JPH073345B2 - Flow velocity measuring device for conductive fluid - Google Patents

Flow velocity measuring device for conductive fluid

Info

Publication number
JPH073345B2
JPH073345B2 JP61035482A JP3548286A JPH073345B2 JP H073345 B2 JPH073345 B2 JP H073345B2 JP 61035482 A JP61035482 A JP 61035482A JP 3548286 A JP3548286 A JP 3548286A JP H073345 B2 JPH073345 B2 JP H073345B2
Authority
JP
Japan
Prior art keywords
conductive fluid
flow velocity
electrodes
flow path
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61035482A
Other languages
Japanese (ja)
Other versions
JPS62192665A (en
Inventor
三男 上田
喜久男 中村
義人 阿部
陽一郎 入谷
靖司 舞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Mitsubishi Heavy Industries Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP61035482A priority Critical patent/JPH073345B2/en
Publication of JPS62192665A publication Critical patent/JPS62192665A/en
Publication of JPH073345B2 publication Critical patent/JPH073345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は例えば、液体金属実験装置に適用される導電流
体の流速測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a flow velocity measuring apparatus for a conductive fluid, which is applied to a liquid metal experimental apparatus, for example.

[従来の技術] 従来、例えば液体金属ナトリウム等の導電流体の流速の
測定は、測定対象である導電流体の流路を構成する直径
約10mmのダクトまたは管の流路構成部材の内部に、差動
コイルを組込んだうず電流式流速計を所要箇所に挿入す
ることにより行なわれている。
[Prior Art] Conventionally, for example, the measurement of the flow velocity of a conductive fluid such as liquid metal sodium has been performed by measuring the difference in the flow path constituent member of a duct or a pipe having a diameter of about 10 mm that constitutes the flow path of the conductive fluid to be measured. This is done by inserting an eddy current anemometer incorporating a moving coil into the required location.

[発明が解決しようとする問題点] しかしながら、この種の従来のうず電流式流速計を用い
た流速の測定においては、流路構成部材の内部に挿入す
る流速計プローブの直径が大きいため、流路内の境界層
付近や噴流部のせん断層部分等の速度勾配の急な領域に
ついては、正確な流速の測定を行なうことができないと
う問題がある。
[Problems to be Solved by the Invention] However, in the measurement of the flow velocity using the conventional eddy current type velocity meter of this kind, since the diameter of the velocity meter probe inserted inside the flow path constituting member is large, There is a problem in that it is not possible to accurately measure the flow velocity in a region where the velocity gradient is steep, such as near the boundary layer in the passage or in the shear layer portion of the jet.

本発明は上記のような問題を解決するために成されたも
ので、その目的は導電流体の流速を正確に測定すること
が可能な信頼性の高い導電流体の流速測定装置を提供す
ることにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a highly reliable conductive fluid flow velocity measuring device capable of accurately measuring the flow velocity of a conductive fluid. is there.

[問題点を解決するための手段] 上記の目的を達成するために本発明では、流速の測定対
象である導電流体の流路を構成するダクト,管等の流路
構成部材の外側に磁石を配置して全体を磁場で覆い、こ
の磁場に直交する方向から第1,第2の電極を、流路構成
部材内に挿入方向に沿って離間した状態で挿入すると共
に、少なくとも一方の電極を挿入方向に沿って移動可能
とし、第1,第2の各電極間の電位差を検出する電位差計
と、移動電極の位置を検出する位置検出器と、電位差計
からの出力信号、および位置検出器からの出力信号を入
力とし、これらの各信号に基づいて導電流体の流速分布
を描くレコーダとを備えて構成している。
[Means for Solving Problems] In order to achieve the above object, in the present invention, a magnet is provided outside a flow path forming member such as a duct or a pipe forming a flow path of a conductive fluid whose flow velocity is to be measured. Arranged and covering the whole with a magnetic field, and inserting the first and second electrodes from the direction orthogonal to this magnetic field in the flow path forming member while being separated along the insertion direction, and at least one electrode From the potentiometer that can move along the direction and that detects the potential difference between the first and second electrodes, the position detector that detects the position of the moving electrode, the output signal from the potentiometer, and the position detector And a recorder that draws the flow velocity distribution of the conductive fluid based on each of these signals.

