JPH0734484B2 - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0734484B2
JPH0734484B2 JP31570087A JP31570087A JPH0734484B2 JP H0734484 B2 JPH0734484 B2 JP H0734484B2 JP 31570087 A JP31570087 A JP 31570087A JP 31570087 A JP31570087 A JP 31570087A JP H0734484 B2 JPH0734484 B2 JP H0734484B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
current injection
iia
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31570087A
Other languages
Japanese (ja)
Other versions
JPH01157576A (en
Inventor
明憲 勝井
柴田  典義
隆志 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP31570087A priority Critical patent/JPH0734484B2/en
Publication of JPH01157576A publication Critical patent/JPH01157576A/en
Publication of JPH0734484B2 publication Critical patent/JPH0734484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of group II and group VI of the periodic system

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、化合物半導体発光素子に関するものであり、
更に詳述するならば、可視光短波長から紫外で発光する
半導体発光素子に関するものである。
TECHNICAL FIELD The present invention relates to a compound semiconductor light emitting device,
More specifically, the present invention relates to a semiconductor light emitting device that emits ultraviolet light from a short wavelength of visible light.

(従来技術及び発明が解決しようとする問題点) 可視光短波長(青色)の半導体発光素子として、発光効
率の高いものは従来ZnSeを用いて形成されている。第6
図にその基本構造を示す。ZnSe結晶基板1と、絶縁層2
を有し、半透明金属電極3から正孔が絶縁層2を通して
ZnSe結晶1内に注入され、発光中心を介して電子と再結
合し、発光させる。4は電極を示す。ここで、結晶基板
1としては、高圧溶融法で育成した単結晶を1mm厚のウ
ェーハ状に切断し、鏡面研磨したのち、Zn融液中で熱処
理し、0.3〜2Ω・cmの比抵抗にしたものを用いる。絶
縁層2としては、300〜5000A厚のSiO2膜を、またZnSe基
板1へのオーム性電極4としてIn−Ga、電極3として厚
さ500〜1000AのAu蒸着膜を用いる。
(Problems to be Solved by Prior Art and Invention) As a semiconductor light-emitting element of visible light short wavelength (blue), one having high luminous efficiency is conventionally formed by using ZnSe. Sixth
The basic structure is shown in the figure. ZnSe crystal substrate 1 and insulating layer 2
And holes are transmitted from the semitransparent metal electrode 3 through the insulating layer 2.
It is injected into the ZnSe crystal 1 and recombines with electrons through the emission center to emit light. Reference numeral 4 represents an electrode. Here, as the crystal substrate 1, a single crystal grown by a high-pressure melting method was cut into a 1 mm thick wafer, mirror-polished, and then heat-treated in a Zn melt to have a specific resistance of 0.3 to 2 Ω · cm. Use one. As the insulating layer 2, a SiO 2 film having a thickness of 300 to 5000 A, In—Ga as an ohmic electrode 4 on the ZnSe substrate 1, and an Au vapor deposition film having a thickness of 500 to 1000 A as an electrode 3 are used.

この構造においては少数キャリアである正孔をいかに効
率良く注入するかが問題であり、絶縁層2の形成技術に
依存するところが多い。特に、絶縁層2の形成をごく薄
い他の化合物例えばSiO2などで作製した場合一般には高
発光効率は得られない。またこの発光は、その発光エネ
ルギーがZnSeのバンドギャップエネルギーに近いため、
結晶内での自己吸収が大きくなり発光強度が低下する。
また、この構造では、後述する本発明のごとく導波構造
をなすことができない、という問題がある。このためこ
の構造の素子では、発光強度を十分上げることができな
い欠点を持っており、これまで量子効率が10-3%までの
ものしか得られていなかった。
In this structure, the problem is how to efficiently inject holes, which are minority carriers, and it depends in many cases on the technique for forming the insulating layer 2. In particular, when the insulating layer 2 is made of a very thin compound such as SiO 2 , high luminous efficiency cannot be generally obtained. In addition, since the emission energy of this emission is close to the band gap energy of ZnSe,
The self-absorption in the crystal is increased and the emission intensity is reduced.
Further, this structure has a problem that a waveguide structure cannot be formed as in the present invention described later. Therefore, the device with this structure has a drawback that the emission intensity cannot be sufficiently increased, and up to now, only quantum efficiency up to 10 −3 % was obtained.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもの
で、その目的は、電流注入量が多くとれ、かつ発光効率
の高い、可視光短波長を発光する半導体発光素子を提供
することにある。
(Object of the Invention) The present invention has been proposed in order to improve the above-mentioned drawbacks, and an object of the present invention is to provide a semiconductor light emitting device that emits a short wavelength visible light, which has a large current injection amount and a high luminous efficiency. To provide.

