JPH07333580A - Ferroelectric liquid crystal display device and method for driving ferroelectric liquid crystal display element - Google Patents

Ferroelectric liquid crystal display device and method for driving ferroelectric liquid crystal display element

Info

Publication number
JPH07333580A
JPH07333580A JP6151817A JP15181794A JPH07333580A JP H07333580 A JPH07333580 A JP H07333580A JP 6151817 A JP6151817 A JP 6151817A JP 15181794 A JP15181794 A JP 15181794A JP H07333580 A JPH07333580 A JP H07333580A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
crystal display
pixel electrode
ferroelectric liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6151817A
Other languages
Japanese (ja)
Inventor
Katsuto Sakamoto
克仁 坂本
Tomio Tanaka
富雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP6151817A priority Critical patent/JPH07333580A/en
Priority to EP95108911A priority patent/EP0686956A3/en
Publication of JPH07333580A publication Critical patent/JPH07333580A/en
Priority to US08/622,090 priority patent/US5920301A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3651Control of matrices with row and column drivers using an active matrix using multistable liquid crystals, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To provide a ferroelectric liquid crystal display device which is capable of displaying gradation with simple constitution and does not generate sticking of display. CONSTITUTION:The DHF liquid crystals 11 of the TFT liquid crystal display element formed by using the DHF liquid crystals 11 are oriented to a first orientation state in which the liquid crystal molecules are oriented in nearly a first direction, a second orientation state in which the liquid crystal molecules are oriented in nearly a second state and an arbitrary orientation state which is intermediate of the first and second orientation states according to the voltage impressed between pixel electrodes 3 and a counter electrode 7. The optical axis of one polarizing plate of a pair of the polarizing plates 13, 14 is set in the direction which is substantially intermediate of the first direction and the second direction and the optical axis of the other polarizing plate is set to intersect orthogonally with the optical axis of the one polarizing plate. One pulse of which the absolute value of the voltage corresponds to a display gradation and the polarity changes with every frame is impressed to the DHF liquid crystals 11 of the respective pixels over plural frames for one piece of image data in the selection period of the respective pixels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は強誘電性液晶(反強誘
電性液晶を含む)を用いた液晶表示素子及びその駆動方
法に関し、特に、階調表示が可能な強誘電性液晶表示装
置及び強誘電性液晶表示素子の駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device using a ferroelectric liquid crystal (including an antiferroelectric liquid crystal) and a driving method thereof, and more particularly to a ferroelectric liquid crystal display device capable of gradation display and The present invention relates to a driving method of a ferroelectric liquid crystal display element.

【0002】[0002]

【従来の技術】強誘電性液晶表示素子は、ネマティック
液晶を用いるTNモードの液晶表示素子と比較して、高
速応答や、広い視野角が得られる等の点で注目されてい
る。強誘電性液晶表示素子としては、強誘電性液晶を用
いた強誘電性液晶表示素子と反強誘電性液晶を用いた反
強誘電性液晶表示素子とが知られている。
2. Description of the Related Art Ferroelectric liquid crystal display elements have been attracting attention because of their high-speed response and wide viewing angle as compared with TN mode liquid crystal display elements using nematic liquid crystals. As a ferroelectric liquid crystal display element, a ferroelectric liquid crystal display element using a ferroelectric liquid crystal and an antiferroelectric liquid crystal display element using an antiferroelectric liquid crystal are known.

【0003】強誘電性液晶表示素子の実用化に関する研
究は、従来、SS−F液晶と呼ばれる強誘電性液晶を対
象として行なわれていた。しかし、SS−F液晶を用い
る強誘電性液晶表示素子は透過率を段階的に変化させる
ことができず、階調表示を行うことができない。
Studies on the practical use of a ferroelectric liquid crystal display device have hitherto been made on a ferroelectric liquid crystal called SS-F liquid crystal. However, the ferroelectric liquid crystal display element using the SS-F liquid crystal cannot change the transmittance stepwise and cannot perform gradation display.

【0004】そこで、階調表示の可能な強誘電性液晶表
示素子が研究されており、カイラルスメクティック相の
螺旋ピッチが表示素子の基板間隔より小さい強誘電性液
晶を用いることが提案されている。この種の強誘電性液
晶は、メモリ性を有するものがSBF液晶と呼ばれ、非
メモリ性のものがDHF液晶と呼ばれている(「LIQUID
CRYSTALS」, 1989, Vol.5, NO.4, の第1171頁ないし第
1177頁参照)。
Therefore, a ferroelectric liquid crystal display device capable of displaying gray scales has been studied, and it has been proposed to use a ferroelectric liquid crystal in which the spiral pitch of the chiral smectic phase is smaller than the substrate interval of the display device. Of this type of ferroelectric liquid crystal, one having a memory property is called an SBF liquid crystal, and one having a non-memory property is called a DHF liquid crystal (“LIQUID
CRYSTALS '', 1989, Vol.5, NO.4, pages 1171 to
See page 1177).

【0005】また、DHF液晶を用いる強誘電性液晶表
示素子では、DHF液晶が螺旋構造をもった状態で基板
間に封入されている。DHF液晶は、液晶層を挟んで対
向する電極間に絶対値が十分大きい値の電圧を印加した
時、印加電圧の極性に応じて、液晶分子のダイレクタが
第1の方向にほぼ配向した第1の配向状態と液晶分子の
ダイレクタが第2の方向にほぼ配向した第2の配向状態
とのいずれかになり、印加電圧の絶対値が前記第1の配
向状態又は第2の配向状態となる電圧より小さい場合、
分子配列の螺旋の歪みにより、液晶分子のダイレクタの
平均的な方向が前記第1と第2の方向の間となる中間の
配向状態になる。
Further, in the ferroelectric liquid crystal display element using the DHF liquid crystal, the DHF liquid crystal is enclosed between the substrates in a state having a spiral structure. In the DHF liquid crystal, when a voltage having a sufficiently large absolute value is applied between the electrodes facing each other with the liquid crystal layer interposed therebetween, the director of the liquid crystal molecule is substantially aligned in the first direction according to the polarity of the applied voltage. And the second alignment state in which the director of the liquid crystal molecules is substantially aligned in the second direction, and the absolute value of the applied voltage becomes the first alignment state or the second alignment state. If less than
Due to the distortion of the spiral of the molecular alignment, the average orientation of the directors of the liquid crystal molecules is in the intermediate orientation state between the first and second directions.

【0006】SBF液晶を用いる強誘電性液晶表示素子
では、SBF液晶が螺旋構造をもった状態で基板間に封
入される。SBF液晶は、液晶層を挟んで対向する電極
間に絶対値が所定値以上の電圧を印加した時、印加電圧
の極性に応じて、液晶分子の長軸の方向(ダイレクタ)
が第1の方向にほぼ配向した第1の配向状態と液晶分子
のダイレクタが第2の方向にほぼ配向した第2の配向状
態とのいずれかになり、印加電圧の絶対値が前記第1の
配向状態又は第2の配向状態となる電圧より小さい場
合、ダイレクタが第1の方向に配向した液晶分子とダイ
レクタが第2の方向に配向した液晶分子が混在した中間
の配向状態になる。
In the ferroelectric liquid crystal display element using the SBF liquid crystal, the SBF liquid crystal is enclosed between the substrates in a spiral structure. The SBF liquid crystal has a long axis direction (director) of liquid crystal molecules depending on the polarity of the applied voltage when a voltage whose absolute value is equal to or greater than a predetermined value is applied between electrodes facing each other with a liquid crystal layer interposed therebetween.
Is in a first alignment state in which the liquid crystal molecules are substantially aligned in the first direction or in a second alignment state in which the director of the liquid crystal molecules is substantially aligned in the second direction, and the absolute value of the applied voltage is the first When the voltage is smaller than the voltage that causes the alignment state or the second alignment state, the director is in an intermediate alignment state in which liquid crystal molecules aligned in the first direction and liquid crystal molecules aligned in the second direction are mixed.

【0007】従来、DHF液晶或いはSBF液晶を用い
る液晶表示素子においては、一方の偏光板の光学軸は前
記第1又は第2の方向に平行に設定され、他方の偏光板
の光学軸は一方の偏光板の光学軸に直交するように配置
されている。
Conventionally, in a liquid crystal display device using DHF liquid crystal or SBF liquid crystal, the optical axis of one polarizing plate is set parallel to the first or second direction, and the optical axis of the other polarizing plate is one. It is arranged so as to be orthogonal to the optical axis of the polarizing plate.

【0008】しかし、このような構成の強誘電性液晶表
示素子では、表示したい階調に対応する電圧を液晶に印
加しても、印加電圧と画素の透過率とが対応せず、実用
レベルの階調表示を実現することはできない。これは、
これらの液晶表示素子の光学特性(印加電圧と透過率の
関係)のヒステリシスが大きく、表示階調に対応する電
圧を液晶に印加しても、それ以前に印加された電圧の影
響で表示階調が一義的に定まらないためである。
However, in the ferroelectric liquid crystal display device having such a structure, even if a voltage corresponding to the gradation to be displayed is applied to the liquid crystal, the applied voltage and the pixel transmittance do not correspond, and the level is practical. Gradation display cannot be realized. this is,
The optical characteristics (relationship between applied voltage and transmittance) of these liquid crystal display elements have large hysteresis, and even if a voltage corresponding to the display gradation is applied to the liquid crystal, the display gradation is affected by the voltage applied before that. Is not uniquely determined.

【0009】このヒステリシスの影響を小さくして表示
階調を制御するため、各画素の選択期間に液晶分子を第
1又は第2の方向に一旦配向させる電圧を印加し、その
後、表示階調に対応する電圧を印加して液晶表示素子を
駆動する手法等も提案されている。しかし、このような
駆動方法では、駆動回路が複雑になり、また、各画素の
選択期間が長くなるという問題がある。
In order to control the display gradation by reducing the influence of this hysteresis, a voltage for temporarily aligning the liquid crystal molecules in the first or second direction is applied during the selection period of each pixel, and then the display gradation is changed. A method of driving a liquid crystal display element by applying a corresponding voltage has also been proposed. However, such a driving method has a problem that the driving circuit becomes complicated and the selection period of each pixel becomes long.