[作用] 上述した本発明の導電流体の流速測定装置によれば、導
電流体に磁場をかけると流体の運動によって流体中に起
電力が誘起され(ファラデーの右手の法則)、この誘起
される起電力の大きさは磁場の強さと流体の速度に正比
例することから、一定の強さの磁場で流体中の2点間の
電位差を検出することによってその位置の流速を測定す
ることが可能である。また、2つの電極のうち少なくと
も一方の電極を、電極の挿入方向に沿って移動可能にし
ていることにより、導電流体の流路内の流体の速度の分
布を計測することが可能である。
[Operation] According to the conductive fluid flow velocity measuring apparatus of the present invention described above, when a magnetic field is applied to a conductive fluid, an electromotive force is induced in the fluid by the motion of the fluid (Faraday's right-hand rule), and this induced electromotive force is generated. Since the magnitude of electric power is directly proportional to the strength of the magnetic field and the velocity of the fluid, it is possible to measure the flow velocity at that position by detecting the potential difference between two points in the fluid with a magnetic field of constant strength. . Further, by making at least one of the two electrodes movable along the insertion direction of the electrode, it is possible to measure the distribution of the velocity of the fluid in the flow path of the conductive fluid.

これにより、流路の境界層付近の精密な流速や、噴流部
のせん断層部分の詳細な流速を正確に測ることができ
る。
As a result, it is possible to accurately measure a precise flow velocity near the boundary layer of the flow passage and a detailed flow velocity in the shear layer portion of the jet portion.

[実施例] 以下、図面を参照して本発明による導電流体の流速測定
装置の一実施例について説明する。
[Embodiment] An embodiment of a conductive fluid flow velocity measuring device according to the present invention will be described below with reference to the drawings.

第1図(a)〜(c)は、本発明による導電流体の流速
測定装置の構成例を示すもので、第1図(a)は導電流
体の流速測定装置の鳥かん図、第1図(b)は測定部の
詳細を示す断面図、第1図(c)は電位差測定要電極の
詳細を示す断面図である。
FIGS. 1 (a) to 1 (c) show an example of the configuration of a conductive fluid flow velocity measuring device according to the present invention. FIG. 1 (a) is a bird's-eye view of the conductive fluid flow velocity measuring device. FIG. 1B is a sectional view showing the details of the measuring portion, and FIG. 1C is a sectional view showing the details of the potential difference measurement electrode.

図において、流速の測定対象である液体金属ナトリウム
等の導電流体2の流路を構成するダクトまたは管の流路
構成部材1の外側には、この流路構成部材1をはさむよ
うに磁石3を配置して全体を磁場で覆っている。また、
この磁石3の長手方向の中央部には、図示の如く磁場に
直交する方向(図示上下方向)から互いに挿入長さの異
なる,つまり所定距離lだけ離間された第1,第2の2本
の電極5を、上記流路構成部材1内に挿入方向に沿って
離間した状態で挿入すると共に,各電極5をネジ式等の
シール摺動装置6a,6bにより挿入方向(上下方向)に沿
って移動可能に構成している。さらに、上記第1,第2の
各電極5はリード線7を介して電位差計8に電気的に接
続し、各電極5間の電位差を検出するようにしている。
In the figure, a magnet 3 is inserted outside the flow path forming member 1 of a duct or a pipe forming a flow path of a conductive fluid 2 such as liquid metal sodium whose flow velocity is to be measured so as to sandwich the flow path forming member 1. It is placed and covered with a magnetic field. Also,
At the center of the magnet 3 in the longitudinal direction, there are two first and second magnets having different insertion lengths from each other in the direction perpendicular to the magnetic field (the vertical direction in the figure) as shown in the figure, that is, separated by a predetermined distance l. The electrodes 5 are inserted into the flow path forming member 1 while being separated from each other along the insertion direction, and each electrode 5 is inserted along the insertion direction (vertical direction) by a screw type seal sliding device 6a, 6b. It is configured to be movable. Further, each of the first and second electrodes 5 is electrically connected to a potentiometer 8 via a lead wire 7 to detect the potential difference between the electrodes 5.