(問題点を解決するための手段) 上記の目的を達成するために、本発明は、GaAsまたはIn
P,Siの何れかの基板上に形成されIIaをMg,Ca,Ba,Sr、II
bをZn,Cd、VIをS,Se,Teとするとき、IIaxIIbyVI(x+
y=1)発光層と、これに格子整合条件で接し、発光層
よりバンドギャップの大きいIIax′IIby′VI(x′+
y′=1)からなる電流注入層とを有し、GaAsまたはIn
P,Siの単結晶基板に格子整合した構造を有することを特
徴とする半導体発光素子を発明の要旨とするものであ
る。
(Means for Solving Problems) In order to achieve the above object, the present invention provides GaAs or In
IIa formed on either P or Si substrate is replaced by Mg, Ca, Ba, Sr, II
When b is Zn, Cd and VI is S, Se, Te, IIa x IIb y VI (x +
y = 1) The light emitting layer is in contact with the light emitting layer under the lattice matching condition and has a band gap larger than that of the light emitting layer IIa x ′ IIb y ′ VI (x ′ +
y ′ = 1) and a current injection layer of GaAs or In
The subject of the invention is a semiconductor light-emitting device characterized by having a structure lattice-matched to a P, Si single crystal substrate.

しかして本発明の特徴とする点は、素子発光部が発光
層と電流注入層より構成され両者はいずれもII VI族化
合物より形成されているため、互いに格子整合が良好で
あること、またバンドギャップが不連続であり、発光
層のバンドギャップが電流注入層のバンドギャップより
小であるため、注入されたキャリアの発光層外への流れ
が妨げられるとともに、発光層と電流注入層との屈折率
の差により、発生した光が発光層内に閉じ込められるこ
と、GaAsまたはInP,Siという大口径基板を用いるため、
従来のようにII−V族化合物材料の小さな基板による大
きさを制限されないことにある。
However, the feature of the present invention is that the device light emitting portion is composed of the light emitting layer and the current injection layer, both of which are formed of the II VI group compound, and therefore the lattice matching is good with each other, and the band matching is good. Since the gap is discontinuous and the band gap of the light emitting layer is smaller than the band gap of the current injection layer, the flow of injected carriers to the outside of the light emission layer is blocked and the light emission layer and the current injection layer are refracted. Due to the difference in the ratio, the generated light is confined in the light emitting layer, and since a large-diameter substrate such as GaAs or InP, Si is used,
Unlike the conventional technique, the size of the II-V compound material is not limited by the small substrate.

IIbVI族化合物は、閃亜鉛鉱型結晶構造をしており、直
接遷移型バンド構造を持っている。またIIaVI族化合物
は、MgTeを除いて、すべて岩塩型結晶構造をしている
が、IIbVI族とは概ね全率にわたって固溶体IIaIIbVIを
形成する。
The IIbVI group compounds have a zinc blende type crystal structure and a direct transition band structure. The IIa VI group compounds, except for MgTe, all have a rock salt type crystal structure, but form a solid solution IIa IIb VI group with the II b VI group in almost all proportions.

第7図に(100)面上の格子整合とバンドギャップエネ
ルギーの関係を示す。この図から分かるように、IIaIIb
VIからなる三元ないし四元系の固溶体を用いることによ
り完全格子整合条件でバンドギャップの異なる材料の多
層構造を形成でき、良質なヘテロ接合条件を得ることが
可能となる。
Figure 7 shows the relationship between the lattice matching on the (100) plane and the band gap energy. As you can see from this figure, IIaIIb
By using a ternary or quaternary solid solution of VI, it is possible to form a multilayer structure of materials with different band gaps under perfect lattice matching conditions, and it is possible to obtain good heterojunction conditions.

