶縁基盤2とで構成されている。
That is, a tube member 3 containing a material 1 that allows only a hydrogen molecule flow to pass therethrough and controls the flow rate by temperature change, a heating body (hereinafter referred to as a heating wire) 5 provided outside the tube member, and A heat insulating member that holds the material 1 in the pipe member 3 with a set screw 4 and allows the hydrogen molecule flow to pass therethrough and thermally insulates the pipe member 3 side from the other side (hydrogen cylinder side). It is composed of a heat insulating substrate 2 made of.

ここに,素材としては,銀20〜25%とパラジウム80〜75
%とからなる合金を使用した。
Here, as materials, silver 20-25% and palladium 80-75
% Alloy was used.

なお、上記した第1図と第2図の実施例における相違点
は,熱絶縁基盤の構造上にある。
The difference between the embodiments shown in FIGS. 1 and 2 lies in the structure of the heat insulating substrate.

以下このことについて,詳細に説明する。This will be described in detail below.

第1図の実施例の熱絶縁基盤2は、セラミック材を円板
状に加工し,その加工した中心附近に前記素材1の一方
の端部をロー付けするためのステンレスパイプ2cと,前
記加熱線5の端子5a及び5bをそれぞれ埋め込むための貫
通穴2aと2bを有する構造となっている。
The heat insulating substrate 2 of the embodiment shown in FIG. 1 is formed by processing a ceramic material into a disk shape, and a stainless pipe 2c for brazing one end of the material 1 near the processed center and the heating. The structure has through holes 2a and 2b for embedding the terminals 5a and 5b of the wire 5, respectively.

第2図の実施例の熱絶縁基盤6は、セラミック円筒6aの
両端部にそれぞれコバルを主成分とするコバル円筒6bと
6cをロー付けし,さらに,該コバル円筒6bと6cの端部に
それぞれ金属フランジ14とフランジ6dをロー付けする構
造とし,熱絶縁を計るとともに両端ロー付けができる構
造となっている。
The heat insulating substrate 6 of the embodiment shown in FIG. 2 includes a Cobar cylinder 6b containing Cobal as a main component at both ends of the ceramic cylinder 6a.
6c is brazed, and further, the metal flange 14 and the flange 6d are brazed to the ends of the Kovar cylinders 6b and 6c, respectively, so that thermal insulation can be measured and both ends can be brazed.

つぎに,本発明に係る水素流量制御弁を、配管に封入し
た状態をフランジとの関係において,以下、図に基づい
て説明する。
Next, the hydrogen flow rate control valve according to the present invention will be described below with reference to the drawings in relation to the flange in a state of being enclosed in a pipe.

第3図と第4図は、第1図と第2図に示した本発明に係
る水素流量制御弁に対応する使用例を示したものであ
り,いずれも水素流を通過させる配管に接続させる構造
にしたものである。
FIGS. 3 and 4 show usage examples corresponding to the hydrogen flow rate control valve according to the present invention shown in FIGS. 1 and 2, both of which are connected to a pipe for passing a hydrogen flow. It is structured.

まず,第3図に基づいて説明すると,第1図に示した熱
絶縁部材でなる熱絶縁基盤2に、加熱線5を引き出すた
めの第1の真空接続端子7と第2の真空接続端子8をロ
ー付けにて封入するとともに,第1の金属配管9と第2
の金属配管10のそれぞれの一端面をロー付けにて装着
し,該第1の金属配管9と第2の金属配管10のそれぞれ
の他端面に第1の真空接続用フランジ11と第2の真空接
続用フランジ12をロー付けし,真空配管との接続を容易
にしたものである。
First, referring to FIG. 3, a first vacuum connecting terminal 7 and a second vacuum connecting terminal 8 for drawing out the heating wire 5 are drawn out from the heat insulating substrate 2 made of the heat insulating member shown in FIG. Is sealed by brazing, and the first metal pipe 9 and the second metal pipe 9
Each one end face of the metal pipe 10 is attached by brazing, and the first vacuum connection flange 11 and the second vacuum pipe 11 are attached to the other end faces of the first metal pipe 9 and the second metal pipe 10, respectively. The connection flange 12 is brazed to facilitate connection with the vacuum piping.

つぎに第4図では、第2図に示した熱絶縁部材でなる熱
絶縁基盤6の端面に,金属フランジ14をロー付けし,本
発明に係る水素流量制御弁をT形真空配管15の一方の側
面口より該金属フランジ14に差し込み固定し,さらに,
前記T形真空配管15の中間口にロー付けされた真空導入
端子盤16から加熱線5を引き出せるようにしたものであ
る。
Next, in FIG. 4, a metal flange 14 is brazed to the end face of the heat insulating base 6 made of the heat insulating member shown in FIG. 2, and the hydrogen flow control valve according to the present invention is connected to one side of the T-type vacuum pipe 15. Insert it into the metal flange 14 from the side opening and fix it.
The heating wire 5 can be drawn out from the vacuum introduction terminal board 16 brazed to the intermediate port of the T-shaped vacuum pipe 15.

