JPH0734408B2 - Method for manufacturing high permeability magnetic material - Google Patents

Method for manufacturing high permeability magnetic material

Info

Publication number
JPH0734408B2
JPH0734408B2 JP2318013A JP31801390A JPH0734408B2 JP H0734408 B2 JPH0734408 B2 JP H0734408B2 JP 2318013 A JP2318013 A JP 2318013A JP 31801390 A JP31801390 A JP 31801390A JP H0734408 B2 JPH0734408 B2 JP H0734408B2
Authority
JP
Japan
Prior art keywords
oxide
magnetic material
producing
mol
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2318013A
Other languages
Japanese (ja)
Other versions
JPH04192310A (en
Inventor
浩 大柳
憲夫 築地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2318013A priority Critical patent/JPH0734408B2/en
Publication of JPH04192310A publication Critical patent/JPH04192310A/en
Publication of JPH0734408B2 publication Critical patent/JPH0734408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,通信機用磁性材料に関し、特に高透磁率磁性
材料の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a magnetic material for a communication device, and more particularly to a method for producing a magnetic material with high magnetic permeability.

[従来の技術] 従来,通信機用の磁性材料としては,主成分として,20
〜30モル%のマンガン酸化物(MnOx),20〜30モル%の
酸化亜鉛(ZnO)及び残部の酸化第二鉄(Fe2O3),の各
粉末が原料として使用されている。この種の通信用磁性
材料としては,近年のノイズ法規制による周波数帯の拡
大及び,小形化の要求に伴い広い周波数帯域特性を持つ
高透磁率材料が必要となってきている。
[Prior Art] Conventionally, as a main component of a magnetic material for a communication device, 20
Powders of ˜30 mol% manganese oxide (MnOx), 20 to 30 mol% zinc oxide (ZnO) and the balance ferric oxide (Fe 2 O 3 ) are used as raw materials. As a magnetic material for communication of this kind, a high magnetic permeability material having a wide frequency band characteristic has been required in response to the recent expansion of the frequency band due to the regulation of the noise law and the demand for miniaturization.

また,従来は,マンガン酸化物,酸化亜鉛,酸化第二鉄
の粉末原料を秤量混合後,予備焼成,粉砕,結合剤との
混合,プレス成形,焼成を経て完成品を得ている。
Further, conventionally, a powdered raw material of manganese oxide, zinc oxide, and ferric oxide is weighed and mixed, followed by preliminary firing, pulverization, mixing with a binder, press molding, and firing to obtain a finished product.

ところで,通信機用の磁性材料は,透磁率の高いことが
必要とされる。高い透磁率を得るためには,組成が均一
であること,焼結体の結晶粒が均一で,しかも粒径の大
きいこと,密度の高いこと,焼結体中の空孔が少ないこ
となどが要求される。
By the way, a magnetic material for a communication device is required to have a high magnetic permeability. In order to obtain high magnetic permeability, the composition is uniform, the crystal grains of the sintered body are uniform, the grain size is large, the density is high, and the pores in the sintered body are few. Required.

[発明が解決しようとする課題] しかしながら,これらの高透磁率材料では,不純物の磁
気特性に与える影響か非常に大きく,不純物の混入によ
って,粒界への析出,異常粒成長の促進,空孔の発生助
長などをきたし,磁壁の滑らかな移動を妨げ,透磁率の
低下を招くという欠点がある。従って,不純物混入のな
いよう十分注意する必要がある。
[Problems to be Solved by the Invention] However, in these high-permeability materials, the influence on the magnetic properties of impurities is very large, and the inclusion of impurities causes precipitation at grain boundaries, promotion of abnormal grain growth, and vacancy. However, there is a drawback in that the magnetic field is accelerated, the smooth movement of the domain wall is hindered, and the magnetic permeability is reduced. Therefore, it is necessary to be very careful not to mix impurities.