単結晶基板としては、閃亜鉛鉱型の結晶構造を持つGaAs
やInPを用いると、第7図の破線で示したように、IIaII
bVI層を基板も含めて完全格子整合条件で形成すること
ができ,特に良質のヘテロ接合構造が得られる。また、
Si単結晶上にもバッファ層などを介してGaAsやInPの単
結晶薄膜を形成すれば、同じように良質のIIaIIbVI層を
形成することができる。
As a single crystal substrate, GaAs with a zinc blende type crystal structure
If InP or InP is used, as shown by the broken line in FIG.
The bVI layer, including the substrate, can be formed under perfect lattice matching conditions, and a particularly good heterojunction structure can be obtained. Also,
If a single crystal thin film of GaAs or InP is formed on the Si single crystal via a buffer layer or the like, a IIaIIbVI layer of good quality can be similarly formed.

このようなヘテロ接合構造では、バンドギャップエネル
ギーの違いにより必然的にその界面でバンドギャップの
不連続を生じている。このバンドギャップ不連続は、バ
ンドギャップの小さい半導体からのキャリアの流出に対
してバリアの働きをする。本発明は、上述のIIaIIbVIの
良好なヘテロ接合を発光部即ち発光層と電流注入層に用
いることを特徴としており、バンドギャップ不連続によ
り注入されたキャリアの発光層外への流れが妨げられ発
光層内で発光再結合するキャリアが増加することを物理
的根拠としている。
In such a heterojunction structure, a band gap discontinuity is inevitably generated at the interface due to a difference in band gap energy. This band gap discontinuity acts as a barrier against the outflow of carriers from a semiconductor with a small band gap. The present invention is characterized by using the above-mentioned good heterojunction of IIaIIbVI in the light emitting portion, that is, the light emitting layer and the current injection layer, and the flow of injected carriers due to the band gap discontinuity is disturbed to prevent light emission. The physical basis is that the number of carriers that recombine radiatively increases in the layer.

次に本発明の実施例について説明する。尚、実施例は一
つの例示であって、本発明の精神を逸脱しない範囲で、
種々の変更あるいは改良を行いうることは言うまでもな
い。
Next, examples of the present invention will be described. It should be noted that the embodiment is merely an example, and is within a range not departing from the spirit of the present invention.
It goes without saying that various changes or improvements can be made.

(実施例1) 第1図は本発明の半導体発光素子の第一の実施例を説明
する図であり、発光素子の断面を示したものである。Ga
As基板5の上に厚さ5μmのCd0.08Mg0.16Zn0.76Se電流
注入層(クラッド層)6と、厚さ0.5μmのMnSe発光層
7と、電流注入層および発光層に対する電極8,9とを有
している。電流注入層はn型で低抵抗であり、発光層は
高抵抗にしてある。電極9を正の側として電圧を加える
と、発光層7にキャリアが注入され約4800Åの青色で発
光する。キャリアは電流注入層6へも流れるが、バンド
ギャップ差が約0.4eVあり、バンドギャップ不連続の効
果により無効電流が減少し、外部量子効率1%と高効率
で発光した。なお、発光層と電流注入層に本発明で開示
した異種材料の組合せを用いると、電流注入層の屈折率
が発光層の屈折率に比べて低くなり、いわゆるクラッド
層として作用し、光を閉じ込める導波型構造を実現でき
るので、発光効率を高めることができる。
Example 1 FIG. 1 is a diagram for explaining a first example of the semiconductor light emitting device of the present invention, showing a cross section of the light emitting device. Ga
A 5 μm thick Cd 0.08 Mg 0.16 Zn 0.76 Se current injection layer (cladding layer) 6, a 0.5 μm thick MnSe light emitting layer 7, and electrodes 8 and 9 for the current injection layer and the light emitting layer on the As substrate 5. have. The current injection layer is n-type and has low resistance, and the light emitting layer has high resistance. When a voltage is applied with the electrode 9 on the positive side, carriers are injected into the light emitting layer 7 to emit blue light of about 4800Å. Although carriers also flow into the current injection layer 6, the bandgap difference is about 0.4 eV, the reactive current is reduced due to the effect of the bandgap discontinuity, and light emission is highly efficient with an external quantum efficiency of 1%. When the combination of different materials disclosed in the present invention is used for the light emitting layer and the current injection layer, the refractive index of the current injection layer becomes lower than the refractive index of the light emitting layer and acts as a so-called cladding layer to confine light. Since the waveguide structure can be realized, the luminous efficiency can be improved.