なお、上記において第1,第2の各電極5は第1図(c)
に示すように、その先端部のみ導電体5aが露出し、他の
部分は絶縁体5bにより電気的に絶縁している。また、磁
石3としては永久磁石あるいは電磁石のいずれを用いて
も良いが、流路構成部材1の全域で一様な磁束密度とな
るような寸法としている。さらに、4は上記各電極5を
夫々保持するための電極保持具である。
In the above, the first and second electrodes 5 are shown in FIG. 1 (c).
As shown in, the conductor 5a is exposed only at the tip portion, and the other portions are electrically insulated by the insulator 5b. The magnet 3 may be either a permanent magnet or an electromagnet, but is dimensioned so that the magnetic flux density is uniform throughout the flow path forming member 1. Further, 4 is an electrode holder for holding each of the electrodes 5 respectively.

かかる如く構成した導電流体の流速測定装置において、
流路構成部材1の内部を導電流体2が第1図(b)の紙
面裏側より表側に向かって流動している状態で、いま導
電流体2に磁場をかけると第2図に示すように、導電流
体2の運動によって磁束Bに直交する方向に起電力
(E)が誘起されて(ファラデーの法則)電流iが流れ
る。この場合、誘起される起電力(E)と導電流体2の
流速vとの関係は v=E/(B・l) ……(1) のように表わされる。すなわち、この電流iの大きさは
磁束Bの強さと導電流体2の速度vに正比例することか
ら、第1,第2の各電極5間にはその離間距離lに応じた
電位差が得られる。そして、この第1,第2の各電極5間
の電位差をリード線7を介して電位差計8に導入するよ
うにしていることから、その位置での導電流体2の流速
vに対応した電位差(E)が検出されることになる。従
って、上記(1)式の関係から電位差計8の指示目盛
(E)を流速に換算することによって、その位置での導
電流体2の流速vが容易に測定されることになる。ま
た、上記第1および第2の各電極5を磁場に直交する方
向つまり図示上下方向にトラバースすることにより、そ
の位置毎における導電流体2の流速vを測定することが
可能である。
In the conductive fluid flow velocity measuring device configured as described above,
When a magnetic field is applied to the conductive fluid 2 while the conductive fluid 2 is flowing from the back side of the paper surface of FIG. 1 (b) to the front side inside the flow path forming member 1, as shown in FIG. An electromotive force (E) is induced (Faraday's law) in a direction orthogonal to the magnetic flux B by the motion of the conductive fluid 2, and a current i flows. In this case, the relationship between the induced electromotive force (E) and the flow velocity v of the conductive fluid 2 is expressed as follows: v = E / (B · l) (1) That is, since the magnitude of the current i is directly proportional to the strength of the magnetic flux B and the velocity v of the conductive fluid 2, a potential difference according to the distance 1 is obtained between the first and second electrodes 5. Since the potential difference between the first and second electrodes 5 is introduced into the potentiometer 8 through the lead wire 7, the potential difference (corresponding to the flow velocity v of the conductive fluid 2 at that position ( E) will be detected. Therefore, by converting the indicator scale (E) of the potentiometer 8 into a flow velocity from the relationship of the above formula (1), the flow velocity v of the conductive fluid 2 at that position can be easily measured. Further, by traversing the first and second electrodes 5 in the direction orthogonal to the magnetic field, that is, in the vertical direction in the drawing, the flow velocity v of the conductive fluid 2 at each position can be measured.

上述したように、本実施例による導電流体の流速測定装
置においては、前述した従来の大形のうず電流式流速計
プローブでは達成できなかったところの、流路内の境界
層付近の精密な流速や,噴流部のせん断層部分の詳細な
流速を正確に測定して把握できることになり、導電流体
2の流れの構造解明に大いに寄与することが可能であ
る。
As described above, in the conductive fluid flow velocity measuring device according to the present embodiment, a precise flow velocity in the vicinity of the boundary layer in the flow passage, which cannot be achieved by the conventional large eddy current type velocity meter probe described above. In addition, it is possible to accurately measure and grasp the detailed flow velocity in the shear layer portion of the jet portion, which can greatly contribute to the elucidation of the structure of the flow of the conductive fluid 2.

尚、本発明は上述した実施例に限定されるものではな
く、次のようにしても実施することができるものであ
る。
It should be noted that the present invention is not limited to the above-described embodiments, but can be carried out as follows.