【0010】一方、反強誘電性液晶表示素子は、反強誘
電性液晶が備える配向状態の安定性を利用して画像を表
示するものである。すなわち、反強誘電性液晶は、液晶
分子の配向に3つの安定状態を有し、第1のしきい値以
上の電圧を該液晶に印加したとき、印加電圧の極性に応
じて液晶分子が第1の方向に配列する第1の強誘電相ま
たは第2の方向に配列する第2の強誘電相に配向し、絶
対値が前記第1のしきい値及び第2のしきい値より低い
電圧を印加したとき、液晶分子の平均的な配列方向がス
メクテック相の層の法線とほぼ平行な方向の反強誘電相
に配向する。液晶表示素子の両側に配置する一対の偏光
板の透過軸の方向を反強誘電相の光学軸を基準にして設
定することにより、光の透過率を制御して画像を表示す
ることができる。
On the other hand, the antiferroelectric liquid crystal display element displays an image by utilizing the stability of the alignment state of the antiferroelectric liquid crystal. That is, the antiferroelectric liquid crystal has three stable states in the orientation of the liquid crystal molecules, and when a voltage equal to or higher than the first threshold value is applied to the liquid crystal, the liquid crystal molecules become first in accordance with the polarity of the applied voltage. A voltage having an absolute value lower than the first threshold value and the second threshold value and oriented in a first ferroelectric phase arranged in one direction or a second ferroelectric phase arranged in a second direction. When is applied, the average alignment direction of the liquid crystal molecules is oriented in the antiferroelectric phase in a direction substantially parallel to the normal of the smectic phase layer. By setting the directions of the transmission axes of the pair of polarizing plates arranged on both sides of the liquid crystal display element with reference to the optical axis of the antiferroelectric phase, it is possible to control the light transmittance and display an image.

【0011】反強誘電性液晶は、印加電圧が変化して
も、上記第1と第2のしきい値を境とする各範囲で、第
1または第2の強誘電相または反強誘電相に配向した状
態を維持するというメモリ性を有している。従来の反強
誘電性液晶表示素子は、このメモリ性を利用して単純マ
トリクス駆動されている。反強誘電性液晶の配向状態の
メモリ性は、液晶が第1または第2の強誘電相から反強
誘電相に相転移する電圧と、反強誘電相から第1または
第2の強誘電相に相転移する電圧との電圧差によって定
まり、この電圧差が大きいほど、配向状態のメモリ性が
高い。このため、従来の反強誘電性液晶表示素子では、
反強誘電性液晶として、上記電圧差が大きい液晶を用い
ている。しかし、メモリ性の高い反強誘電性液晶を用い
る従来の反強誘電性液晶表示素子では、表示階調の制御
がほとんど不可能で、階調表示を実現することはできな
かった。
The antiferroelectric liquid crystal has a first or second ferroelectric phase or an antiferroelectric phase in each range with the first and second threshold values as boundaries even if the applied voltage changes. It has a memory property of maintaining the oriented state. The conventional antiferroelectric liquid crystal display device is driven by a simple matrix by utilizing this memory property. The memory property of the alignment state of the antiferroelectric liquid crystal is determined by the voltage at which the liquid crystal undergoes a phase transition from the first or second ferroelectric phase to the antiferroelectric phase and the antiferroelectric phase to the first or second ferroelectric phase. It is determined by the voltage difference between the phase transition voltage and the voltage. The larger this voltage difference, the higher the memory property of the alignment state. Therefore, in the conventional antiferroelectric liquid crystal display element,
As the antiferroelectric liquid crystal, the liquid crystal having a large voltage difference is used. However, in the conventional anti-ferroelectric liquid crystal display device using the anti-ferroelectric liquid crystal having a high memory property, it is almost impossible to control the display gradation, and the gradation display cannot be realized.

【0012】[0012]

【発明が解決しようとする課題】この発明は、上記実状
に鑑みてなされたもので、簡単な構成で且つ階調表示が
可能な強誘電性液晶表示装置及びその駆動方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a ferroelectric liquid crystal display device having a simple structure and capable of gradation display, and a driving method thereof. And

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、この発明の第1の観点にかかる強誘電性液晶表示装
置は、画素電極が形成された一方の基板と、前記画素電
極に対向する対向電極が形成された他方の基板と、前記
2つの基板間に配置された強誘電性を持つ液晶と、前記
2つの基板を挟む位置に配置された一対の偏光板と、を
有し、前記画素電極と前記対向電極との間に印加される
極性の異なる電圧の絶対値の変化に対応して実質的に等
しい光学的変化を示す強誘電性液晶表示素子と、表示画
像に対応する信号を受け、この信号に対応する絶対値を
持ち且つ極性が異なる電圧を前記画素電極と前記対向電
極間に複数のフレームにわたって交互に印加する駆動手
段と、を備えたことを特徴とする。
In order to achieve the above object, in a ferroelectric liquid crystal display device according to a first aspect of the present invention, one substrate on which a pixel electrode is formed is opposed to the pixel electrode. The liquid crystal display device having the other substrate on which the counter electrode is formed, the ferroelectric liquid crystal disposed between the two substrates, and the pair of polarizing plates disposed at a position sandwiching the two substrates, A ferroelectric liquid crystal display element that exhibits substantially the same optical change corresponding to a change in absolute value of voltages having different polarities applied between the pixel electrode and the counter electrode, and a signal corresponding to a display image are displayed. And driving means for alternately applying a voltage having an absolute value corresponding to this signal and having a different polarity between the pixel electrode and the counter electrode over a plurality of frames.

【0014】この発明の第2の観点にかかる強誘電性液
晶表示素子の駆動方法は、画素電極と画素電極に接続さ
れた薄膜トランジスタがマトリクス状に複数配列された
一方の基板と、前記画素電極に対向する対向電極が形成
された他方の基板と、これらの基板の間に配置され、層
構造をもち、前記画素電極と対向電極間に印加された電
圧に応じて液晶分子が第1の方向にほぼ配列した第1の
配向状態と、液晶分子が第2の方向にぼぼ配列した第2
の配向状態と、液晶分子の平均的な配列方向が前記第1
の方向と第2の方向の間の任意の方向となる中間の配向
状態にそれぞれ配向する強誘電性液晶と、前記一方の基
板側に配置され、前記強誘電性液晶層の法線と実質的に
平行な方向に光学軸が設定された一方の偏光板と、前記
他方の基板側に配置され、前記一方の偏光板の光学軸に
直交又は平行に光学軸が設定された他方の偏光板と、を
備えた強誘電性液晶表示素子の駆動方法において、絶対
値が表示階調に対応し、極性が異なる電圧をフレーム毎
に前記アクティブ素子を介して前記画素電極に印加す
る、ことを特徴とする。
According to a second aspect of the present invention, there is provided a method for driving a ferroelectric liquid crystal display device, wherein a pixel electrode and one substrate on which a plurality of thin film transistors connected to the pixel electrode are arranged in a matrix form and the pixel electrode. It is arranged between the other substrate on which the opposing electrode is formed and between these substrates, has a layered structure, and has liquid crystal molecules in a first direction according to a voltage applied between the pixel electrode and the opposing electrode. A substantially aligned first alignment state and a second alignment state in which liquid crystal molecules are aligned in a second direction.
And the average alignment direction of liquid crystal molecules is the first
Of the ferroelectric liquid crystal that is oriented in an intermediate alignment state that is an arbitrary direction between the first direction and the second direction, and is disposed on the one substrate side, and is substantially the same as the normal line of the ferroelectric liquid crystal layer. One polarizing plate having an optical axis set in a direction parallel to, and the other polarizing plate arranged on the other substrate side and having an optical axis orthogonal or parallel to the optical axis of the one polarizing plate, In the method for driving a ferroelectric liquid crystal display element, the voltage is applied to the pixel electrode via the active element for each frame, the voltage having an absolute value corresponding to a display gradation and different polarities. To do.

【0015】[0015]

【作用】上記構成によれば、画素電極と対向電極との間
に印加される極性が異なる電圧の絶対値の変化に対応し
て実質的に等しい光学的変化を示す強誘電性液晶表示素
子、即ち、一方の偏光板の光学軸が第1と第2の方向の
中間の方向に設定され、他方の偏光板の光学軸が一方の
偏光板の光学軸に直交又は平行するように配置された強
誘電性液晶表示素子を用いている。従って、絶対値が等
しく極性が異なる電圧に対して、実質的に同一の階調が
表示される。そして、この液晶に極性が異なり且つ絶対
値がほぼ等しい電圧を複数のフレームにわたって交互に
印加しているので、この複数フレームの平均的な明るさ
により1つの階調を表示することができ、極性が異なる
印加電圧に対する光学的特性が異なっていても、良好な
階調表示を行うことができる。また、各選択期間に表示
階調に応じた電圧の1つのパルスを印加することにより
任意の階調表示を行うことができる。さらに、液晶に印
加される電荷の片寄りをなくし、表示の焼き付き現象等
を防止できる。従って、この発明によれば、簡単な構成
で階調表示が可能となる。
According to the above structure, a ferroelectric liquid crystal display element exhibiting substantially equal optical changes corresponding to changes in absolute values of voltages having different polarities applied between the pixel electrode and the counter electrode, That is, the optical axis of one of the polarizing plates is set to an intermediate direction between the first and second directions, and the optical axis of the other polarizing plate is arranged so as to be orthogonal or parallel to the optical axis of the one polarizing plate. A ferroelectric liquid crystal display element is used. Therefore, substantially the same gradation is displayed for voltages having the same absolute value but different polarities. Since voltages having different polarities and substantially equal absolute values are alternately applied to the liquid crystal over a plurality of frames, one gradation can be displayed by the average brightness of the plurality of frames, and the polarities can be displayed. Even if the optical characteristics for different applied voltages are different, good gradation display can be performed. Further, by applying one pulse of the voltage corresponding to the display gradation in each selection period, it is possible to perform arbitrary gradation display. Further, it is possible to eliminate the bias of the electric charges applied to the liquid crystal and prevent the image sticking phenomenon of the display. Therefore, according to the present invention, gradation display is possible with a simple configuration.

【0016】[0016]

【実施例】以下、この発明の実施例を図面を参照して説
明する。 (第1実施例)まず、この実施例にかかる強誘電性液晶
表示素子の構成を説明する。図1は強誘電性液晶表示素
子の断面図、図2は強誘電性液晶表示素子の画素電極と
アクティブ素子を形成した透明基板の平面図である。こ
の強誘電性液晶表示素子は、アクティブマトリクス方式
のものであり、一対の透明基板(例えば、ガラス基板)
1、2を有する。図1において下側の透明基板(以下、
下基板)1には、ITO等の透明導電材料から構成され
た画素電極3と画素電極3にソースが接続された薄膜ト
ランジス(以下、TFT)4とがマトリクス状に形成さ
れている。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) First, the structure of a ferroelectric liquid crystal display device according to this embodiment will be described. FIG. 1 is a sectional view of a ferroelectric liquid crystal display element, and FIG. 2 is a plan view of a transparent substrate on which pixel electrodes and active elements of the ferroelectric liquid crystal display element are formed. This ferroelectric liquid crystal display element is of an active matrix type and has a pair of transparent substrates (for example, glass substrates).
Have one and two. In FIG. 1, the lower transparent substrate (hereinafter,
On a lower substrate 1, pixel electrodes 3 made of a transparent conductive material such as ITO and thin film transistors (hereinafter, referred to as TFTs) 4 having sources connected to the pixel electrodes 3 are formed in a matrix.