また,噴霧焼成工程において組成の均一化及び緻密化の
促進を図ろうとすると,異常粒成長を伴う焼結粒の成長
が起こり,焼結粒の均一な肥大化が困難となる。そのた
め,焼成の前段階において,一度予備焼成して組成の均
質化及び粉末粒子径の制御を行うことによって,異常粒
成長を抑制するという非常に手間のかかる方法がとら
れ,高コストの原因になっていた。従って,不純物の混
入を極力抑えねばならないことから,設備の選定には十
分な配慮が必要であった。
In addition, if it is attempted to promote the homogenization and densification of the composition in the spray firing step, the growth of sintered grains accompanied by abnormal grain growth occurs, and it becomes difficult to uniformly enlarge the sintered grains. Therefore, in the pre-baking stage, a very time-consuming method of suppressing abnormal grain growth by once pre-baking to homogenize the composition and control the powder particle size is taken, which causes high cost. Was becoming. Therefore, it is necessary to prevent impurities from entering as much as possible, and it was necessary to give sufficient consideration to the selection of equipment.

更に,従来の高磁性材料の製造方法で製造される噴霧焙
焼工程による酸化物の粉体では,目標組成に合致させる
のが難しく,主成分の酸化物の粉体による添加調整が必
要である。従って,組成の均一性を確保するためには,
上記と同様な問題を伴う。
Furthermore, it is difficult to match the target composition with the oxide powder by the spray roasting process produced by the conventional method for producing high magnetic materials, and it is necessary to adjust the addition by the powder of the main component oxide. . Therefore, in order to ensure the uniformity of composition,
The same problems as above are involved.

[課題を解決するための手段] 本発明によれば,主成分として、20〜30モル%の酸化マ
ンガン(MnO)、20〜30モル%の酸化亜鉛(ZnO)及び残
部が酸化第二鉄(Fe2O3)を有する高透磁率磁性材料を
製造する方法において,マンガン,亜鉛及び鉄の金属塩
化物を前記主成分相当の割合で含む塩化物混合液を得る
混合工程と,当該塩化物混合液を噴霧液滴の流れと熱媒
体となるガスの流れが同じ方向になるように噴霧焙焼す
る噴霧焙焼工程と,焙焼反応より生成した酸化物の粉体
の流れを前記ガスの流れと同じ方向になるようにして前
記粉体の回収部まで導入する導入工程と、前記酸化物の
粉体を前記ガスより分離して回収する回収工程とを有す
ることを特徴とする高磁性材料の製造方法が得られる。
[Means for Solving the Problems] According to the present invention, as a main component, 20 to 30 mol% manganese oxide (MnO), 20 to 30 mol% zinc oxide (ZnO), and the balance ferric oxide ( A method for producing a high magnetic permeability magnetic material containing Fe 2 O 3 ), the method comprising: mixing a chloride mixture containing manganese, zinc and iron metal chlorides in a proportion corresponding to the main component; A spray roasting process in which the liquid is spray roasted so that the flow of the spray droplets and the flow of the gas serving as the heat medium are in the same direction, and the flow of the oxide powder produced by the roasting reaction is the flow of the gas. Of a high magnetic material characterized by having an introducing step of introducing the powder to a collecting part in the same direction as that of (1) and a collecting step of separating and collecting the oxide powder from the gas. A manufacturing method is obtained.

[作用] 本発明に係る高透磁率材料の製造方法の一実施例による
噴霧焙焼工程により得られる酸化物粉体は,水溶液で混
合されるため,組成が均一で,しかも微粒となるので,
焼結性も良好である。従って噴霧焼成工程において,組
成の均一化,組成の結晶粒の均一肥大化,緻密化の3点
を同時に達成することが可能となるため,従来の予備焼
成,微粉砕等の工程を簡略化でき,工程の簡略化によっ
て,不純物の混入を防ぐという面においても非常に有効
となる。
[Operation] Since the oxide powder obtained by the spray roasting process according to one embodiment of the method for producing a high magnetic permeability material according to the present invention is mixed with an aqueous solution, the composition is uniform and becomes fine particles.
Sinterability is also good. Therefore, in the spray firing process, it is possible to simultaneously achieve the three points of homogenizing the composition, uniformly enlarging the crystal grains of the composition, and densifying, so that it is possible to simplify the conventional steps such as pre-firing and fine pulverization. By simplifying the process, it is also very effective in preventing the entry of impurities.