まず第3図(a)〜(c)は、本発明による導電流体の
流速測定装置の他の構成例を示すもので、第1図(a)
は導電流体の流速測定装置の鳥かん図、第1図(b)は
測定部の詳細を示す断面図、第1図(c)は電位差測定
要電極の詳細を示す断面図である。なお、第3図(a)
〜(c)において第1図(a)〜(c)と同一要素には
同一符号を付して示している。
First, FIGS. 3 (a) to 3 (c) show another configuration example of the conductive fluid flow velocity measuring device according to the present invention, and FIG.
Is a bird's-eye view of a flow velocity measuring device for a conductive fluid, FIG. 1 (b) is a cross-sectional view showing details of a measuring section, and FIG. 1 (c) is a cross-sectional view showing details of a potential difference measurement electrode. Incidentally, FIG. 3 (a)
1A to 1C, the same elements as those in FIGS. 1A to 1C are denoted by the same reference numerals.

図において、流速の測定対象である液体金属ナトリウム
等の導電流体2の流路を構成するダクトまたは管の流路
構成部材1の外側には、この流路構成部材1をはさむよ
うに磁石3を配置して全体を磁場で覆っている。また、
この磁石3の長手方向の中央部には、図示の如く磁場に
直交する方向に沿って上側および下側から第1の電極5
および第2の電極5を、上記流路構成部材1内に挿入方
向に沿って離間した状態で挿入すると共に、一方の電極
である下側の第2の電極5を固定し,かつ他方の電極で
ある上側の第1の電極5をネジ式等のシール摺動装置6
a,6bにより挿入方向(上下方向)に沿って移動可能に構
成している。さらに、上記第1,第2の各電極5はリード
線7を介して電位差計8に電気的に接続し、各電極5間
の電位差を検出するようにしている。
In the figure, a magnet 3 is inserted outside the flow path forming member 1 of a duct or a pipe forming a flow path of a conductive fluid 2 such as liquid metal sodium whose flow velocity is to be measured so as to sandwich the flow path forming member 1. It is placed and covered with a magnetic field. Also,
At the center of the magnet 3 in the longitudinal direction, the first electrode 5 is provided from the upper side and the lower side in the direction orthogonal to the magnetic field as shown in the drawing.
The second electrode 5 and the second electrode 5 are inserted into the flow path forming member 1 while being separated from each other along the insertion direction, and the lower second electrode 5 which is one electrode is fixed, and the other electrode is fixed. The upper first electrode 5 which is a seal sliding device 6 such as a screw type
It is configured to be movable along the insertion direction (vertical direction) by a and 6b. Further, the first and second electrodes 5 are electrically connected to a potentiometer 8 via a lead wire 7 to detect the potential difference between the electrodes 5.

なお、上記において第1,第2の各電極5は第3図(c)
に示すように、その先端部のみ導電体5aが露出し、他の
部分は絶縁体5bにより電気的に絶縁している。また、磁
石3としては永久磁石あるいは電磁石のいずれを用いて
も良いが、前述と同様に流路構成部材1の全域で一様な
磁束密度となるような寸法としている。さらに、4は上
記各電極5を保持するための電極保持具である。
In the above, the first and second electrodes 5 are shown in FIG. 3 (c).
As shown in, the conductor 5a is exposed only at the tip portion, and the other portions are electrically insulated by the insulator 5b. Further, as the magnet 3, either a permanent magnet or an electromagnet may be used, but the size is set so that the magnetic flux density is uniform over the entire area of the flow path forming member 1 as described above. Furthermore, 4 is an electrode holder for holding each of the electrodes 5.