【0017】図2に示すように、画素電極3の行間にゲ
ートライン(走査ライン)5が配線され、画素電極3の
列間にデータライン(階調信号ライン)6が配線されて
いる。各FTF4のゲート電極は対応するゲートライン
5に接続され、ドレイン電極は対応するデータライン6
に接続されている。ゲートライン5は、端部5aを介し
て行(走査ドライバ)ドライバ21に接続され、データ
ライン6は端部6aを介して列ドライバ(信号ドライ
バ)22に接続される。行ドライバ21は、後述するゲ
ート電圧を印加して、ゲートライン5をスキャンする。
一方、列ドライバ22は、表示信号(階調信号)を受
け、データライン6に表示信号に対応するデータ信号を
印加する。
As shown in FIG. 2, gate lines (scanning lines) 5 are arranged between the rows of the pixel electrodes 3, and data lines (gradation signal lines) 6 are arranged between the columns of the pixel electrodes 3. The gate electrode of each FTF 4 is connected to the corresponding gate line 5, and the drain electrode is corresponding to the data line 6
It is connected to the. The gate line 5 is connected to the row (scan driver) driver 21 via the end 5a, and the data line 6 is connected to the column driver (signal driver) 22 via the end 6a. The row driver 21 scans the gate line 5 by applying a gate voltage described later.
On the other hand, the column driver 22 receives the display signal (gradation signal) and applies the data signal corresponding to the display signal to the data line 6.

【0018】図1において、上側の透明基板(以下、上
基板)2には、下基板1の各画素電極3と対向し、基準
電圧V0が印加されている対向電極7が形成されてい
る。下基板1と上基板2の電極形成面には、それぞれ配
向膜8、9が設けられている。配向膜8、9はポリイミ
ド等の有機高分子化合物からなる水平配向膜であり、そ
の対向面にはラビングによる配向処理が施されている。
In FIG. 1, an upper transparent substrate (hereinafter, upper substrate) 2 is provided with a counter electrode 7 facing each pixel electrode 3 of the lower substrate 1 and to which a reference voltage V0 is applied. Alignment films 8 and 9 are provided on the electrode formation surfaces of the lower substrate 1 and the upper substrate 2, respectively. The alignment films 8 and 9 are horizontal alignment films made of an organic polymer compound such as polyimide, and their facing surfaces are subjected to an alignment treatment by rubbing.

【0019】下基板1と上基板2は、その外周縁部にお
いて枠状のシール材10を介して接着されている。基板
1、2とシール材10で囲まれた領域には液晶11が封
入されている。液晶11は、カイラルスメクティックC
相の螺旋ピッチが両基板1、2の間隔より小さく、か
つ、配向状態のメモリ性を有さない強誘電性液晶であ
る。液晶11は、螺旋ピッチが、可視光帯域の波長であ
る700nm〜400nm以下(例えば、400nm〜300
nm)であり、自発分極が大きく、コーンアングルが約2
7度ないし45゜(望ましくは、27゜ないし30゜)
の強誘電性液晶組成物からなる。なお、図1において、
符号12は両基板1、2の間隔を規制する透明なギャッ
プ材を示し、ギャップ材12は液晶封入領域内に点在状
態で配置されている。
The lower substrate 1 and the upper substrate 2 are adhered to each other at their outer peripheral edges via a frame-shaped sealing material 10. A liquid crystal 11 is enclosed in a region surrounded by the substrates 1 and 2 and the sealing material 10. The liquid crystal 11 is a chiral smectic C
It is a ferroelectric liquid crystal in which the spiral pitch of the phase is smaller than the distance between the substrates 1 and 2 and does not have the memory property of the alignment state. The liquid crystal 11 has a spiral pitch of 700 nm to 400 nm or less, which is a wavelength in the visible light band (for example, 400 nm to 300 nm).
nm), the spontaneous polarization is large, and the cone angle is about 2
7 degrees to 45 degrees (desirably 27 degrees to 30 degrees)
Of the ferroelectric liquid crystal composition. In addition, in FIG.
Reference numeral 12 indicates a transparent gap material that regulates the distance between the substrates 1 and 2, and the gap material 12 is arranged in a scattered state in the liquid crystal enclosing region.

【0020】液晶11は、カイラルスメクティックC相
が有する層構造の層の法線を配向膜8、9の配向処理方
向に向けて均一な層構造を形成する。また、その螺旋ピ
ッチが基板間隔より小さいため、螺旋構造をもった状態
で基板1、2間に封入されている。画素電極3と対向電
極7との間に絶対値が十分大きい電圧を印加したとき、
液晶11は印加電圧の極性に応じて、液晶分子の平均的
なダイレクタが第1の方向に配向する第1の配向状態と
液晶分子の平均的なダイレクタが第2の方向に配向する
第2の配向状態のいずれかの状態に設定される。また、
絶対値が液晶分子を第1又は第2の配向状態に配向させ
る電圧より低い電圧を画素電極3と対向電極7間に印加
したとき、液晶11の分子配列の螺旋が歪み、液晶11
の平均的なダイレクタが第1の方向と第2の方向の間の
方向に配向する中間配向状態となる。
The liquid crystal 11 forms a uniform layer structure by directing the normal of the layer structure of the chiral smectic C phase toward the alignment treatment direction of the alignment films 8 and 9. Further, since the spiral pitch is smaller than the substrate interval, the spiral pitch is enclosed between the substrates 1 and 2. When a voltage having a sufficiently large absolute value is applied between the pixel electrode 3 and the counter electrode 7,
The liquid crystal 11 has a first alignment state in which an average director of liquid crystal molecules is aligned in a first direction and a second alignment state in which an average director of liquid crystal molecules is aligned in a second direction, depending on the polarity of an applied voltage. It is set to one of the orientation states. Also,
When a voltage whose absolute value is lower than the voltage for aligning the liquid crystal molecules in the first or second alignment state is applied between the pixel electrode 3 and the counter electrode 7, the spiral of the molecular alignment of the liquid crystal 11 is distorted and the liquid crystal 11
The average director of is in an intermediate alignment state in which it is oriented in a direction between the first direction and the second direction.

【0021】液晶表示素子の上下には、一対の偏光板1
3、14が配置されている。偏光板13、14の透過軸
と液晶11の液晶分子の配向方向との関係を図3を参照
して説明する。図3において、符号11A、11Bは、
液晶11の第1と第2の配向状態における液晶分子の配
向方向(平均的なダイレクタの方向)を示し、符号13
A、14Aは図1において下側の偏光板13、上側の偏
光板14の透過軸の方向を示す。
A pair of polarizing plates 1 is provided above and below the liquid crystal display element.
3, 14 are arranged. The relationship between the transmission axes of the polarizing plates 13 and 14 and the alignment direction of the liquid crystal molecules of the liquid crystal 11 will be described with reference to FIG. In FIG. 3, reference numerals 11A and 11B indicate
Reference numeral 13 indicates the alignment direction of liquid crystal molecules (average director direction) in the first and second alignment states of the liquid crystal 11.
A and 14A indicate the directions of the transmission axes of the lower polarizing plate 13 and the upper polarizing plate 14 in FIG.

【0022】一方の極性でかつ絶対値が十分大きい電圧
を液晶11に印加した時、液晶11は、第1の配向状態
となり、液晶分子の平均的なデイレクタは一点鎖線で示
す第1の配向方向11Aに配向する。他方の極性でかつ
絶対値が十分大きい電圧を液晶11に印加したとき、液
晶11は第2の配向状態となり、液晶分子の平均的なダ
イレクタは2点鎖線で示す第2の配向方向11Bに配向
する。一方、印加電圧が0のとき、液晶分子の平均的な
ダイレクタは液晶のスメクティック相の層の法線方向、
即ち、第1と第2の配向方向11Aと11Bの中間の方
向11Cとなる。
When a voltage having one polarity and a sufficiently large absolute value is applied to the liquid crystal 11, the liquid crystal 11 is in the first alignment state, and the average director of the liquid crystal molecules is the first alignment direction indicated by the chain line. Oriented to 11A. When a voltage having the other polarity and a sufficiently large absolute value is applied to the liquid crystal 11, the liquid crystal 11 is in the second alignment state, and the average director of the liquid crystal molecules is aligned in the second alignment direction 11B indicated by the chain double-dashed line. To do. On the other hand, when the applied voltage is 0, the average director of the liquid crystal molecules is the normal direction of the smectic phase layer of the liquid crystal,
That is, the direction 11C is intermediate between the first and second alignment directions 11A and 11B.

【0023】第1の配向方向11Aと第2の配向方向1
1Bとのずれ角θは、液晶11の種類によって異なる
が、25゜〜45゜に選定され、望ましくは27゜〜4
5゜である。偏光板13、14のうち、一方の偏光板、
例えば、上偏光板14の透過軸14Aは、液晶11のス
メクティック相の層の法線方向とほぼ平行に設定されて
いる。下偏光板13の透過軸13Aは、上偏光板14の
透過軸14Aとほぼ直交している。
First orientation direction 11A and second orientation direction 1
The deviation angle θ from 1B varies depending on the type of the liquid crystal 11, but is selected to be 25 ° to 45 °, preferably 27 ° to 4 °.
It is 5 °. One of the polarizing plates 13 and 14,
For example, the transmission axis 14A of the upper polarizing plate 14 is set substantially parallel to the normal direction of the smectic phase layer of the liquid crystal 11. The transmission axis 13A of the lower polarizing plate 13 is substantially orthogonal to the transmission axis 14A of the upper polarizing plate 14.