なお、上記した第3図と第4図の実施例における相違点
は,配管の構造上にあるが、いずれの構造もパラジウム
弁が、真空中で動作し,リークを生じないこと、かつ、
通常規格のフランジと容易に接続が計れるようにしてあ
ること並びにパラジウム弁と真空配管の熱絶縁が計れる
ようになっている。そのため,第3図の実施例では,第
1の真空接続用フランジ側にパラジウム弁の管部材より
太い第1の金属配管をロー付けし,第2の真空接続用フ
ランジ側に加熱線引出し用の端子を挿入する貫通穴が設
けてあるつば部分と同程度の太さの第2の金属配管をロ
ー付けしている。
The difference between the embodiments shown in FIGS. 3 and 4 lies in the structure of the pipes. In both structures, the palladium valve operates in vacuum and does not leak, and
It is designed so that it can be easily connected to a standard flange and that the palladium valve and vacuum piping can be thermally insulated. Therefore, in the embodiment shown in FIG. 3, a first metal pipe thicker than the pipe member of the palladium valve is brazed to the first vacuum connection flange side, and a heating wire lead-out line for the second vacuum connection flange side is used. The second metal pipe having the same thickness as the brim portion having the through hole for inserting the terminal is brazed.

また、第4図の実施例では,パラジウム弁の加熱線を真
空外に取り出し易いようにするために中間口に真空導入
端子盤の取り付けができる通常規格のT形真空配管を使
用し,パラジウム弁の金属フランジ14を該T形真空配管
の一端面と水素供給配管にて共じめする構造としてい
る。
Further, in the embodiment shown in FIG. 4, in order to make it easier to take out the heating wire of the palladium valve to the outside of the vacuum, a normal standard T-type vacuum pipe in which a vacuum introduction terminal board can be attached to the intermediate port is used, and the palladium valve is used. The metal flange 14 of FIG. 2 is structured so as to be integrated with one end surface of the T-shaped vacuum pipe by the hydrogen supply pipe.

〔発明の動作〕[Operation of the Invention]

本発明に係る水素流量制御弁を用いた水素メーザの水素
供給系統の動作について,第5図に示した一実施例に基
づき説明する。
The operation of the hydrogen supply system of the hydrogen maser using the hydrogen flow control valve according to the present invention will be described based on the embodiment shown in FIG.

水素ボンベ18に加圧封入されている水素は、減圧弁19で
大気圧に減圧され、第1の真空配管20を通して本発明に
係る水素流量制御弁13に導びかれる。そして、水素流量
制御弁13に導びかれた水素流量は、加熱線電流制御器22
からの制御電流により温度制御され,第2の真空配管21
を通して放電管23に供給される。その供給された水素分
子は、放電管23内にて放電発振器24の励振を受け、プラ
ズマ放電を起し、水素原子に解離され、メーザ発振部26
に供給される。この場合、放電管23内への水素流量は,
メーザ発振周波数の安定度に大きく影響をおよぼすの
で、常に一定に保つ必要がある。そのため、前記第2の
真空配管21に真空計25を取り付け、該第2の真空配管21
の真空度を測定するとともに、その測定した該当時の圧
力に比例した電気的信号を前記加熱線電流制御器22に加
え、前記制御電流の制御をなし,帰還制御を行なわしめ
るようにしている。
The hydrogen that is pressurized and sealed in the hydrogen cylinder 18 is depressurized to the atmospheric pressure by the decompression valve 19, and is led to the hydrogen flow control valve 13 according to the present invention through the first vacuum pipe 20. The hydrogen flow rate introduced to the hydrogen flow rate control valve 13 is controlled by the heating wire current controller 22.
The temperature is controlled by the control current from the second vacuum pipe 21.
Through the discharge tube 23. The supplied hydrogen molecules are excited by the discharge oscillator 24 in the discharge tube 23 to generate plasma discharge, dissociated into hydrogen atoms, and the maser oscillation unit 26.
Is supplied to. In this case, the hydrogen flow rate into the discharge tube 23 is
Since it greatly affects the stability of the maser oscillation frequency, it must be kept constant. Therefore, a vacuum gauge 25 is attached to the second vacuum pipe 21, and the second vacuum pipe 21
In addition to measuring the degree of vacuum, an electric signal proportional to the measured pressure at that time is applied to the heating wire current controller 22 to control the control current and perform feedback control.

つぎに、本発明の特性について説明する。Next, the characteristics of the present invention will be described.