かかる如く構成した導電流体の流速測定装置において、
流路構成部材1の内部を導電流体2が第1図(b)の紙
面裏側より表側に向かって流動している状態で、いま導
電流体2に磁場をかけると前述の第2図に示すように、
導電流体2の運動によって磁束Bに直交する方向に起電
力(E)が誘起されて(ファラデーの法則)電流iが流
れる。この場合、誘起される起電力(E)と導電流体2
の流速vとの関係は v=E/(B・Δh) ……(2) のように表わされる。すなわち、この電流iの大きさは
磁束Bの強さと導電流体2の速度vに正比例することか
ら、第1,第2の各電極5間にはその離間距離Δhに応じ
た電位差が得られる。そして、この第1,第2の各電極5
間の電位差をリード線7を介して電位差計8に導入する
ことにより、その位置での導電流体2の流速vに対応し
た電位差(E)が検出されることになる。従って、上記
(1)式の関係から電位差計8の指示目盛(E)を流速
に換算することによって、その位置での導電流体2の流
速vが容易に測定されることになる。また、上記上側の
第1の電極5を磁場に直交する方向つまり図示上下方向
にトラバースして第1および第2の各電極5間の距離Δ
hを変えることにより、その位置Δh毎における導電流
体2の流速vを測定することが可能である。
In the conductive fluid flow velocity measuring device configured as described above,
When the magnetic field is applied to the conductive fluid 2 while the conductive fluid 2 is flowing from the back side of the paper surface of FIG. 1 (b) to the front side inside the flow path forming member 1, as shown in FIG. To
An electromotive force (E) is induced (Faraday's law) in a direction orthogonal to the magnetic flux B by the motion of the conductive fluid 2, and a current i flows. In this case, the induced electromotive force (E) and the conductive fluid 2
The relationship with the flow velocity v of is expressed as v = E / (B · Δh) (2). That is, since the magnitude of the current i is directly proportional to the strength of the magnetic flux B and the velocity v of the conductive fluid 2, a potential difference according to the separation distance Δh is obtained between the first and second electrodes 5. Then, the first and second electrodes 5
By introducing the potential difference between the two into the potentiometer 8 via the lead wire 7, the potential difference (E) corresponding to the flow velocity v of the conductive fluid 2 at that position is detected. Therefore, by converting the indicator scale (E) of the potentiometer 8 into a flow velocity from the relationship of the above formula (1), the flow velocity v of the conductive fluid 2 at that position can be easily measured. In addition, the upper first electrode 5 is traversed in the direction orthogonal to the magnetic field, that is, in the vertical direction in the figure, and the distance Δ between the first and second electrodes 5 is increased.
By changing h, it is possible to measure the flow velocity v of the conductive fluid 2 at each position Δh.

上述したように、本実施例による導電流体の流速測定装
置においても、前述と同様に流路内の境界層付近の精密
な流速や,噴流部のせん断層部分の詳細な流速を正確に
測定して把握できることになり、導電流体2の流れの構
造解明に大いに寄与することが可能である。
As described above, also in the conductive fluid flow velocity measuring device according to the present embodiment, the precise flow velocity in the vicinity of the boundary layer in the flow channel and the detailed flow velocity in the shear layer portion of the jet portion can be accurately measured as described above. Therefore, it is possible to greatly contribute to the elucidation of the structure of the flow of the conductive fluid 2.

一方、上記各実施例では導電流体2の流速を測定する場
合について述べたが、導電流体2の流速分布を測定する
場合には、各実施例について夫々次のように構成すれば
よいものである。
On the other hand, in each of the above-described embodiments, the case where the flow velocity of the conductive fluid 2 is measured has been described. However, when measuring the flow velocity distribution of the conductive fluid 2, each embodiment may be configured as follows. .

まず第4図(a)は、前記第1図(a)〜(c)に対応
した導電流体の流速分布を測定する場合の実施例構成を
示すもので、第1図(a)〜(c)と同一部分には同一
符号を付してその説明を省略し、ここでは異なる部分に
ついてのみ述べる。
First, FIG. 4 (a) shows an embodiment configuration in the case of measuring the flow velocity distribution of the conductive fluid corresponding to FIGS. 1 (a) to (c), and FIG. 1 (a) to (c) The same parts as those in () are denoted by the same reference numerals, and the description thereof will be omitted. Here, only different parts will be described.

第4図(a)において、9は前記第1,第2の電極5の位
置(y)を検出する差動トランス等からなる位置検出
器、10は導電流体2の流速分布を描くための例えばX−
Yレコーダである。すなわち、前記電位差計8からの出
力信号(電位差E)をX−Yレコーダ10のX軸端子に入
力すると共に、位置検出器9からの出力信号(位置信号
y)をX−Yレコーダ10のY軸端子に入力するように構
成している。
In FIG. 4 (a), 9 is a position detector composed of a differential transformer or the like for detecting the position (y) of the first and second electrodes 5, and 10 is for drawing the flow velocity distribution of the conductive fluid 2, for example. X-
It is a Y recorder. That is, the output signal (potential difference E) from the potentiometer 8 is input to the X-axis terminal of the XY recorder 10, and the output signal (position signal y) from the position detector 9 is input to the Y-axis of the XY recorder 10. It is configured to input to the shaft terminal.