また,本発明による酸化物粒体に酸化ビスマスを添加す
れば,従来の方法において酸化ビスマスを添加するのに
比べて,均一な結晶粒の成長及び肥大化が可能となるた
め,従来例に比べて広い周波帯域を持つ高透磁率の酸化
物磁性材料が得られる。
In addition, when bismuth oxide is added to the oxide particles according to the present invention, it becomes possible to grow and enlarge the crystal grains more uniformly than when adding bismuth oxide in the conventional method. A highly permeable oxide magnetic material having a wide frequency band can be obtained.

更に,主成分塩化物溶液中にビスマスの化合物を添加
し,噴霧焙焼した原料を使用すればビスマスが均一に分
散し,組成及び組織の均一化向上が図れるので,更に透
磁率の高い酸化物磁性材料が得られる。
Furthermore, if a raw material obtained by adding a bismuth compound to the chloride solution of the main component and spray-baking is used, the bismuth will be uniformly dispersed, and the composition and structure will be improved in homogeneity. A magnetic material is obtained.

[実施例] 以下,本発明に係わる高透磁率磁性材料の実施例につい
て説明する。
[Examples] Examples of the high magnetic permeability magnetic material according to the present invention will be described below.

[実施例1] 本発明の実施例1に係わる高透磁率材料の特性を表1に
示す。
[Example 1] Table 1 shows the characteristics of the high magnetic permeability material according to Example 1 of the present invention.

表1においては,主成分が25.0モル%のMnO、22.0%モ
ル%のZnO,残部がFe2O3の磁性材料であり,No.1は,本発
明の実施例1による噴霧焙焼工程によって得た酸化物粉
末原料に,0.03重量%のBi2O3とバインダーとを混合し,
プレス成形,焼成したものである。No.2は,酸化マンガ
ン,酸化亜鉛,酸化第二鉄及び添加物である酸化ビスマ
スの各々原料粉末を混合,予備焼成し粉砕した後,バイ
ンダーを混合しプレス成形,焼成したものであって,そ
れらの測定結果が示されている。
In Table 1, the main components are 25.0 mol% MnO, 22.0% mol% ZnO, and the balance is Fe 2 O 3 magnetic material. No. 1 is prepared by the spray roasting process according to Example 1 of the present invention. The obtained oxide powder raw material was mixed with 0.03% by weight of Bi 2 O 3 and a binder,
It is pressed and fired. No. 2 was obtained by mixing raw material powders of manganese oxide, zinc oxide, ferric oxide, and bismuth oxide as an additive, pre-firing and crushing, then mixing a binder, press-molding and firing. The results of those measurements are shown.

ここで,B15は直流印加磁場が150eの時の最大磁束密
度,μは初透磁率,tan/δは相対損失係数,h10は相対
ヒステリシス損失係数である。μ,tan/δμ,h
10は,周波数f=10kH2の時の値である。この表からわ
かるように,本発明の実施例1による高透磁率磁性材料
のNo.1は,従来例のNo.2に比べて良好な特性を示してい
る。
Here, B 15 is the maximum magnetic flux density when the DC magnetic field is 150e, μ i is the initial permeability, tan / δ is the relative loss coefficient, and h 10 is the relative hysteresis loss coefficient. μ i , tan / δμ i , h
10 is the value when the frequency f = 10 kH 2 . As can be seen from this table, No. 1 of the high magnetic permeability magnetic material according to Example 1 of the present invention shows better characteristics than No. 2 of the conventional example.