(実施例2) 第2図は本発明の第二の実施例を説明する図である。図
において、InP基板10の上に厚さ2μmのMg0.30Cd0.70S
e第一の電流注入層(第一のクラッド層)11と、厚さ0.3
μmのZn0.23Mg0.15Cd0.62Se発光層12、さらに厚さ0.1
μmのMg0.30Cd0.70Se第二の電流注入層(第二のクラッ
ド層)13と、両電流注入層11および13に対する電極14,1
5を有している。電極15を正の側として電圧を加える
と、薄い電流注入層13を通してキャリアが発光層12に注
入される。この実施例の構造では、発光層の両側にバン
ド不連続があり、キャリアの戻りも少なくすることがで
きている。素子の抵抗は殆ど高抵抗の電流注入層13に決
っている。本素子では発光した光は、クラッド層として
作用する電流注入層に挟まれて導波され、主に層に平行
な方向へ放出される。発光波長は約5000Åの青色であ
り、外部量子効率は3%が得られた。
(Embodiment 2) FIG. 2 is a diagram for explaining a second embodiment of the present invention. In the figure, 2 μm thick Mg 0.30 Cd 0.70 S is deposited on the InP substrate 10.
e First current injection layer (first cladding layer) 11 and thickness 0.3
μm Zn 0.23 Mg 0.15 Cd 0.62 Se Luminescent layer 12, thickness 0.1
μm Mg 0.30 Cd 0.70 Se Second current injection layer (second cladding layer) 13 and electrodes 14, 1 for both current injection layers 11 and 13
Have five. When voltage is applied with the electrode 15 on the positive side, carriers are injected into the light emitting layer 12 through the thin current injection layer 13. In the structure of this embodiment, there is band discontinuity on both sides of the light emitting layer, and carrier return can be reduced. The resistance of the device is determined by the current injection layer 13 having a high resistance. In this device, the emitted light is guided by being sandwiched between the current injection layers that act as the cladding layers, and is emitted mainly in the direction parallel to the layers. The emission wavelength was about 5000Å blue, and the external quantum efficiency was 3%.

(実施例3) 第3図は本発明の第三の実施例を示す図である。図にお
いては、Si基板16にバッファ層17を介してInP層18があ
りその上に厚さ2μmのCa0.31Zn0.69Te0.30Se0.70の組
成を持つ第一の電流注入層(第一のクラッド層)19と、
厚さ0.3μmのCa0.13Zn0.87Te0.41Se0.59発光層20、更
に厚さ0.1μmのCa0.31Zn0.69Te0.30Se0.70第二の電流
注入層(第二のクラッド層)21と、両電流注入層19及び
21に対する電極22,23を有する。発光部の構造は実施例
2と同じであり、従来の発光素子に比べ発光効率の著し
い改善が得られた。発光波長は4600Åの青色である。
(Embodiment 3) FIG. 3 is a view showing a third embodiment of the present invention. In the figure, a Si substrate 16 has an InP layer 18 via a buffer layer 17, and a first current injection layer (first cladding layer) having a composition of Ca 0.31 Zn 0.69 Te 0.30 Se 0.70 with a thickness of 2 μm thereon. ) 19,
0.3 μm thick Ca 0.13 Zn 0.87 Te 0.41 Se 0.59 light emitting layer 20, further 0.1 μm thick Ca 0.31 Zn 0.69 Te 0.30 Se 0.70 second current injection layer (second cladding layer) 21, and both current injections Layers 19 and
It has electrodes 22, 23 for 21. The structure of the light emitting portion was the same as that of Example 2, and the light emitting efficiency was significantly improved as compared with the conventional light emitting element. The emission wavelength is 4600Å blue.