かかる構成においては、離間距離lなる第1,第2の電極
5を磁場に直交する方向つまり図示上下方向にトラバー
スすることにより、電位差計8および位置検出器9から
の各出力信号が第4図(b)に示すようにX−Yレコー
ダ10上に描かれ、このようにして流路構成部材1の液深
方向の導電流体2の流速分布線図が得られることにな
る。
In such a configuration, the output signals from the potentiometer 8 and the position detector 9 are changed as shown in FIG. 4 by traversing the first and second electrodes 5 having the separation distance l in the direction orthogonal to the magnetic field, that is, the vertical direction in the drawing. As shown in (b), it is drawn on the XY recorder 10, and the flow velocity distribution diagram of the conductive fluid 2 in the depth direction of the flow path forming member 1 is obtained in this way.

また第5図(a)は、前記第3図(a)〜(c)に対応
した導電流体の流速分布を測定する場合の実施例構成を
示すもので、第3図(a)〜(c)と同一部分には同一
符号を付してその説明を省略し、ここでは異なる部分に
ついてのみ述べる。
Further, FIG. 5 (a) shows an embodiment configuration in the case of measuring the flow velocity distribution of the conductive fluid corresponding to FIGS. 3 (a) to (c), and FIGS. The same parts as those in () are denoted by the same reference numerals, and the description thereof will be omitted. Here, only different parts will be described.

第5図(a)において、11は前記上側の第1の電極5の
位置(y)を検出する差動トランス等からなる位置検出
器、12は導電流体2の流速分布を描くための例えばX−
Yレコーダである。すなわち、前記電位差計8からの出
力信号(移動電極である上側の第1の電極5と固定電極
である下側の第2の電極5との間の電位差E)をX−Y
レコーダ12のX軸端子に入力すると共に、位置検出器11
からの出力信号(位置信号y)をX−Yレコーダ12のY
軸端子に入力するように構成している。
In FIG. 5 (a), 11 is a position detector composed of a differential transformer or the like for detecting the position (y) of the upper first electrode 5, and 12 is, for example, X for drawing the flow velocity distribution of the conductive fluid 2. −
It is a Y recorder. That is, the output signal from the potentiometer 8 (potential difference E between the upper first electrode 5 which is the moving electrode and the lower second electrode 5 which is the fixed electrode) is given as XY.
Input to the X-axis terminal of the recorder 12 and position detector 11
Output signal (position signal y) from the XY recorder 12
It is configured to input to the shaft terminal.

かかる構成においては、上側の第1の電極5を磁場に直
交する方向つまり図示上下方向にトラバースすることに
より、電位差計8および位置検出器11からの各出力信号
が第5図(b)に示すようにX−Yレコーダ12上に描か
れる。この第5図(b)は、電位差計8からの出力信号
と位置検出器11からの出力信号との関係を示すものであ
るが、これは なる関係が表示されるものである。従って、dE/dyすな
わち勾配が流速vに比例したものとなる。このようにし
て、離間距離Δhの変化に応じて流路構成部材1の液深
方向の導電流体2の流速分布線図が得られることにな
る。
In such a structure, the output signals from the potentiometer 8 and the position detector 11 are shown in FIG. 5 (b) by traversing the upper first electrode 5 in the direction orthogonal to the magnetic field, that is, in the vertical direction in the figure. As drawn on the XY recorder 12. FIG. 5 (b) shows the relationship between the output signal from the potentiometer 8 and the output signal from the position detector 11. Is displayed. Therefore, dE / dy, that is, the gradient is proportional to the flow velocity v. In this way, a flow velocity distribution diagram of the conductive fluid 2 in the depth direction of the flow path forming member 1 is obtained according to the change in the separation distance Δh.

その他、本発明はその要旨を変更しない範囲で、種々に
変形して実施することができるものである。
In addition, the present invention can be variously modified and implemented within the scope of the invention.