第1図に,本発明の実施例1及び従来の酸化物磁性材料
の製造方法により作成した従来例2の初透磁率μの周
波数特性を示す。図中の番号は,表1の番号に対応す
る。この図からわかるように,本発明の実施例1に係る
No.1の初透磁率μの周波数特性が,従来例のNo.2に比
べ良好な特性を有していることがわかる。
FIG. 1 shows the frequency characteristics of the initial magnetic permeability μ i of Example 1 of the present invention and Conventional Example 2 prepared by the conventional method for producing an oxide magnetic material. The numbers in the figure correspond to the numbers in Table 1. As can be seen from this figure, according to the first embodiment of the present invention,
It can be seen that the frequency characteristic of the initial magnetic permeability μ i of No. 1 has better characteristics than No. 2 of the conventional example.

表1及び第1図の特性より分かるように,本発明は従来
の方法と比較して工程を簡略化でき,しかも同等以上の
高透磁率磁性材料が得られる。
As can be seen from the characteristics shown in Table 1 and FIG. 1, the present invention can simplify the process as compared with the conventional method, and can obtain a magnetic material having a high magnetic permeability equal to or higher than that of the conventional method.

[実施例2] 本発明の実施例2に係る高透磁率磁性材料の特性を表2
に示す。
Example 2 Table 2 shows the characteristics of the high magnetic permeability magnetic material according to Example 2 of the present invention.
Shown in.

表2においては,主成分が25.0モル%のMnO,22.0モル%
のZnO,残部は53.0モル%のFe2O3であり,No.3は本発明の
実施例2による主成分溶液に,噴霧粉末中のビスマス量
が,Bi2O3相当で0.03重量%となるようにBi2O3を添加し
た後,噴霧焙焼により得られた酸化物原料に,そのまま
バインダーを混合し,プレス成形,焼成したものであ
る。従来例のNo.4は,酸化マンガン,酸化亜鉛,酸化第
二鉄及び添加物である酸化ビスマスの各原料粉末を混
合,予備焼成し粉砕した後,バインダーを混合しプレス
成形,焼成したもので,それらの測定結果が示されてい
る。
In Table 2, the main component is 25.0 mol% MnO, 22.0 mol%
ZnO and the balance is 53.0 mol% Fe 2 O 3 , and No. 3 was 0.03% by weight in the main component solution according to Example 2 of the present invention when the amount of bismuth in the spray powder was Bi 2 O 3 equivalent. After adding Bi 2 O 3 as described above, the binder was directly mixed with the oxide raw material obtained by spray roasting, followed by press molding and firing. No. 4 of the conventional example is obtained by mixing raw material powders of manganese oxide, zinc oxide, ferric oxide, and bismuth oxide as an additive, pre-firing and crushing, then mixing a binder, press-molding and firing. , These measurement results are shown.

ここでμ,tanδ/μ,h10は,周波数f=10kHzの時の
値であり,B15は,直流印加磁場150eの時の最大磁束密
度である。
Here, μ i , tan δ / μ, h 10 is the value when the frequency f = 10 kHz, and B 15 is the maximum magnetic flux density when the direct current applied magnetic field 150 e.

又,第2図には,本発明及び従来の酸化物磁性材料の製
造方法により作製したNo,3及びNo.4の初透磁率μの周
波数特性を示した。図中の番号は,表2の番号に対応す
る。
Further, FIG. 2 shows frequency characteristics of the initial magnetic permeability μ i of Nos. 3, 3 and 4 produced by the present invention and the conventional method for producing an oxide magnetic material. The numbers in the figure correspond to the numbers in Table 2.

表2及び第2図の特性より分かるように,本発明の実施
例2は,従来例4と比較して工程を簡略化でき,しかも
同等以上の高透磁率磁性材料が得られる。
As can be seen from the characteristics of Table 2 and FIG. 2, the process of Example 2 of the present invention can be simplified as compared with the conventional example 4, and a magnetic material of high magnetic permeability equal to or higher than that of Example 4 can be obtained.