第6図は、従来技術と本発明の素材についての制御特性
を示したもので、これより加熱線には従来に比べて少な
い加熱電流で従来と同程度またはそれ以上の水素流量制
御弁圧の制御が可能であることがわかる。縦軸は水素流
量制御弁圧を,横軸はパラジュム弁の加熱電流を示す。
FIG. 6 shows the control characteristics of the materials of the prior art and the present invention, in which the heating wire has a hydrogen flow control valve pressure of the same level or higher than that of the conventional one with a smaller heating current than the conventional one. It turns out that control is possible. The vertical axis shows the hydrogen flow control valve pressure, and the horizontal axis shows the heating current of the paradigm valve.

〔発明の効果〕〔The invention's effect〕

以上,述べたように従来の水素流量制御弁においては、
管部材の素材であるパラジュム管を直接加熱していなか
ったため,該素材に対する熱伝導率が良くなかった。ま
た、該管部材を固定する熱絶縁基盤としてステンレス製
の真空フランジを使用していたために熱容量が大きくな
り,制御電流の増大をまねくとともに制御時定数が長く
なり,制御精度を劣化させる欠点があった。そこで、管
部材として内壁面に溝をほどこし、外壁に電気的絶縁処
理を施した熱伝導の良い金属パイプを用いることによ
り,また、管部材を固定する基盤を熱絶縁部材とするこ
とにより、それぞれ制御精度と即応答性の改善と熱容量
小に伴い制御電流の低減が計れ、信頼性の大幅な向上を
図ることができた水素流量制御弁を供給できる。
As described above, in the conventional hydrogen flow control valve,
Since the Parajum tube which is the material of the tube member was not directly heated, the thermal conductivity of the material was not good. Further, since a stainless steel vacuum flange is used as a heat insulating substrate for fixing the pipe member, there is a drawback that the heat capacity becomes large, the control current increases, the control time constant becomes long, and the control accuracy deteriorates. It was Therefore, by using a metal pipe having good heat conduction with a groove on the inner wall surface and an electrical insulation treatment on the outer wall as the pipe member, and by using the base for fixing the pipe member as the heat insulating member, It is possible to supply a hydrogen flow control valve that can improve the control accuracy and immediate response, and reduce the control current due to the small heat capacity, and greatly improve the reliability.

【図面の簡単な説明】 第1図と第2図は本発明に係る水素流量制御弁の構成図
を示す。第3図と第4図は,それぞれ第1図と第2図に
示した水素流量制御弁を配管に封入した状態を示した実
施例である。第5図は本発明を使用した水素供給系統を
示した図である。第6図は本発明と従来技術の制御特性
の比較を示した図である。第7図は従来の水素メーザ本
体の模式図を示す。 図において、1は素材、2は熱絶縁基盤,2aと2bは貫通
穴,2cはステンレスパイプ、3は管材部、3aはつば部
分、4は止めネジ、5は加熱体(加熱線),5aと5bは端
子、6は熱絶縁基盤,6aはセラミック円筒,6bと6cはコバ
ル円筒,6dはフランジ、7は第1の真空接続端子、8は
第2の真空接続端子、9は第1の金属配管、10は第2の
金属配管、11は第1の真空接続用フランジ、12は第2の
真空接続用フランジ、13は水素流量制御弁、14は金属フ
ランジ、15はT形真空配管、16は真空導入端子盤、17は
パラジウム弁、18は水素ボンベ、19は減圧弁、20は第1
の真空配管、21は第2の真空配管、22は加熱線電流制御
器、23は放電管、24は放電発振器、25は真空計、26はメ
ーザ発振部、27は放電用高周波発振器、28は水素圧制御
用電流源、29は準位選別マグネット、30は水素蓄積球、
31は空胴共振器、32は温度制御用ヒータ、33はソレノイ
ドコイル円筒、34は磁気シールド、35は真空ベルジャ
ー、36は出力用ループアンテナ、37はイオンポンプをそ
れぞれ示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 2 are schematic views of a hydrogen flow rate control valve according to the present invention. FIGS. 3 and 4 show an embodiment in which the hydrogen flow control valve shown in FIGS. 1 and 2 is enclosed in a pipe. FIG. 5 is a diagram showing a hydrogen supply system using the present invention. FIG. 6 is a diagram showing a comparison of the control characteristics between the present invention and the prior art. FIG. 7 shows a schematic view of a conventional hydrogen maser body. In the figure, 1 is a material, 2 is a heat insulating base, 2a and 2b are through holes, 2c is a stainless pipe, 3 is a pipe material, 3a is a flange portion, 4 is a set screw, 5 is a heating element (heating wire), 5a. And 5b are terminals, 6 is a heat insulating base, 6a is a ceramic cylinder, 6b and 6c are Kobar cylinders, 6d is a flange, 7 is a first vacuum connection terminal, 8 is a second vacuum connection terminal, and 9 is a first vacuum connection terminal. Metal pipe, 10 is a second metal pipe, 11 is a first vacuum connection flange, 12 is a second vacuum connection flange, 13 is a hydrogen flow control valve, 14 is a metal flange, 15 is a T-type vacuum pipe, 16 is a vacuum introduction terminal board, 17 is a palladium valve, 18 is a hydrogen cylinder, 19 is a pressure reducing valve, 20 is the first
Vacuum pipe, 21 is a second vacuum pipe, 22 is a heating wire current controller, 23 is a discharge tube, 24 is a discharge oscillator, 25 is a vacuum gauge, 26 is a maser oscillator, 27 is a high-frequency oscillator for discharge, and 28 is Current source for hydrogen pressure control, 29 is a level selection magnet, 30 is a hydrogen storage sphere,
Reference numeral 31 is a cavity resonator, 32 is a temperature control heater, 33 is a solenoid coil cylinder, 34 is a magnetic shield, 35 is a vacuum bell jar, 36 is an output loop antenna, and 37 is an ion pump.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水素分子流のみを通過させ、温度により通
過流量を制御することができる素材(1)を内臓する熱良
導体である管部材(3)と;該管部材(3)の外部に備えられ
た加熱体(5)と;前記素材(1)を該管部材(3)内に保持
し,かつ,前記水素分子流を通過させるとともに、熱的
に該管部材(3)側と他側とを絶縁する熱絶縁部材でなる
熱絶縁基盤(2)とを備えた水素流量制御弁。
1. A pipe member (3) which is a good heat conductor and contains a material (1) capable of passing only a hydrogen molecular flow and controlling the flow rate by temperature; and outside the pipe member (3). A heating body (5) provided; holding the material (1) in the tube member (3) and allowing the hydrogen molecule flow to pass therethrough, and thermally to the tube member (3) side A hydrogen flow control valve having a heat insulating base (2) made of a heat insulating member that insulates the side from the side.
JP14291887A 1987-06-08 1987-06-08 Hydrogen flow control valve Expired - Lifetime JPH0734486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14291887A JPH0734486B2 (en) 1987-06-08 1987-06-08 Hydrogen flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14291887A JPH0734486B2 (en) 1987-06-08 1987-06-08 Hydrogen flow control valve