[発明の効果] 以上説明したように本発明によれば、流速の測定対象で
ある導電流体の流路を構成するダクト,管等の流路構成
部材の外側に磁石を配置して全体を磁場で覆い、この磁
場に直交する方向から第1,第2の電極を、流路構成部材
内に挿入方向に沿って離間した状態で挿入すると共に、
少なくとも一方の電極を挿入方向に沿って移動可能と
し、第1,第2の各電極間の電位差を検出する電位差計
と、移動電極の位置を検出する位置検出器と、電位差計
からの出力信号、および位置検出器からの出力信号を入
力とし、これらの各信号に基づいて導電流体の流速分布
を描くレコーダとを備えて構成したので、導電流体の流
路内の流体の速度の分布を正確に測定することができ、
もって流路の境界層付近の精密な流速や、噴流部のせん
断層部分の詳細な流速を正確に測ることが可能な極めて
信頼性の高い導電流体の流速測定装置が提供できる。
[Effects of the Invention] As described above, according to the present invention, a magnet is disposed outside a flow path forming member such as a duct or a pipe that forms a flow path of a conductive fluid whose flow velocity is to be measured, and the entire magnetic field is generated. And insert the first and second electrodes in a direction orthogonal to the magnetic field in the flow path forming member in a state of being separated along the insertion direction,
At least one electrode is movable along the insertion direction, a potentiometer for detecting the potential difference between the first and second electrodes, a position detector for detecting the position of the moving electrode, and an output signal from the potentiometer. , And the recorder that draws the output signal from the position detector as input and draws the flow velocity distribution of the conductive fluid based on each of these signals, so that the distribution of the velocity of the fluid in the flow path of the conductive fluid is accurate. Can be measured to
Therefore, it is possible to provide a highly reliable conductive fluid flow velocity measuring device capable of accurately measuring a precise flow velocity near the boundary layer of the flow path and a detailed flow velocity in the shear layer portion of the jet portion.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)は本発明による導電流体の流速測
定装置の一実施例を示す構成図であり、第1図(a)は
導電流体の流速測定装置の外かん図、第1図(b)は測
定部の詳細を示す断面図、第1図(c)は電位差測定要
電極の詳細を示す断面図、第2図は同実施例の作用を説
明するための原理図、第3図(a)〜(c)は本発明に
よる導電流体の流速測定装置の他の実施例を示す構成図
であり、第3図(a)は導電流体の流速測定装置の外か
ん図、第3図(b)は測定部の詳細を示す断面図、第3
図(c)は電位差測定要電極の詳細を示す断面図、第4
図(a)および(b)は本発明の他の実施例を示す構成
図および流速分布線図、第5図(a)および(b)は本
発明の他の実施例を示す構成図および流速分布線図であ
る。 1…流路構成部材、2…導電流体、3…磁石、4…電極
保持具、5…電極、6a,6b…シール摺動装置、7…リー
ド線、8…電位差計、9…位置検出器、10…X−Yレコ
ーダ、11…位置検出器、12…X−Yレコーダ。
1 (a) to 1 (c) are configuration diagrams showing an embodiment of a conductive fluid flow velocity measuring device according to the present invention, and FIG. 1 (a) is an external view of a conductive fluid flow velocity measuring device. FIG. 1 (b) is a sectional view showing details of a measuring part, FIG. 1 (c) is a sectional view showing details of a potential difference measurement electrode, and FIG. 2 is a principle diagram for explaining the operation of the embodiment. 3 (a) to 3 (c) are configuration diagrams showing another embodiment of the conductive fluid flow velocity measuring device according to the present invention, and FIG. 3 (a) is an external view of the conductive fluid flow velocity measuring device, FIG. 3 (b) is a sectional view showing details of the measuring section,
FIG. 4C is a sectional view showing the details of the potential difference measurement electrode,
FIGS. 5A and 5B are configuration diagrams and flow velocity distribution diagrams showing another embodiment of the present invention, and FIGS. 5A and 5B are configuration diagrams and flow velocity showing another embodiment of the present invention. It is a distribution diagram. DESCRIPTION OF SYMBOLS 1 ... Flow path constituent member, 2 ... Conductive fluid, 3 ... Magnet, 4 ... Electrode holder, 5 ... Electrode, 6a, 6b ... Seal sliding device, 7 ... Lead wire, 8 ... Potentiometer, 9 ... Position detector , 10 ... XY recorder, 11 ... Position detector, 12 ... XY recorder.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 義人 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 入谷 陽一郎 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 舞田 靖司 東京都千代田区丸の内2丁目5番1号 三 菱重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshito Abe 2-1-1 Shinhama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Yoichiro Iriya 2-1-1 Shinhama, Arai-cho, Takasago, Hyogo Prefecture No. 1 Mitsubishi Heavy Industries, Ltd. Takasago Laboratory (72) Inventor Yasushi Maida 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流速の測定対象である導電流体の流路を構
成するダクト,管等の流路構成部材の外側に磁石を配置
して全体を磁場で覆い、この磁場に直交する方向から第
1,第2の電極を、前記流路構成部材内に挿入方向に沿っ
て離間した状態で挿入すると共に、少なくとも一方の電
極を挿入方向に沿って移動可能とし、 前記第1,第2の各電極間の電位差を検出する電位差計
と、 前記移動電極の位置を検出する位置検出器と、 前記電位差計からの出力信号、および前記位置検出器か
らの出力信号を入力とし、これらの各信号に基づいて前
記導電流体の流速分布を描くレコーダと、 を備えて成ることを特徴とする導電流体の流速測定装
置。
1. A magnet is arranged outside a flow path forming member such as a duct or a pipe forming a flow path of a conductive fluid whose flow velocity is to be measured, and the whole is covered with a magnetic field.
The first and second electrodes are inserted into the flow path constituent member while being separated from each other along the insertion direction, and at least one of the electrodes is movable along the insertion direction. A potentiometer for detecting the potential difference between the electrodes, a position detector for detecting the position of the moving electrode, an output signal from the potentiometer, and an output signal from the position detector as an input to each of these signals. A recorder for drawing a flow velocity distribution of the conductive fluid on the basis of the recorder, and a flow velocity measuring device for the conductive fluid.
JP61035482A 1986-02-20 1986-02-20 Flow velocity measuring device for conductive fluid Expired - Lifetime JPH073345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035482A JPH073345B2 (en) 1986-02-20 1986-02-20 Flow velocity measuring device for conductive fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035482A JPH073345B2 (en) 1986-02-20 1986-02-20 Flow velocity measuring device for conductive fluid