[実施例3] 本発明の実施例3に係わる高透磁率磁性材料の特性を表
3に示す。
Example 3 Table 3 shows the characteristics of the high magnetic permeability magnetic material according to Example 3 of the present invention.

表3においては,主成分が25.0モル%のMnO,22.0モル%
のZnO,残部は53.0モル%のFe2O3を含む磁性材料であり,
No.5は,本発明の実施例3による主成分溶液に,噴霧粉
末中のビスマス量が,Bi2O3相当で0.03重量%となるよ
うにBiCl3を添加した後,噴霧焙焼により得られた酸化
物原料に,そのままバインダーを混合し,プレス成形,
焼成したものである。従来例のNo.6は,酸化マンガン,
酸化亜鉛,酸化第二鉄及び添加物である酸化ビスマスの
各原料粉末を混合,予備焼成し粉砕した後,バインダー
を混合しプレス成形,焼成したもので,それらの測定結
果が示されている。
In Table 3, the main component is 25.0 mol% MnO, 22.0 mol%
ZnO, the balance is a magnetic material containing 53.0 mol% Fe 2 O 3 .
No. 5 was obtained by spray roasting after adding BiCl 3 to the main component solution according to Example 3 of the present invention such that the amount of bismuth in the spray powder was 0.03 wt% equivalent to Bi 2 O 3. The oxide raw material is mixed with the binder as it is, press-molded,
It was baked. No. 6 of the conventional example is manganese oxide,
Raw material powders of zinc oxide, ferric oxide and bismuth oxide as an additive were mixed, pre-baked and crushed, then a binder was mixed, press-molded and baked, and the measurement results are shown.

ここでμ,tanδ/μ,h10は,周波数f=10kHzの時の
値であり,B15は,直流印加磁場150eの時の最大磁束密
度である。
Here, μ i , tan δ / μ, h 10 is the value when the frequency f = 10 kHz, and B 15 is the maximum magnetic flux density when the direct current applied magnetic field 150 e.

又,第3図には,本発明の実施例3及び従来の酸化物磁
性材料の製造方法により作製した高透磁率磁性材料の初
透磁率μの周波数特性を示した。図中の番号は,表3
の番号に対応する。
Further, FIG. 3 shows the frequency characteristics of the initial magnetic permeability μ i of the high magnetic permeability magnetic material produced by the third embodiment of the present invention and the conventional method for producing an oxide magnetic material. The numbers in the figure are Table 3
Corresponding to the number.

表3及び第3図の特性より分かるように,本発明の実施
例3は,従来の方法と比較して工程を簡略化でき,しか
も同等以上の高透磁率磁性材料が得られる。
As can be seen from the characteristics shown in Table 3 and FIG. 3, in Example 3 of the present invention, the process can be simplified as compared with the conventional method, and moreover, a magnetic material of high magnetic permeability equal to or higher than that can be obtained.

[実施例4] 本発明の実施例4に係る高透磁率磁性材料の特性を第4
図に示す。
[Embodiment 4] The characteristics of the high magnetic permeability magnetic material according to Embodiment 4 of the present invention will be described below.
Shown in the figure.

第4図においては,主成分が25.0モル%のMnO,22.0モル
%のZnO,残部は53.0モル%のFe2O3を含む磁性材料であ
る。第4図は,主成分溶液を噴霧焙焼工程により得られ
た酸化物粉体に,Bi2O3及びバインダーを添加した後,
成形プレス,焼成した酸化物磁性材料における初透磁率
μとBi2O3の添加量との関係を示している。ここでμ
は,周波数f=10kHzの時の値を示している。
In FIG. 4, the main component is a magnetic material containing 25.0 mol% MnO, 22.0 mol% ZnO, and the balance 53.0 mol% Fe 2 O 3 . Figure 4 shows that after adding Bi 2 O 3 and a binder to the oxide powder obtained by spray roasting the main component solution,
The relationship between the initial magnetic permeability μ i and the amount of Bi 2 O 3 added in the oxide magnetic material that has been molded and pressed is shown. Where μ
i indicates the value when the frequency f = 10 kHz.