(実施例4) 第4図は本発明の第四の実施例を説明する図である。図
においては、InP基板24の上に2μm厚のZn0.17Mg0.19C
d0.64Se第一の電流注入層(第一のクラッド層)25と、
0.3μm厚のZn0.47Cd0.53Se発光層26、さらに0.1μm厚
のZn0.17Mg0.19Cd0.64Se第二の電流注入層(第二のクラ
ッド層)27と、電流注入層25,27に対する電極28,29を有
している。電極27を正の側として電圧を加えることによ
り発光し、その光は両電流注入層間を導波され放出され
る。上記組合せによる発光波長は約5900Åの緑色であ
り、外部量子効率は3%が得られた。
(Embodiment 4) FIG. 4 is a view for explaining a fourth embodiment of the present invention. In the figure, 2 μm thick Zn 0.17 Mg 0.19 C is deposited on the InP substrate 24.
d 0.64 Se First current injection layer (first cladding layer) 25,
0.3 μm thick Zn 0.47 Cd 0.53 Se light emitting layer 26, and 0.1 μm thick Zn 0.17 Mg 0.19 Cd 0.64 Se second current injection layer (second cladding layer) 27, and electrodes 28 for the current injection layers 25 and 27. , 29. Light is emitted by applying a voltage with the electrode 27 on the positive side, and the light is emitted by being guided between both current injection layers. The emission wavelength of the above combination was green of about 5900Å, and the external quantum efficiency was 3%.

(実施例5) 第5図は、本発明の第五の実施例を説明する図で、紫色
(波長4000A)を得るためのものである。図において
は、GaAs基板30の上に2μm厚のCd0.12Mg0.33Zn0.55Se
第一の電流注入層(第一のクラッド層)31と、0.3μm
厚のCd0.03Mg0.18Zn0.79Se発光層32、さらに0.1μm厚
のCd0.12Mg0.33Zn0.55Se第二の電流注入層(第二のクラ
ッド層)33と、電流注入層31,33に対する電極34,35を有
している。この実施例の構造においても、実施例2〜4
と同じく、導波型構造を持つため、キャリアと光の閉じ
込めが有効に為され、発光効率の高い導波光が層に平行
な方向へ放出される。
(Embodiment 5) FIG. 5 is a view for explaining a fifth embodiment of the present invention, which is for obtaining purple (wavelength 4000A). In the figure, a 2 μm thick Cd 0.12 Mg 0.33 Zn 0.55 Se layer is formed on the GaAs substrate 30.
First current injection layer (first clad layer) 31 and 0.3 μm
A thick Cd 0.03 Mg 0.18 Zn 0.79 Se light emitting layer 32, a 0.1 μm thick Cd 0.12 Mg 0.33 Zn 0.55 Se second current injection layer (second cladding layer) 33, and electrodes 34 for the current injection layers 31 and 33. , 35. Also in the structure of this embodiment, Embodiments 2 to 4 are used.
Similarly to the above, since it has a waveguide type structure, carriers and light are effectively confined, and guided light with high luminous efficiency is emitted in a direction parallel to the layer.

(発明の効果) 以上のように本発明によれば、GaAsまたはInP,Siの何れ
かの基板上に形成されIIaxIIbyVI(x+y=1)発光層
と、これに完全格子整合条件で接し、発光層より十分バ
ンドギャップエネルギーの大きいIIax′IIby′VI(x′
+y′=1)からなる電流注入層とを有し、GaAsまたは
InP,Siの単結晶基板に格子整合した構造を有することに
より、電流注入層が多く取れ、かつ発光効率の高い、緑
色から青色,紫色までの可視光短波長を発光する半導体
発光素子を得ることができる。
According to the present invention as described above (Effect of the Invention), GaAs or InP, is formed on one substrate of Si IIa x IIb y VI (x + y = 1) and the light emitting layer, a complete lattice matching conditions to IIa x ′ IIb y ′ VI (x ′, which has a sufficiently larger bandgap energy than the light emitting layer.
+ Y ′ = 1) and a current injection layer of GaAs or
To obtain a semiconductor light emitting device that emits short wavelength visible light from green to blue and violet, which has a large number of current injection layers and has a high luminous efficiency by having a structure that is lattice-matched to a single crystal substrate of InP and Si. You can