【0024】図3に示すように偏光板13、14の透過
軸を設定した強誘電性液晶表示素子は、液晶分子を第1
又は第2の配向方向11A、11Bに配向させた第1又
は第2の配向状態の時に透過率が最も高く(表示が最も
明るく)なり、液晶分子を前記スメクティック相の層の
法線方向とほぼ平行な中間方向11Cに配向させた時に
透過率が最も低く(表示が最も暗く)なる。より詳細に
説明すると、液晶分子のダイレクタが第1又は第2の配
向方向11A、11Bを向いた状態では、入射側偏光板
(ポーラライザ)を通過した直線偏光は液晶11の偏光
作用により非直線偏光となる。そして、液晶層を通過し
た光のうち出射側偏光板(アナライザ)の透過軸と平行
な成分がアナライザを透過して出射し、表示は明るくな
る。一方、液晶分子のダイレクタが中間方向11Cを向
いた状態では、入射側偏光板を通った直線偏光は液晶1
1の偏光作用をほとんど受けず、直線偏光のまま液晶層
を通過する。このため、液晶層を通過した光のほとんど
が出射側偏光板で吸収され、表示が暗くなる。
In the ferroelectric liquid crystal display device in which the transmission axes of the polarizing plates 13 and 14 are set as shown in FIG.
Alternatively, the transmittance is highest (display is brightest) in the first or second alignment state in which the liquid crystal molecules are aligned in the second alignment directions 11A and 11B, and the liquid crystal molecules are almost in the normal direction of the smectic phase layer. When oriented in the parallel intermediate direction 11C, the transmittance is the lowest (display is darkest). More specifically, when the director of the liquid crystal molecules is oriented in the first or second alignment direction 11A, 11B, the linearly polarized light that has passed through the incident side polarization plate (polarizer) is non-linearly polarized light by the polarization action of the liquid crystal 11. Becomes Then, of the light that has passed through the liquid crystal layer, a component parallel to the transmission axis of the emission side polarization plate (analyzer) is transmitted through the analyzer and emitted, and the display becomes bright. On the other hand, when the director of the liquid crystal molecules is oriented in the intermediate direction 11C, the linearly polarized light passing through the incident side polarization plate is the liquid crystal 1
It receives almost no polarization effect of 1 and passes through the liquid crystal layer as it is as linearly polarized light. Therefore, most of the light that has passed through the liquid crystal layer is absorbed by the emission side polarization plate, and the display becomes dark.

【0025】液晶11のダイレクタの平均的な方向は、
印加電圧の極性と電圧値(絶対値)に応じて、配向方向
11Aと11Bの間で連続的に変化する。このため、こ
の強誘電性液晶表示素子の透過率は連続的に変化可能で
ある。
The average direction of the director of the liquid crystal 11 is
It continuously changes between the alignment directions 11A and 11B according to the polarity of the applied voltage and the voltage value (absolute value). Therefore, the transmittance of this ferroelectric liquid crystal display element can be continuously changed.

【0026】次に、液晶11の特性について説明する。
偏光板13、14を図3に示すように配置した場合にお
いては、液晶11(電極3と7間)に電圧を印加しない
時の透過率が最も低くなり、印加電圧の絶対値が大きく
なるに従って、透過率が上昇する。この実施例において
は、図4(A)に示すように、周期が比較的長い(0.
1Hz程度)の三角波の電圧を印加した時にその光学応
答特性が図4(A)に示すように、連続的に滑らかに変
化するものを使用する。また、光学応答特性のヒステリ
シスは小さい方が望ましい。
Next, the characteristics of the liquid crystal 11 will be described.
When the polarizing plates 13 and 14 are arranged as shown in FIG. 3, the transmittance becomes the lowest when no voltage is applied to the liquid crystal 11 (between the electrodes 3 and 7), and the absolute value of the applied voltage increases as the applied voltage increases. , The transmittance increases. In this embodiment, as shown in FIG. 4A, the cycle is relatively long (0.
When a triangular wave voltage of about 1 Hz) is applied, an optical response characteristic of which continuously and smoothly changes as shown in FIG. 4 (A) is used. Further, it is desirable that the hysteresis of the optical response characteristic is small.

【0027】また、図4(B)に示すように、光学応答
特性に明確な閾値、即ち、わずかな電圧の変化で透過率
が急激に変化する特性の強誘電性液晶は望ましくない。
Further, as shown in FIG. 4B, a ferroelectric liquid crystal having a clear threshold value in the optical response characteristic, that is, a characteristic in which the transmittance changes abruptly with a slight change in voltage is not desirable.

【0028】次に、上記構成の強誘電性液晶表示素子の
駆動方法を図5(A)と(B)を参照して説明する。図
5(A)は、行ドライバ21が第1行のTFT4に接続
されたゲートライン5に印加するゲートパルスの波形を
示し、図5(B)は、列ドライバ22がデータライン6
に印加するデータ信号の波形を示す。なお、理解を容易
にするため、第1行の画素用のデータ信号のみ示し、他
の行用のデータ信号は図示しない。
Next, a method of driving the ferroelectric liquid crystal display device having the above structure will be described with reference to FIGS. 5 (A) and 5 (B). FIG. 5A shows a waveform of a gate pulse applied to the gate line 5 connected to the TFT 4 of the first row by the row driver 21, and FIG.
3 shows a waveform of a data signal applied to. Note that, for ease of understanding, only the data signals for the pixels in the first row are shown, and the data signals for the other rows are not shown.

【0029】図5(A)、(B)において、TFは1フ
レーム期間、TSは第1行の画素の選択期間、TOは非
選択期間を示す。各選択期間TSは、例えば、約45μ
秒である。この実施例においては、図5(B)に示すよ
うに、連続する2つのフレームの選択期間に、表示階調
に応じ、極性が反対で絶対値が同一の電圧値VD、−V
Dを有する駆動パルス(書き込みパルス)をデータライ
ン6に印加する。即ち、1つの表示データ(表示信号)
について、電圧値が+VDと−VDの2つの駆動パルス
を2つのフレームの各選択期間にそれぞれ1つずつ印加
する。駆動パルスの極性及び電圧値は、データ信号の基
準電圧V0に対する極性と電圧である。基準電圧V0は
対向電極7に印加する電圧と同一である。
5A and 5B, TF represents one frame period, TS represents a selection period of pixels in the first row, and TO represents a non-selection period. Each selection period TS is, for example, about 45 μ
Seconds. In this embodiment, as shown in FIG. 5B, voltage values VD and −V having opposite polarities and the same absolute value are selected according to the display gradation during the selection period of two consecutive frames.
A drive pulse (writing pulse) having D is applied to the data line 6. That is, one display data (display signal)
With respect to, the two drive pulses having the voltage values of + VD and -VD are applied one each in each selection period of the two frames. The polarity and voltage value of the drive pulse are the polarity and voltage of the data signal with respect to the reference voltage V0. The reference voltage V0 is the same as the voltage applied to the counter electrode 7.

【0030】この駆動方法では、書き込み電圧VDの最
小値をV0とし、最大値Vmaxを透過率の飽和が起こる
電圧(図4(A)では、Vsat)よりも若干低い値とし
て、V0乃至Vmaxの範囲で書き込み電圧VDを制御す
る。
In this driving method, the minimum value of the write voltage VD is set to V0, and the maximum value Vmax is set to a value slightly lower than the voltage at which saturation of the transmittance occurs (Vsat in FIG. 4A), and V0 to Vmax are set. The write voltage VD is controlled within the range.

【0031】上記のような波形のゲート信号とデータ信
号とを用いて上記強誘電性液晶表示素子を駆動すると、
各行の選択期間TSに、駆動パルスの電圧(書き込み電
圧)VDがゲートパルスによりオンしているTFT4を
介して画素電極3に印加される。ゲートパルスがオフ
し、非選択期間TOになると、TFT4がオフ状態にな
り、書き込み電圧VDに応じた電圧が画素電極3と対向
電極7とその間の液晶11とで形成される容量(画素容
量)に保持される。このため、非選択期間TOの間、そ
の画素の透過率が、画素容量の保持電圧に対応する値、
即ち、書き込み電圧VDに対応した値に維持される。
When the ferroelectric liquid crystal display element is driven by using the gate signal and the data signal having the above waveforms,
In the selection period TS of each row, the drive pulse voltage (writing voltage) VD is applied to the pixel electrode 3 via the TFT 4 which is turned on by the gate pulse. When the gate pulse is turned off and the non-selection period TO is entered, the TFT 4 is turned off and a voltage (pixel capacity) corresponding to the write voltage VD is formed by the pixel electrode 3, the counter electrode 7 and the liquid crystal 11 between them. Held in. Therefore, during the non-selection period TO, the transmittance of the pixel has a value corresponding to the holding voltage of the pixel capacitance,
That is, the value is maintained at the value corresponding to the write voltage VD.

【0032】この実施例では、液晶11として印加電圧
の変化に対する透過率が連続的に変化するものを使用
し、しかも、図3に示す光学配置を採用しているので、
書き込み電圧VDの絶対値に対する透過率が一義的に定
まり、書き込み電圧VDの絶対値により透過率を制御し
て、明確な階調表示を実現できる。また、連続する2つ
のフレームにより、1つの画素データに対する正負逆極
性の電圧を印加しているので、正負の電圧に対する光学
特性が異なっていてもこれらの光学的変化の平均値とし
て観察されるので、正負逆極性の電圧に対する光学的特
性に差があっても明確な階調表示が可能である。
In this embodiment, the liquid crystal 11 whose transmittance changes continuously with respect to the change of the applied voltage is used, and furthermore, the optical arrangement shown in FIG. 3 is adopted.
The transmittance with respect to the absolute value of the writing voltage VD is uniquely determined, and the transmittance is controlled by the absolute value of the writing voltage VD, so that clear gradation display can be realized. Further, since voltages of positive and negative opposite polarities for one pixel data are applied by two consecutive frames, even if the optical characteristics for positive and negative voltages are different, it is observed as an average value of these optical changes. It is possible to perform clear gradation display even if there is a difference in optical characteristics with respect to positive / negative and reverse polarity voltages.

【0033】また、連続する2つのフレームで、極性が
逆で絶対値が等しい電圧を各画素(画素電極)に印加す
るので、液晶11に直流電圧成分が片寄って印加される
ことがない。従って表示の焼き付き現象や液晶の劣化を
生ずることもない。
Further, in two consecutive frames, voltages having opposite polarities and equal absolute values are applied to each pixel (pixel electrode), so that the DC voltage component is not biasedly applied to the liquid crystal 11. Therefore, the display burn-in phenomenon and the deterioration of the liquid crystal do not occur.