第4図より,Bi2O3の添加量が0.05重量%までは,μ
は増大傾向にあるが,0.05重量%を超えるとμは急激
に低下することがわかる。μのレベルが0.05重量%を
超えると低下するのは,空孔の数の増加に伴う磁壁移動
の妨げ,あるいは不均一粒成長による結晶粒子への歪の
ためと考えられる。このことから,Bi2O3を0.05重量%
(0%を含まず)の範囲で添加することにより,無添加
のものに比べ高い透磁率を得ることができる。
From Figure 4, the addition amount of Bi 2 O 3 is up to 0.05% by weight, mu i
It tends to increase, but when it exceeds 0.05% by weight, μ i drops sharply. It is considered that the reason why the level of μ i decreases when it exceeds 0.05% by weight is that the domain wall movement is hindered as the number of vacancies increases, or that the crystal grains are distorted due to nonuniform grain growth. From this fact, Bi 2 O 3 content is 0.05% by weight.
By adding within the range (not including 0%), a higher magnetic permeability can be obtained as compared with the case of no addition.

[発明の効果] 以上説明したように本発明によれば,従来法に比べ工程
を簡略化することができるため,低コストで,しかも透
磁率の高い通信機用の磁性材料を提供できる。
[Advantages of the Invention] As described above, according to the present invention, since the process can be simplified as compared with the conventional method, it is possible to provide a magnetic material for a communication device at low cost and with high magnetic permeability.

【図面の簡単な説明】[Brief description of drawings]

第1図は,各種材料の初透磁率μと各周波数f(kH
z)との関係を示した図である。図面上の番号は表1と
対応する。 第2図は,各種材料の初透磁率μと各周波数f(kH
z)との関係を示した図である。図面上の番号は表2と
対応する。 第3図は,各種材料の初透磁率μと各周波数f(kH
z)との関係を示した図である。図面上の番号は表3と
対応する。 第4図は,初透磁率μとBi2O3の添加量との関係を示
している。ここでμは,周波数f=10kHzの時の値を
示している
Figure 1 shows the initial permeability μ i of various materials and the frequency f (kH
It is the figure which showed the relationship with z). The numbers on the drawing correspond to those in Table 1. Fig. 2 shows the initial magnetic permeability μ i of each material and each frequency f (kH
It is the figure which showed the relationship with z). The numbers on the drawing correspond to Table 2. Fig. 3 shows the initial magnetic permeability μ i of each material and each frequency f (kH
It is the figure which showed the relationship with z). The numbers on the drawing correspond to Table 3. FIG. 4 shows the relationship between the initial permeability μ i and the amount of Bi 2 O 3 added. Where μ i is the value when the frequency f = 10 kHz