Publications (2)

Publication Number Publication Date
JPS63306680A JPS63306680A (en) 1988-12-14
JPH0734486B2 true JPH0734486B2 (en) 1995-04-12

Family

ID=15326652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14291887A Expired - Lifetime JPH0734486B2 (en) 1987-06-08 1987-06-08 Hydrogen flow control valve

Country Status (1)

Country Link
JP (1) JPH0734486B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573879Y2 (en) * 1991-03-29 1998-06-04 アンリツ株式会社 Discharge tube for hydrogen maser standard

Also Published As

Publication number Publication date
JPS63306680A (en) 1988-12-14

Similar Documents

Publication Publication Date Title
Kleppner et al. Hydrogen-maser principles and techniques
US3609992A (en) Hermetically sealed box for maintaining a semiconductor radiation detector at a very low temperature
JP2016092146A (en) Quantum interference device, atomic oscillator, electronic equipment and mobile body
US7750636B2 (en) NMR system
US4123727A (en) Atomic standard with reduced size and weight
Ewing et al. Speeds of sound in CF4 between 175 and 300 K measured with a spherical resonator
JPH0734486B2 (en) Hydrogen flow control valve
US4706043A (en) Frequency standard using hydrogen maser
Vessot et al. Design and performance of an atomic hydrogen maser
Mungall et al. Atomic hydrogen maser development at the National Research Council of Canada
JP2004212354A (en) Nuclear magnetic resonance probe
JP2627504B2 (en) Frequency control system for cavity resonator
US4706042A (en) Atomic or molecular maser cavity resonator
Howe et al. A small, passively operated hydrogen maser
Wren et al. New design of an ion cyclotron resonance cell capable of temperature variation over the range 80⩽ T⩽ 450 K
US4734622A (en) Dissociator for atomic masers
Vanier The active hydrogen maser: state of the art and forecast
JPH0745886A (en) Resonator for atomic oscillator
Zivanov et al. Physics package of the 35kg space active hydrogen maser for the ACES space mission of ESA
CN116566328B (en) Crystal oscillator and integration method
JPH077421A (en) Frequency reference cell
US3462705A (en) Compensation coils for magnetic flux leakage through holes in magnetic shields
JPS6364064B2 (en)
JP2000258520A (en) Superconductor cooling device
Krupczak et al. A cryogenic hydrogen maser operating at 10K