【0034】具体例1 図6は液晶としてI−SA転移温度が62.5℃、SA−
SC*転移温度が61.2℃で、且つ、らせんピッチが
0.15μmのDHF液晶を使用し、配向処理方向及び
偏光板の透過軸の方向を図3に示したように設定し、各
選択期間を60μSとし、図5(B)に示すように絶対
値が同一の電圧を有する駆動パルスを2つのフレームで
異なった極性とし、書き込み電圧を0V〜10Vまで
0.5V単位で上昇させ、その後、低下させた場合の印
加電圧と透過率の関係を示す。このグラフから明らかな
ように、この駆動方法によれば、書き込み電圧を変化さ
せることにより、透過率が連続的に変化し、さらに、書
き込み電圧に応じて表示階調がほぼ一義的に定まり、階
調表示が可能になる。
Concrete Example 1 FIG. 6 shows a liquid crystal having an I-SA transition temperature of 62.5 ° C. and an SA-
Using DHF liquid crystal with SC * transition temperature of 61.2 ° C and helical pitch of 0.15 μm, the alignment treatment direction and the transmission axis direction of the polarizing plate are set as shown in FIG. The period is set to 60 μS, the drive pulses having the same absolute value as shown in FIG. 5B have different polarities in the two frames, and the write voltage is increased from 0 V to 10 V in 0.5 V units, and then, , Shows the relationship between the applied voltage and the transmittance when it is lowered. As is clear from this graph, according to this driving method, by changing the writing voltage, the transmittance changes continuously, and further, the display gradation is almost uniquely determined according to the writing voltage, and Key display becomes possible.

【0035】なお、液晶11(電極3と7の間)に逆極
性で絶対値が同一の電圧を印加した場合、その透過率は
若干異なり、完全に同一ではない。従って、表示画像の
ちらつき(フリッカ)を防止するため、フレーム期間T
Fは1/30秒以下に設定することが望ましい。
When liquid crystal 11 (between electrodes 3 and 7) is applied with a voltage of opposite polarity and the same absolute value, the transmissivities thereof are slightly different and are not completely the same. Therefore, in order to prevent flicker of the display image, the frame period T
It is desirable to set F to 1/30 seconds or less.

【0036】(第2実施例)第1実施例では、強誘電性
液晶11としてDHF液晶を用いたが、液晶11として
SBF液晶を使用してもよい。SBF液晶は、カイラル
スメクティック相の螺旋ピッチが両基板1、2の間隔よ
り小さく、かつ、双安定性を有する強誘電性液晶であ
る。SBF液晶は、螺旋ピッチが、可視光帯域の波長で
ある700nm〜400nm以下(例えば、400nm〜30
0nm)であり、自発分極が大きく、コーンアングルが大
きい(例えば、約27度ないし45゜(望ましくは、2
7゜ないし30゜))の強誘電性液晶組成物からなる。
(Second Embodiment) In the first embodiment, the DHF liquid crystal is used as the ferroelectric liquid crystal 11, but the SBF liquid crystal may be used as the liquid crystal 11. The SBF liquid crystal is a ferroelectric liquid crystal in which the spiral pitch of the chiral smectic phase is smaller than the distance between the substrates 1 and 2 and which has bistability. The SBF liquid crystal has a helical pitch of 700 nm to 400 nm or less, which is a wavelength in the visible light band (for example, 400 nm to 30 nm).
0 nm), the spontaneous polarization is large, and the cone angle is large (for example, about 27 degrees to 45 degrees (desirably 2 degrees).
7 ° to 30 °)) ferroelectric liquid crystal composition.

【0037】SBF液晶11は、その螺旋ピッチが基板
間隔より小さいため、螺旋構造をもった状態で基板1、
2間に封入されている。SBF液晶を使用する場合の偏
光板13、14の透過軸とSBF液晶11の液晶分子の
配向方向との関係は第1実施例のそれと同一である。即
ち、一方の極性でかつ絶対値が十分大きな値の電圧を印
加した時、SBF液晶11は、第1の安定状態となり、
液晶分子のダイレクタは図3(B)に実線で示す第1の
配向方向11Aに配向する。他方の極性でかつ絶対値が
十分大きな値の電圧を印加したとき、SBF液晶11は
第2の安定状態となり、液晶分子は図3(B)に破線で
示す第2の配向方向に配向する。第1の配向方向11A
と第2の配向方向11Bとのずれ角θは、SBF液晶1
1の種類によって異なるが、25゜〜45゜に選定さ
れ、望ましくは27゜〜45゜である。
Since the SBF liquid crystal 11 has a spiral pitch smaller than the distance between the substrates, the SBF liquid crystal 11 has a spiral structure.
It is enclosed between two. When the SBF liquid crystal is used, the relationship between the transmission axes of the polarizing plates 13 and 14 and the alignment direction of the liquid crystal molecules of the SBF liquid crystal 11 is the same as that of the first embodiment. That is, when a voltage having one polarity and a sufficiently large absolute value is applied, the SBF liquid crystal 11 is in the first stable state,
The director of the liquid crystal molecules is aligned in the first alignment direction 11A shown by the solid line in FIG. When a voltage of the other polarity and a value whose absolute value is sufficiently large is applied, the SBF liquid crystal 11 enters the second stable state, and the liquid crystal molecules are aligned in the second alignment direction shown by the broken line in FIG. 3B. First orientation direction 11A
The deviation angle θ between the second alignment direction 11B and the second alignment direction 11B is
Although it varies depending on the type, it is selected from 25 ° to 45 °, preferably from 27 ° to 45 °.

【0038】一方の偏光板、例えば、上偏光板14の透
過軸14Aは、図3に示すように配向方向11A、11
Bの中間方向11Cとほぼ平行になっている。また、下
偏光板13の透過軸13Aは、上偏光板14の透過軸1
4Aとほぼ直交している。図3に示すように偏光板1
3、14の透過軸13A、14Aを設定した液晶表示素
子は、第1実施例と同様に、液晶分子を第1の配向方向
11A又は第2の配向方向11Bに配向させた時に透過
率が最も高くなり、液晶分子を中間方向方向11Cに配
向させた時に透過率が最も低くなる。
The transmission axis 14A of one of the polarizing plates, for example, the upper polarizing plate 14, has alignment directions 11A and 11A as shown in FIG.
It is substantially parallel to the intermediate direction 11C of B. The transmission axis 13 A of the lower polarizing plate 13 is the transmission axis 1 of the upper polarizing plate 14.
It is almost orthogonal to 4A. Polarizing plate 1 as shown in FIG.
The liquid crystal display element in which the transmission axes 13A and 14A of 3 and 14 are set has the highest transmittance when the liquid crystal molecules are aligned in the first alignment direction 11A or the second alignment direction 11B, as in the first embodiment. When the liquid crystal molecules are oriented in the intermediate direction 11C, the transmittance becomes the lowest.

【0039】なお、この実施例の強誘電性液晶表示素子
のその他の構成は、第1実施例の構成と同一である。
The other structure of the ferroelectric liquid crystal display device of this embodiment is the same as that of the first embodiment.

【0040】第2実施例の構成においても、映像信号に
応答して、連続する2つのフレームに極性が異なり、絶
対値が同一の書き込み電圧を印加して、液晶表示素子を
駆動することにより、駆動パルスの絶対値に対応する階
調の画像を表示できる。
Also in the configuration of the second embodiment, in response to a video signal, a write voltage having different polarities and the same absolute value is applied to two consecutive frames to drive the liquid crystal display element. It is possible to display a gradation image corresponding to the absolute value of the drive pulse.

【0041】(第3実施例)第1、第2実施例では、液
晶11として強誘電性液晶であるDHF液晶とSBF液
晶を使用したが、反強誘電性液晶(以下、AFLC)を
使用してもよい。AFLCは、その螺旋ピッチが基板間
隔より大きいため、螺旋構造を消失した状態で基板1、
2間に封入されている。一方の極性でかつあるしきい値
電圧(ONしきい値電圧)以上の電圧が印加されたと
き、液晶分子の平均的なダイレクタは第1の方向11A
に配向し、極性が逆でかつ絶対値が前記ONしきい値電
圧以上の電圧を印加した時に、平均的なダイレクタは二
点鎖線で示した第2の方向11Bに配向し、前記ONし
きい値電圧より低い他のしきい値電圧(OFFしきい値
電圧)以下の電圧を印加した時に、平均的なダイレクタ
が第3の方向11Cに向くように配向する。また、ON
しきい値電圧とOFFしきい値電圧の間の電圧を印加し
た時、平均的なダイレクタが第1の方向11Aと第3の
方向11Cの間、又は、第2の方向11Bと第3の方向
11Cの間となるように配向し、光学的中間状態とな
る。
(Third Embodiment) In the first and second embodiments, the DHF liquid crystal and the SBF liquid crystal which are the ferroelectric liquid crystal are used as the liquid crystal 11, but the anti-ferroelectric liquid crystal (hereinafter, AFLC) is used. May be. Since the spiral pitch of AFLC is larger than the distance between the substrates, the substrate 1 in the state where the spiral structure disappears,
It is enclosed between two. When a voltage having one polarity and a certain threshold voltage (ON threshold voltage) or more is applied, the average director of the liquid crystal molecules is in the first direction 11A.
When a voltage having a polarity opposite to that of the ON threshold voltage is applied, the average director is oriented in the second direction 11B indicated by the chain double-dashed line, and the ON threshold is When a voltage equal to or lower than another threshold voltage (OFF threshold voltage) lower than the value voltage is applied, the average director is oriented so as to face the third direction 11C. Also ON
When a voltage between the threshold voltage and the OFF threshold voltage is applied, the average director is between the first direction 11A and the third direction 11C or the second direction 11B and the third direction. It is oriented so as to be between 11C, and is in an optical intermediate state.

【0042】一対の偏光板13、14の透過軸は、第1
実施例と同様に、図3に示すように配置される。
The transmission axes of the pair of polarizing plates 13 and 14 are the first
Similar to the embodiment, they are arranged as shown in FIG.