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】主成分として、20〜30モル%の酸化マンガ
ン(MnO)、20〜30モル%の酸化亜鉛(ZnO)及び残部が
酸化第二鉄(Fe2O3)を有する高透磁率磁性材料を製造
する方法において、マンガン、亜鉛、及び鉄の金属塩化
物を前記主成分相当の割合で含む塩化物混合液を混合工
程と、当該塩化物混合液を噴霧液滴の流れと熱媒体とな
るガスの流れが同じ方向になるように噴霧焙焼する噴霧
焙焼工程と、焙焼反応により生成した酸化物の粉体の流
れを前記ガスの流れと同じ方向になるようにして前記粉
体の回収部まで導入する導入工程と、前記酸化物の粉体
を前記ガスより分離して回収する回収工程とを有するこ
とを特徴とする高透磁率磁性材料の製造方法。
1. A high magnetic permeability having 20 to 30 mol% manganese oxide (MnO), 20 to 30 mol% zinc oxide (ZnO), and the balance ferric oxide (Fe 2 O 3 ) as main components. In a method for producing a magnetic material, a step of mixing a chloride mixed solution containing metal chlorides of manganese, zinc, and iron in a proportion corresponding to the main component, and spraying the chloride mixed solution with a flow of droplets and a heat medium. The spray roasting step of spray roasting so that the gas flow becomes the same direction, and the flow of the oxide powder produced by the roasting reaction is made to be in the same direction as the gas flow. A method for producing a high-permeability magnetic material, comprising: an introducing step of introducing the oxide to the body collecting portion; and a collecting step of separating and collecting the oxide powder from the gas.
【請求項2】請求項1記載の高透磁率磁性材料の製造方
法において、前記混合工程は、前記塩化物混合液中に、
ビスマス化合物(塩化ビスマス、酸化ビスマス等)を溶
解混合することを特徴とする高透磁率磁性材料の製造方
法。
2. The method for producing a high-permeability magnetic material according to claim 1, wherein the mixing step is performed in the chloride mixed solution.
A method for producing a high-permeability magnetic material, which comprises dissolving and mixing a bismuth compound (bismuth chloride, bismuth oxide, etc.).
JP2318013A 1990-11-26 1990-11-26 Method for manufacturing high permeability magnetic material Expired - Lifetime JPH0734408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2318013A JPH0734408B2 (en) 1990-11-26 1990-11-26 Method for manufacturing high permeability magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2318013A JPH0734408B2 (en) 1990-11-26 1990-11-26 Method for manufacturing high permeability magnetic material

Publications (2)

Publication Number Publication Date
JPH04192310A JPH04192310A (en) 1992-07-10
JPH0734408B2 true JPH0734408B2 (en) 1995-04-12

Family

ID=18094520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2318013A Expired - Lifetime JPH0734408B2 (en) 1990-11-26 1990-11-26 Method for manufacturing high permeability magnetic material

Country Status (1)

Country Link
JP (1) JPH0734408B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101912963A (en) * 2010-08-26 2010-12-15 江苏省晶石磁性材料与器件工程技术研究有限公司 Recovery method of magnetic material grinding scraps

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192708A (en) * 1988-01-28 1989-08-02 Nittetsu Kakoki Kk Production of composite oxide powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192708A (en) * 1988-01-28 1989-08-02 Nittetsu Kakoki Kk Production of composite oxide powder

Also Published As

Publication number Publication date
JPH04192310A (en) 1992-07-10

Similar Documents

Publication Publication Date Title
CN100565722C (en) Mn-Zn ferrite of a kind of superhigh magnetic conductivity, high-curie temperature and preparation method thereof
JP4826093B2 (en) Ferrite, electronic component and manufacturing method thereof
US6579383B2 (en) Powder magnetic core
JPH0734408B2 (en) Method for manufacturing high permeability magnetic material
JP2708160B2 (en) Ferrite manufacturing method
JPH0521222A (en) Manufacture of nickel-zinc ferrite
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JPH06325920A (en) Low-loss magnetic material and manufacture thereof
JP5183856B2 (en) Method for producing Mn-Zn ferrite
JP3099245B2 (en) Method for producing low-loss oxide magnetic material
JPH0971455A (en) Ferrite material and its production
JP3852623B2 (en) Method for producing ferrite sintered body
JP3128656B2 (en) Method for producing magnetic oxide
JPH0590020A (en) Manufacture of oxide magnetic material
JP3617070B2 (en) Low loss ferrite manufacturing method
JP2000091114A (en) High permeability oxide magnetic material
JPH0547540A (en) Oxide calcinated power, high-permeability magnetic material using the same and manufacture thereof
JPH06267726A (en) Low loss manganese-zinc ferrite and manufacture thereof
JPH02183501A (en) Manufacture of mn-zn soft ferrite
JPH07126015A (en) Production of ni-zn ferrite powder
JP2001085215A (en) Oxide magnetic material, chip part, and manufacture thereof
JPH1074612A (en) High-permeability oxide magnetic material
JPH09223619A (en) High-permeability oxide magnetic material
JPH09115719A (en) High permeability oxide magnetic material and its manufacture