さらに、発光層と電流注入層の組成の差に起因する屈折
率差により光が発光層に閉じ込められる効果があるこ
と、発光層と電流注入層が格子整合条件で接しているた
めの発光層と電流注入層の界面に欠陥が発生せず界面に
おけるキャリアの非発光再結合が防止される効果があ
る。
Further, light has the effect of being confined in the light emitting layer due to the difference in refractive index due to the difference in composition between the light emitting layer and the current injection layer, and that the light emitting layer and the current injection layer are in contact with each other under a lattice matching condition. No defect is generated at the interface of the current injection layer, and non-radiative recombination of carriers at the interface is prevented.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の半導体発光素子の第一の実施例の構造
の概略を示し、第2図は本発明の第二の実施例の構造、
第3図は本発明の第三の実施例の構造、第4図は本発明
の第四の実施例の構造、第5図は本発明の第五の実施例
の構造を示し、第6図は従来技術の発光素子の構造、第
7図はIIaIIbVI化合物固溶体の(100)面上の格子定数
とバンドギャップエネルギーの関係を示したものであ
る。 1……ZnSe基板 2……絶縁層 3……半透明金属電極 4……電極 5,30……GaAs基板 6……Cd0.08Mg0.16Zn0.76Se電流注入層 7……ZnSe発光層 8,9,14,15,22,23,28,29,34,35……電極 10,24……InP基板 11,13……Mg0.30Cd0.70Se電流注入層 12……Mg0.15Zn0.23Cd0.62Se発光層、 16……Si基板 17……バッファ層 18……InP層 19,21……Ca0.31Zn0.69Te0.30Se0.70電流注入層 20……Ca0.13Zn0.87Te0.41Se0.59発光層 25,27……Zn0.17Mg0.19Cd0.64Se電流注入層 26……Zn0.47Cd0.53Se発光層 31,33……Cd0.12Mg0.33Zn0.55Se電流注入層 32……Cd0.03Mg0.18Zn0.79Se発光層
FIG. 1 schematically shows the structure of the first embodiment of the semiconductor light emitting device of the present invention, and FIG. 2 shows the structure of the second embodiment of the present invention.
FIG. 3 shows the structure of the third embodiment of the present invention, FIG. 4 shows the structure of the fourth embodiment of the present invention, FIG. 5 shows the structure of the fifth embodiment of the present invention, and FIG. Shows the structure of a conventional light emitting device, and FIG. 7 shows the relationship between the lattice constant on the (100) plane of the IIaIIbVI compound solid solution and the band gap energy. 1 …… ZnSe substrate 2 …… Insulating layer 3 …… Semi-transparent metal electrode 4 …… Electrode 5,30 …… GaAs substrate 6 …… Cd 0.08 Mg 0.16 Zn 0.76 Se Current injection layer 7 …… ZnSe light emitting layer 8,9 , 14,15,22,23,28,29,34,35 …… electrode 10,24 …… InP substrate 11,13 …… Mg 0.30 Cd 0.70 Se current injection layer 12 …… Mg 0.15 Zn 0.23 Cd 0.62 Se emission Layer, 16 …… Si substrate 17 …… buffer layer 18 …… InP layer 19,21 …… Ca 0.31 Zn 0.69 Te 0.30 Se 0.70 current injection layer 20 …… Ca 0.13 Zn 0.87 Te 0.41 Se 0.59 light emitting layer 25,27… … Zn 0.17 Mg 0.19 Cd 0.64 Se current injection layer 26 …… Zn 0.47 Cd 0.53 Se emission layer 31,33 …… Cd 0.12 Mg 0.33 Zn 0.55 Se current injection layer 32 …… Cd 0.03 Mg 0.18 Zn 0.79 Se emission layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】GaAsまたはInP,Siの何れかの基板上に形成
され、化学式IIaxIIbyVIで表わされ、IIaはMg,Ca,Baお
よびSr、またはIIbはZnおよびCd、VIはS,SeおよびTeか
らそれぞれ選ばれた一種または二種以上の元素であり、
かつx+y=1である発光層と、これに格子整合条件で
接し、発光層よりバンドギャップの大きいIIax′IIby
VI(x′+y′=1)からなる電流注入層とを有し、Ga
AsまたはInP,Siの単結晶基板に格子整合した構造を有す
ることを特徴とする半導体発光素子。 のであります。
1. Formed on a substrate of either GaAs or InP, Si and represented by the chemical formula IIa x IIb y VI, IIa is Mg, Ca, Ba and Sr, or IIb is Zn and Cd, and VI is One or more elements selected from S, Se and Te, respectively,
And a light emitting layer of x + y = 1, which is in contact with the light emitting layer under a lattice matching condition and has a larger bandgap than the light emitting layer IIa x ′ IIb y
VI (x ′ + y ′ = 1), and a Ga
A semiconductor light emitting device having a structure lattice-matched to a single crystal substrate of As or InP, Si. It is.
【請求項2】IIaはMg、IIbはZnおよびCd、VIはSeである
ことを特徴とする特許請求の範囲第1項記載の半導体発
光素子。
2. The semiconductor light emitting device according to claim 1, wherein IIa is Mg, IIb is Zn and Cd, and VI is Se.
【請求項3】IIaはMg、IIbはZn、VIはSeおよびTeである
ことを特徴とする特許請求の範囲第1項記載の半導体発
光素子。
3. The semiconductor light emitting device according to claim 1, wherein IIa is Mg, IIb is Zn, and VI is Se and Te.
【請求項4】IIaはCa、IIbはZn、VIはSeおよびTeである
ことを特徴とする特許請求の範囲第1項記載の半導体発
光素子。
4. The semiconductor light emitting device according to claim 1, wherein IIa is Ca, IIb is Zn, and VI is Se and Te.
JP31570087A 1987-12-14 1987-12-14 Semiconductor light emitting element Expired - Lifetime JPH0734484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31570087A JPH0734484B2 (en) 1987-12-14 1987-12-14 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31570087A JPH0734484B2 (en) 1987-12-14 1987-12-14 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPH01157576A JPH01157576A (en) 1989-06-20
JPH0734484B2 true JPH0734484B2 (en) 1995-04-12