【0043】この実施例では、例えば、次の3つのタイ
プの反強誘電性液晶を使用できる。 (1) 印加電圧が0V近傍の非常に狭い範囲でのみ反
強誘電相を示し、光学応答の特性カーブが急峻であり、
反強誘電相を示す領域に平坦な領域がほとんど存在しな
い液晶。図7はこの種の反強誘電性液晶の光学応答特性
の一例を示す。この光学応答特性は一対の偏光板を図3
に示すように配置し、0.1Hz程度の十分低周波の三
角波電圧を印加して得られたものである。この反強誘電
性液晶は、±0.5V程度の非常に狭い印加電圧領域に
おいてのみ、反強誘電相を示す特性を有し、特性カーブ
が急峻であり、反強誘電相を示す領域に平坦な領域がほ
とんど存在しない。この種の反強誘電性液晶は、反強誘
電−強誘電相転移前駆現象を呈する印加電圧の範囲が広
いため、印加電圧に応じて無数の中間的光学状態を有
し、その光学応答特性に明確な閾値が存在せず、この発
明の駆動方法に適している。
In this embodiment, for example, the following three types of antiferroelectric liquid crystals can be used. (1) The antiferroelectric phase is exhibited only in a very narrow range where the applied voltage is near 0 V, and the characteristic curve of the optical response is steep,
A liquid crystal with almost no flat region in the region showing the antiferroelectric phase. FIG. 7 shows an example of optical response characteristics of this type of antiferroelectric liquid crystal. This optical response characteristic is shown in FIG.
It is obtained by applying the triangular wave voltage of sufficiently low frequency of about 0.1 Hz as shown in FIG. This antiferroelectric liquid crystal has a characteristic that it exhibits an antiferroelectric phase only in a very narrow applied voltage region of about ± 0.5 V, has a steep characteristic curve, and is flat in a region that exhibits an antiferroelectric phase. There is almost no real area. Since this type of antiferroelectric liquid crystal has a wide range of applied voltage exhibiting the antiferroelectric-ferroelectric phase transition precursor phenomenon, it has innumerable intermediate optical states depending on the applied voltage, and its optical response characteristics Since there is no clear threshold value, it is suitable for the driving method of the present invention.

【0044】(2) 印加電圧0Vでは、平均的分子長
軸方向が層の法線方向に揃わず、印加電圧0V以外の2
つの電圧値で平均的分子長軸方向が、層の法線方向に揃
い、透過率が最小となる反強誘電性液晶。図8はこの種
の反強誘電性液晶の光学応答特性の一例を示す。この光
学応答特性も一対の偏光板を図3に示すように配置し、
0.1Hz程度の十分低周波の三角波電圧を印加して得
られたものである。この特性を有する辺強誘電性液晶
は、印加電圧0Vでは、平均的分子長軸方向が層法線方
向に揃わず、印加電圧0V以外の2つの電圧値で平均的
分子長軸方向が、層法線方向に揃い、透過率が最小とな
る。即ち、暗状態になる電圧領域が2つに分離してお
り、印加電圧が0V付近に平坦な部分が存在しない。こ
の種の反強誘電性液晶は、反強誘電−強誘電相転移前駆
現象を呈する印加電圧の範囲が広いため、印加電圧に応
じて無数の中間的光学状態を有し、その光学応答特性に
明確な閾値が存在せず、この発明の駆動方法に適してい
る。
(2) When the applied voltage is 0V, the average long axis of the molecules are not aligned with the normal direction of the layer, and when the applied voltage is 0V, 2
An antiferroelectric liquid crystal in which the average long axis direction of molecules is aligned with the normal direction of the layer at two voltage values, and the transmittance is minimized. FIG. 8 shows an example of the optical response characteristics of this type of antiferroelectric liquid crystal. This optical response characteristic also has a pair of polarizing plates arranged as shown in FIG.
It was obtained by applying a triangular wave voltage having a sufficiently low frequency of about 0.1 Hz. In the edge ferroelectric liquid crystal having this characteristic, the average molecular long axis direction is not aligned with the layer normal direction at the applied voltage of 0 V, and the average molecular long axis direction is at the two layers of the voltage value other than the applied voltage of 0 V. It is aligned in the normal direction and has the minimum transmittance. That is, the voltage region in the dark state is separated into two, and there is no flat portion near the applied voltage of 0V. Since this type of antiferroelectric liquid crystal has a wide range of applied voltage exhibiting the antiferroelectric-ferroelectric phase transition precursor phenomenon, it has innumerable intermediate optical states depending on the applied voltage, and its optical response characteristics Since there is no clear threshold value, it is suitable for the driving method of the present invention.

【0045】第1及び第2の反強誘電性液晶は、コーン
アングルが30゜から45゜(望ましくは、35゜以
上)と大きく、自発分極が約200以上と大きく、さら
に、相シーケンスがI、SmA(スメクティックA
相)、ASmC*(アンチ(反)スメクティックC*相)
と相転移する液晶である。
The first and second antiferroelectric liquid crystals have a large cone angle of 30 ° to 45 ° (preferably 35 ° or more), a spontaneous polarization of about 200 or more, and a phase sequence I. , SmA (Smectic A
Phase), ASmC * (anti (anti) smectic C * phase)
It is a liquid crystal that undergoes a phase transition with.

【0046】(3) 光学応答特性のヒステリシスの幅
が非常に小さい反強誘電性液晶 図9はこの種の反強誘電性液晶の光学応答特性の一例を
示す。この光学応答特性も一対の偏光板を図3に示すよ
うに配置し、0.1Hz程度の十分低周波の三角波電圧
をこの反強誘電性液晶に印加して得られたものである。
この特性を有する反強誘電性液晶は、光学応答特性のヒ
ステリシスの幅が0.5V以下と、非常に狭い。この種
の反強誘電性液晶も、この発明の駆動方法に適してい
る。
(3) Antiferroelectric liquid crystal having a very small hysteresis width of optical response characteristics FIG. 9 shows an example of the optical response characteristics of this type of antiferroelectric liquid crystal. This optical response characteristic is also obtained by arranging a pair of polarizing plates as shown in FIG. 3 and applying a triangular wave voltage having a sufficiently low frequency of about 0.1 Hz to the antiferroelectric liquid crystal.
The antiferroelectric liquid crystal having this characteristic has a very narrow hysteresis width of the optical response characteristic of 0.5 V or less. This type of antiferroelectric liquid crystal is also suitable for the driving method of the present invention.

【0047】なお、第3実施例における液晶表示素子の
その他の構成は第1及び第2実施例と同一である。
The other construction of the liquid crystal display element in the third embodiment is the same as that in the first and second embodiments.

【0048】このような構成の反強誘電性液晶表示素子
においても、連続する2つのフレームに、極性が異な
り、表示階調に応じた絶対値を有する書き込み電圧を印
加することにより、第1実施例と同様に任意の階調画像
を表示できる。
Also in the anti-ferroelectric liquid crystal display element having such a structure, by applying a write voltage having different polarities and an absolute value according to a display gradation to two consecutive frames, the first embodiment is applied. Similar to the example, any gradation image can be displayed.

【0049】具体例2 図10は配向処理方向及び偏光板の透過軸の方向を図3
に示したように設定し、各選択期間を60μSとし、図
5(B)に示すように2つのフレームで異なった極性と
し、書き込み電圧を0V〜10Vまで0.5V単位で上
昇させ、その後、低下させた場合の印加電圧と透過率の
関係を示す。このグラフから明らかなように、この駆動
方法によれば、書き込み電圧を変化させることにより、
透過率が連続的に変化し、さらに、書き込み電圧に応じ
て表示階調が一義的に定まり、階調表示が可能になる。
Concrete Example 2 FIG. 10 shows the alignment treatment direction and the transmission axis direction of the polarizing plate.
5B, each selection period is set to 60 μS, the two frames are set to have different polarities as shown in FIG. 5B, the write voltage is increased in units of 0.5 V from 0 V to 10 V, and then, The relationship between the applied voltage and the transmittance when the voltage is lowered is shown. As is clear from this graph, according to this driving method, by changing the write voltage,
The transmittance changes continuously, and the display gradation is uniquely determined according to the writing voltage, which enables gradation display.

【0050】(第4実施例)次に、第1実施例にかかる
駆動方法を用いてテレビ映像等の動画を表示する液晶表
示素子の駆動回路について説明する。図11はこの実施
例の液晶表示装置の構成を示す。
(Fourth Embodiment) Next, a drive circuit of a liquid crystal display element for displaying a moving image such as a television image by using the drive method according to the first embodiment will be described. FIG. 11 shows the structure of the liquid crystal display device of this embodiment.

【0051】外部より供給される通常のNTSCコンポ
ジット信号はA/D変換器51により、デジタル信号に
変換され、分離回路53に供給される。分離回路53は
供給されたデジタル信号から同期信号、輝度信号、色相
信号を分離する。分離された同期信号は、クロック回路
65と書き込み制御回路67に供給される。また、輝度
信号と色相信号は復調/変換回路55に供給される。
A normal NTSC composite signal supplied from the outside is converted into a digital signal by the A / D converter 51 and supplied to the separation circuit 53. The separation circuit 53 separates the sync signal, the luminance signal, and the hue signal from the supplied digital signal. The separated sync signal is supplied to the clock circuit 65 and the write control circuit 67. Further, the luminance signal and the hue signal are supplied to the demodulation / conversion circuit 55.

【0052】復調/変換回路55は輝度信号と色相信号
から、RGBそれぞれの輝度信号を生成し、フレームメ
モリ57の第1のポートに供給する。フレームメモリ5
7は、1画面(1フレーム)分の記憶容量を有するデュ
アルポートメモリから構成され、第1のポートに供給さ
れたRGB輝度信号を順次格納する。D/A変換器59
は、フレームメモリ57の第2ポートから出力されたR
GB輝度信号を対応するアナログ輝度信号+R、+G、
+Bに変換する。この際、反転輝度信号−R、−G、−
Bも出力する。セレクタ61はD/A変換器59から供
給されるRGBアナログ輝度信号+R、+G、+Bと反
転輝度信号−R、−G、−Bを交互に選択して液晶表示
モジュールに63に供給する。
The demodulation / conversion circuit 55 generates RGB luminance signals from the luminance signal and the hue signal, and supplies them to the first port of the frame memory 57. Frame memory 5
Reference numeral 7 is composed of a dual port memory having a storage capacity for one screen (one frame), and sequentially stores the RGB luminance signals supplied to the first port. D / A converter 59
Is the R output from the second port of the frame memory 57.
Analog luminance signals corresponding to GB luminance signals + R, + G,
Convert to + B. At this time, the inverted luminance signals -R, -G,-
B is also output. The selector 61 alternately selects the RGB analog luminance signals + R, + G, + B and the inverted luminance signals -R, -G, -B supplied from the D / A converter 59 and supplies them to the liquid crystal display module 63.

【0053】液晶表示モジュール63は、図1〜図3に
示す構成を有する。但し、この実施例では、液晶表示素
子は、カラー画像を表示するもので、図1、図2の各画
素電極3の上にはR、G、又はBのカラーフィルタが配
置されている。
The liquid crystal display module 63 has the structure shown in FIGS. However, in this embodiment, the liquid crystal display element displays a color image, and an R, G, or B color filter is arranged on each pixel electrode 3 in FIGS.