Publications (2)

Publication Number Publication Date
JPS62192665A JPS62192665A (en) 1987-08-24
JPH073345B2 true JPH073345B2 (en) 1995-01-18

Family

ID=12442972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035482A Expired - Lifetime JPH073345B2 (en) 1986-02-20 1986-02-20 Flow velocity measuring device for conductive fluid

Country Status (1)

Country Link
JP (1) JPH073345B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100690053B1 (en) * 2004-12-27 2007-03-08 한국항공우주연구원 Electromagnetic type velocity profile measurement device of conductive fluid
US8434371B2 (en) 2010-10-14 2013-05-07 Brickhouse Innovations, Llc Electromagnetic fluid velocity sensor with adjustable electrodes
DE102017125593B4 (en) * 2017-11-02 2021-03-18 Finetek Co., Ltd. Electromagnetic flow meter with adjustable electrode structures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53150252U (en) * 1977-04-30 1978-11-27

Also Published As

Publication number Publication date
JPS62192665A (en) 1987-08-24

Similar Documents

Publication Publication Date Title
US5014006A (en) Thin film magnetic core device with a pair of magnetic circuits for measuring a weak magnetic flux
EP0732595A2 (en) Magnetic field detector
JPH11513797A (en) Position detection encoder
KR900003169B1 (en) Linear hall effect oxygen sensor
JPH08273952A (en) Plane current detector
JPS63127163A (en) Speed and acceleration detector
KR860003492A (en) Method and device for measuring thickness of thin metal film deposited on conductive support
Dogaru· et al. Edge crack detection using a giant magnetoresistance based eddy current sensor
JPH073345B2 (en) Flow velocity measuring device for conductive fluid
US20220397590A1 (en) Current Sensor Comprising a Magnetic Field Sensor in a V-Shaped Arrangement
US11796364B2 (en) Coriolis measuring sensor of a Coriolis measuring instrument and a Coriolis measuring instrument
US7082829B2 (en) Ferraris sensor
CA1304602C (en) Apparatus for and method of determining liquid flow in open channels and conduits
SU905864A2 (en) Speed sensor
JP2689163B2 (en) Double pipe sorting type electromagnetic flow meter
KR860000020B1 (en) Measuring device of velocity and thickness
JPH0428063Y2 (en)
JPH0613450Y2 (en) Electromagnetic flow meter
SU901953A1 (en) Device for measuring permanent magnet magnetic induction
SU1420508A1 (en) Induction transducer for registering barkhausen leaps
SU1068849A1 (en) Method and device for measuring magnetic induction in sheet steel
KR820000046Y1 (en) Transducer of electromagnetic balance
SU736005A1 (en) Electric measuring device
RU2133038C1 (en) Electromagnetic meter of velocity of water flow
SU313156A1 (en) ELECTROMAGNETIC SPEED SENSOR ELECTRICAL WIRING LIQUID