Family

ID=18068498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31570087A Expired - Lifetime JPH0734484B2 (en) 1987-12-14 1987-12-14 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0734484B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268968A (en) * 1988-09-02 1990-03-08 Sharp Corp Compound semiconductor light-emitting device
JPH0391270A (en) * 1989-09-01 1991-04-16 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor luminous element
US5045897A (en) * 1990-03-14 1991-09-03 Santa Barbara Research Center Quaternary II-VI materials for photonics

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147381A (en) * 1974-10-21 1976-04-22 Matsushita Electric Ind Co Ltd

Also Published As

Publication number Publication date
JPH01157576A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
TW513820B (en) Light emitting diode and its manufacturing method
JP3698402B2 (en) Light emitting diode
KR20010029991A (en) Light emitting device, production method thereof, and light emitting apparatus and display unit using the same
JPH0832180A (en) Semiconductor light emitting element
US20090014734A1 (en) Semiconductor light emitting device
JPH0614564B2 (en) Semiconductor light emitting element
US6864514B2 (en) Light emitting diode
JPH0974249A (en) Semiconductor light-emitting device
KR100818457B1 (en) Compound semiconductor light-emitting diode
JPH04266075A (en) Semiconductor device
JPH0734484B2 (en) Semiconductor light emitting element
US20060097283A1 (en) Group III-nitride-based compound semiconductor device
JP3221073B2 (en) Light emitting element
JPH09326508A (en) Semiconductor optical device
JPH0766494A (en) Semiconductor laser
JPH0410669A (en) Semiconductor device
JPH0897518A (en) Semiconductor light-emitting element
JPH0227777A (en) Semiconductor light emitting element
JP3356150B2 (en) Semiconductor optical device
JPH07142765A (en) Semiconductor light-emitting element and semiconductor laser and manufacture of semiconductor light emitting diode
JP2001189491A (en) AlGaInP LIGHT-EMITTING DIODE
JPS62130572A (en) Semiconductor light emitting device
JPH01169985A (en) Semiconductor laser
JP2893099B2 (en) MIS type high efficiency light emitting device
JP2000138396A (en) Light emitting diode of high brightness

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 13