【0054】クロック回路65は、A/D変換器51、
分離回路53、復調/変換回路55の動作を制御するた
めのクロック信号を生成し、これらに供給する。書き込
み制御回路67は、分離回路53からの同期信号に応答
し、フレームメモリ57に書き込み制御信号を供給す
る。読み出し制御回路69は、フレームメモリ57に読
み出し制御信号を供給してフレームメモリ57の記憶デ
ータを第2ポートに読み出し、D/A変換器59に変換
タイミング信号を供給してフレームメモリ57から読み
出されたRGBディジタル映像信号をRGBアナログ映
像信号に変換し、セレクタ61に選択制御信号を供給
し、液晶表示モジュール63の行ドライバと列ドライバ
22にタイミング制御信号を供給する。
The clock circuit 65 includes the A / D converter 51,
A clock signal for controlling the operations of the separation circuit 53 and the demodulation / conversion circuit 55 is generated and supplied to these. The write control circuit 67 supplies a write control signal to the frame memory 57 in response to the synchronization signal from the separation circuit 53. The read control circuit 69 supplies a read control signal to the frame memory 57 to read the data stored in the frame memory 57 to the second port, and supplies a conversion timing signal to the D / A converter 59 to read from the frame memory 57. The converted RGB digital video signal is converted into an RGB analog video signal, a selection control signal is supplied to the selector 61, and a timing control signal is supplied to the row driver and the column driver 22 of the liquid crystal display module 63.

【0055】次に、上記構成の表示装置の動作を図12
のタイミングチャートを参照して説明する。A/D変換
器51には、図12(A)に示すNTSCコンポジット
信号が順次供給される。A/D変換器51は、クロック
回路65から供給される変換タイミング信号に従って、
このNTSCコンポジット信号を順次デジタル信号に変
換し、分離回路53に供給する。分離回路53は、クロ
ック回路65から供給されるタイミング信号に従って、
A/D変換器51から供給されるデジタル信号から同期
信号、輝度信号、色相信号を分離する。
Next, the operation of the display device having the above configuration will be described with reference to FIG.
The timing chart will be described. The NTSC composite signal shown in FIG. 12A is sequentially supplied to the A / D converter 51. The A / D converter 51 follows the conversion timing signal supplied from the clock circuit 65.
The NTSC composite signal is sequentially converted into a digital signal and supplied to the separation circuit 53. The separation circuit 53 follows the timing signal supplied from the clock circuit 65.
The sync signal, the luminance signal, and the hue signal are separated from the digital signal supplied from the A / D converter 51.

【0056】復調/変換回路55は輝度信号と色相信号
から、R輝度信号、G輝度信号、B輝度信号を生成し、
フレームメモリ57に供給する。書き込み制御回路67
は、分離回路53から供給される同期信号に従って、図
12(B)に示すように、連続する2つのフレームの第
1のフレームで書き込みイネーブル信号をオン(アクテ
ィブ)とし、第2のフレームで書き込みイネーブル信号
をオフ(アンアクティブ)とする。
The demodulation / conversion circuit 55 generates an R luminance signal, a G luminance signal, and a B luminance signal from the luminance signal and the hue signal,
It is supplied to the frame memory 57. Write control circuit 67
12B, the write enable signal is turned on (active) in the first frame of two consecutive frames according to the synchronization signal supplied from the separation circuit 53, and the writing is performed in the second frame. The enable signal is turned off (inactive).

【0057】このため、フレームメモリ57は、書き込
み制御回路67からの書き込み制御信号に従って、供給
されたR、G、B輝度信号を、1フレーム毎に順次格納
する。従って、フレームメモリ57は、例えば、図12
の場合には、第Nフレーム、N+2フレーム・・・のRG
B輝度信号を順次格納する。
Therefore, the frame memory 57 sequentially stores the supplied R, G, B luminance signals for each frame in accordance with the write control signal from the write control circuit 67. Therefore, the frame memory 57 is, for example, as shown in FIG.
, The RG of the Nth frame, the N + 2th frame ...
The B luminance signal is sequentially stored.

【0058】フレームメモリ57は、読み出し制御回路
69からの図12(C)に示す読み出しイネーブル信号
を含む制御信号に従って、記憶しているRGB輝度信号
を読み出し、D/A変換器59に供給する。D/A変換
器59は、フレームメモリ57から読み出されたディジ
タルのRGB輝度信号を対応するRGBアナログ輝度信
号+R、+G、+Bとその反転輝度信号−R、−G、−
Bに変換する。セレクタ61はD/A変換器59から供
給されるRGBアナログ輝度信号+R、+G、+Bと反
転輝度信号−R、−G、−Bを、図12(D)に示す選
択切換信号に従って、順次選択して液晶表示モジュール
63に供給する。従って、例えば、セレクタ61は、第
Nフレーム、第N+2フレーム・・・では、正極性のRG
Bアナログ輝度信号+R、+G、+Bを選択して出力
し、第N+1フレーム、第N+3フレーム・・・では、負
極性のRGB反転輝度信号−R、−G、−Bを出力す
る。
The frame memory 57 reads the stored RGB luminance signal in accordance with a control signal including the read enable signal shown in FIG. 12C from the read control circuit 69 and supplies it to the D / A converter 59. The D / A converter 59 converts the digital RGB luminance signals read from the frame memory 57 into the corresponding RGB analog luminance signals + R, + G, + B and their inverted luminance signals -R, -G,-.
Convert to B. The selector 61 sequentially selects the RGB analog luminance signals + R, + G, + B and the inverted luminance signals -R, -G, -B supplied from the D / A converter 59 in accordance with the selection switching signal shown in FIG. And supplies it to the liquid crystal display module 63. Therefore, for example, in the Nth frame, the (N + 2) th frame, ...
B analog luminance signals + R, + G, + B are selected and output, and negative RGB inversion luminance signals -R, -G, -B are output in the (N + 1) th frame, the (N + 3) th frame, ....

【0059】列ドライバ22は、セレクタ61から供給
されるRGBアナログ輝度信号とその反転信号を順次サ
ンプリングし、対応する駆動パルスを各データライン6
に印加する。一方、行ドライバ21は、ゲートライン5
にゲートパルスを順次印加してゲートライン5を走査す
る。このため、ゲートパルスが印加されたゲートライン
5に接続されたTFT4がオンし、対応する画素電極3
に駆動パルスが印加される。その行の選択期間TSが終
了し、非選択期間TOになると、ゲートパルスがオフ
し、TFT4もオフし、駆動パルスの電圧が画素容量に
保持され、保持された電圧に対応する階調で各画素が表
示される。
The column driver 22 sequentially samples the RGB analog luminance signal and its inverted signal supplied from the selector 61, and outputs a corresponding driving pulse to each data line 6.
Apply to. On the other hand, the row driver 21 uses the gate line 5
A gate pulse is sequentially applied to scan the gate line 5. Therefore, the TFT 4 connected to the gate line 5 to which the gate pulse is applied is turned on, and the corresponding pixel electrode 3
A drive pulse is applied to. When the selection period TS of the row is completed and the non-selection period TO is reached, the gate pulse is turned off, the TFT 4 is also turned off, the voltage of the drive pulse is held in the pixel capacitance, and each of the gradations corresponds to the held voltage. Pixels are displayed.

【0060】このような構成によれば、フレームメモリ
57に記憶されたRGB輝度信号が2回ずつ読み出さ
れ、異なった極性のアナログ輝度信号に変換されて液晶
表示モジュール63に供給される。従って、第1〜第3
実施例において説明したように、連続する2つのフレー
ムにおいて、表示階調に応じた絶対値を有し、異なった
極性の駆動パルスが順次各画素(画素電極3)に印加さ
れ、任意の階調画像が表示される。なお、NTSC方式
のテレビ画像を表示する構成を例示したが、他の構成を
使用してもよく、また、他の画像を表示してもよい。
With such a configuration, the RGB luminance signals stored in the frame memory 57 are read twice, converted into analog luminance signals of different polarities, and supplied to the liquid crystal display module 63. Therefore, the first to third
As described in the embodiment, in two consecutive frames, drive pulses having absolute values according to the display gradation and having different polarities are sequentially applied to each pixel (pixel electrode 3), and an arbitrary gradation is obtained. The image is displayed. Although the configuration for displaying the television image of the NTSC system has been illustrated, other configurations may be used and other images may be displayed.

【0061】また、第4実施例では、NTSCコンポジ
ット信号のフレーム周波数と液晶表示モジュール63の
フレーム周波数を同一としたが、例えば、NTSCコン
ポジット信号のフレーム周波数を60Hzと、液晶表示
モジュール63のフレーム周波数を30Hz(2フレー
ムで1画像を形成するので、15フィールド/秒)とす
る等、両者のフレーム周波数を異ならせてもよい。この
場合、例えば、書き込み制御回路67は独自の書き込み
周期でフレームメモリ57にRGB輝度データを書き込
み、読み出し制御回路69が独自の読み出し周期でフレ
ームメモリ57からRGB輝度データを読み出し、後段
の回路に供給するようにすればよい。
Further, in the fourth embodiment, the frame frequency of the NTSC composite signal and the frame frequency of the liquid crystal display module 63 are the same. However, for example, the frame frequency of the NTSC composite signal is 60 Hz and the frame frequency of the liquid crystal display module 63. May be 30 Hz (1 image is formed in 2 frames, so 15 fields / sec), and the frame frequencies of the two may be different. In this case, for example, the write control circuit 67 writes the RGB brightness data in the frame memory 57 in the unique write cycle, the read control circuit 69 reads the RGB brightness data from the frame memory 57 in the unique read cycle, and supplies the RGB brightness data to the subsequent circuit. You can do it.

【0062】図11の構成では、D/A変換器59の後
段にセレクタ61を配置してD/A変換器59の出力す
る正負2つの極性のアナログ輝度信号の一方を選択した
が、読み出し制御回路69の制御により、D/A変換器
59に、その時点で必要な極性のアナログ輝度信号のみ
を出力させ、その信号を列ドライバ22に供給するよう
にしてもよい。
In the configuration of FIG. 11, the selector 61 is arranged at the subsequent stage of the D / A converter 59 to select one of the positive and negative polarities of the analog luminance signal output from the D / A converter 59. Under the control of the circuit 69, the D / A converter 59 may be caused to output only the analog luminance signal having the necessary polarity at that time, and the signal may be supplied to the column driver 22.

【0063】図3では、第1の方向11Aと第2の方向
11Bの中間の方向11Cに一方の偏光板14の透過軸
14Aを一致させ、他方の偏光板13の透過軸13Aを
透過軸14Aに直交させるようにしたが、他方の偏光板
13の透過軸13Aを透過軸14Aに平行にしてもよ
い。また、第1の方向11Aと第2の方向11Bの中間
の方向11Cに一方の偏光板14の吸収軸を一致させ、
他方の偏光板13の吸収軸を一方の偏光板14の吸収軸
に直交させるようにしてもよい。この場合、印加電圧が
0(又はほぼ0)の時に液晶表示素子の透過率が最大と
なり、印加電圧の絶対値が大きくなるに従って透過率が
低下する。しかし、この場合も、絶対値が等しければ、
その極性によらず透過率が等しくなり、この発明の駆動
方法が適用できる。
In FIG. 3, the transmission axis 14A of one polarizing plate 14 is aligned with the intermediate direction 11C between the first direction 11A and the second direction 11B, and the transmission axis 13A of the other polarizing plate 13 is changed to the transmission axis 14A. However, the transmission axis 13A of the other polarizing plate 13 may be parallel to the transmission axis 14A. Further, the absorption axis of one polarizing plate 14 is made to coincide with the intermediate direction 11C between the first direction 11A and the second direction 11B,
The absorption axis of the other polarizing plate 13 may be made orthogonal to the absorption axis of the one polarizing plate 14. In this case, the transmittance of the liquid crystal display element becomes maximum when the applied voltage is 0 (or almost 0), and the transmittance decreases as the absolute value of the applied voltage increases. But again, if the absolute values are equal,
The transmittance becomes equal regardless of the polarity, and the driving method of the present invention can be applied.

【0064】[0064]

【発明の効果】以上説明したように、この発明によれ
ば、強誘電性液晶を用いた液晶表示素子において、複数
フレームの各選択期間に表示階調に応じた電圧の1つの
パルスを印加するだけで任意の階調表示を行うことがで
きる。また、1つの階調について、複数フレームで極性
の異なるパルスを印加するので、印加電圧と透過率の関
係に歪みがあるような場合にも、表示階調が平均化さ
れ、適切な階調が表示される。また、液晶に印加される
電荷の片寄りをなくし、表示の焼き付き現象等を防止で
きる。さらに、極性が異なる電圧に対し表示特性が若干
異なる場合でも、適切な画像を表示できる。
As described above, according to the present invention, in a liquid crystal display element using a ferroelectric liquid crystal, one pulse of a voltage corresponding to a display gradation is applied during each selection period of a plurality of frames. It is possible to perform arbitrary gradation display only. Further, since the pulses having different polarities are applied to one gray scale in a plurality of frames, the display gray scales are averaged even when the relationship between the applied voltage and the transmissivity is distorted, and an appropriate gray scale is obtained. Is displayed. Further, it is possible to eliminate the deviation of the electric charges applied to the liquid crystal and prevent the image sticking phenomenon of the display. Further, even when the display characteristics are slightly different for voltages having different polarities, an appropriate image can be displayed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例にかかる液晶表示素子の
構造を示す断面図である。
FIG. 1 is a sectional view showing the structure of a liquid crystal display element according to a first embodiment of the present invention.

【図2】図1に示す液晶表示素子の下基板の構成を示す
平面図である。
FIG. 2 is a plan view showing a configuration of a lower substrate of the liquid crystal display element shown in FIG.

【図3】上下偏光板の透過軸の方向と液晶分子の配方方
向を示す平面図である。
FIG. 3 is a plan view showing directions of transmission axes of upper and lower polarizing plates and orientation directions of liquid crystal molecules.

【図4】印加電圧と透過率の関係を示すグラフであり、
(A)は第1実施例で使用されるDHF液晶を使用した
場合の例、(B)は第1実施例で使用することが望まし
くないDHF液晶を使用した場合の例を示す。
FIG. 4 is a graph showing the relationship between applied voltage and transmittance,
(A) shows an example when the DHF liquid crystal used in the first embodiment is used, and (B) shows an example when the DHF liquid crystal which is not desirable to be used in the first embodiment is used.

【図5】この発明の第1実施例にかかる強誘電性液晶表
示素子の駆動方法を説明するための波形図であり、
(A)はこの発明の第1実施例にかかかる強誘電性液晶
表示素子の駆動方法によりゲートラインに供給されるゲ
ート信号の波形を示す図である。(B)は第1実施例に
かかかる強誘電性液晶表示素子の駆動方法によりデータ
ラインに供給されるデータ信号の波形を示す図である。
FIG. 5 is a waveform diagram for explaining a driving method of the ferroelectric liquid crystal display element according to the first embodiment of the present invention,
FIG. 3A is a diagram showing a waveform of a gate signal supplied to a gate line by the method for driving a ferroelectric liquid crystal display element according to the first embodiment of the present invention. FIG. 6B is a diagram showing a waveform of a data signal supplied to a data line by the driving method of the ferroelectric liquid crystal display element according to the first example.

【図6】この発明の第1実施例のDHF液晶表示素子の
具体例における印加電圧と透過率の関係を示すグラフで
ある。
FIG. 6 is a graph showing the relationship between the applied voltage and the transmittance in a specific example of the DHF liquid crystal display device according to the first embodiment of the present invention.

【図7】この発明の第3実施例で使用可能な反強誘電性
液晶を説明するための光学応答特性を示すグラフであ
る。
FIG. 7 is a graph showing optical response characteristics for explaining an antiferroelectric liquid crystal usable in the third embodiment of the present invention.

【図8】この発明の第3実施例で使用可能な反強誘電性
液晶を説明するための光学応答特性を示すグラフであ
る。
FIG. 8 is a graph showing an optical response characteristic for explaining an antiferroelectric liquid crystal usable in a third embodiment of the present invention.

【図9】この発明の第3実施例で使用可能な反強誘電性
液晶を説明するための光学応答特性を示すグラフであ
る。
FIG. 9 is a graph showing optical response characteristics for explaining an antiferroelectric liquid crystal usable in the third embodiment of the present invention.

【図10】この発明の第3実施例の反強誘電性液晶表示
素子の具体例における印加電圧と透過率の関係を示すグ
ラフである。
FIG. 10 is a graph showing the relationship between the applied voltage and the transmittance in a specific example of the antiferroelectric liquid crystal display element according to the third embodiment of the present invention.

【図11】この発明の第4実施例にかかる強誘電性液晶
表示素子の駆動回路のブロック図である。
FIG. 11 is a block diagram of a drive circuit for a ferroelectric liquid crystal display element according to a fourth embodiment of the present invention.

【図12】図11に示す回路の動作を説明するためのタ
イミングチャートである。
FIG. 12 is a timing chart for explaining the operation of the circuit shown in FIG.

【符号の説明】[Explanation of symbols]

1・・・透明基板、2・・・透明基板、3・・・画素電極、4・・・
TFT、5・・・ゲートライン、6・・・データライン、7・・
・対向電極、8・・・配向膜、9・・・配向膜、10・・・シール
材、11・・・液晶、12・・・シール材、13・・・偏光板、
14・・・偏光板、21・・・行ドライバ、22・・・列ドライ
バ、41・・・第1のサンプル・ホールド回路、42・・・第
2のサンプル・ホールド回路、43・・・反転回路、44・
・・加算器、45・・・セレクタ、46・・・タイミング回路、
47・・・電圧発生回路、51・・・A/D変換器、53・・・
分離回路、55・・・復調/変換回路、57・・・フレームメ
モリ、59・・・D/A変換器、61・・・セレクタ、63・・
・液晶表示モジュール、65・・・クロック回路、67・・・
書き込み制御回路、69・・・読み出し制御回路
1 ... Transparent substrate, 2 ... Transparent substrate, 3 ... Pixel electrode, 4 ...
TFT, 5 ... Gate line, 6 ... Data line, 7 ...
-Counter electrode, 8 ... Alignment film, 9 ... Alignment film, 10 ... Sealing material, 11 ... Liquid crystal, 12 ... Sealing material, 13 ... Polarizing plate,
14 ... Polarizing plate, 21 ... Row driver, 22 ... Column driver, 41 ... First sample-hold circuit, 42 ... Second sample-hold circuit, 43 ... Inversion Circuit, 44
..Adders, 45 ... Selectors, 46 ... Timing circuits,
47 ... Voltage generating circuit, 51 ... A / D converter, 53 ...
Separation circuit, 55 ... Demodulation / conversion circuit, 57 ... Frame memory, 59 ... D / A converter, 61 ... Selector, 63 ...
・ Liquid crystal display module, 65 ... Clock circuit, 67 ...
Write control circuit, 69 ... Read control circuit

【手続補正書】[Procedure amendment]

【提出日】平成6年11月28日[Submission date] November 28, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】図2に示すように、画素電極3の行間にゲ
ートライン(走査ライン)5が配線され、画素電極3の
列間にデータライン(階調信号ライン)6が配線されて
いる。各TFT4のゲート電極は対応するゲートライン
5に接続され、ドレイン電極は対応するデータライン6
に接続されている。ゲートライン5は、端部5aを介し
て行(走査ドライバ)ドライバ21に接続され、データ
ライン6は端部6aを介して列ドライバ(信号ドライ
バ)22に接続される。行ドライバ21は、後述するゲ
ート電圧を印加して、ゲートライン5をスキャンする。
一方、列ドライバ22は、表示信号(階調信号)を受
け、データライン6に表示信号に対応するデータ信号を
印加する。
As shown in FIG. 2, gate lines (scanning lines) 5 are arranged between the rows of the pixel electrodes 3, and data lines (gradation signal lines) 6 are arranged between the columns of the pixel electrodes 3. The gate electrode of each TFT 4 is connected to the corresponding gate line 5, and the drain electrode is corresponding to the data line 6
It is connected to the. The gate line 5 is connected to the row (scan driver) driver 21 via the end 5a, and the data line 6 is connected to the column driver (signal driver) 22 via the end 6a. The row driver 21 scans the gate line 5 by applying a gate voltage described later.
On the other hand, the column driver 22 receives the display signal (gradation signal) and applies the data signal corresponding to the display signal to the data line 6.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】下基板1と上基板2は、その外周縁部にお
いて枠状のシール材10を介して接着されている。基板
1、2とシール材10で囲まれた領域には液晶11が封
入されている。液晶11は、カイラルスメクティックC
相の螺旋ピッチが両基板1、2の間隔より小さく、か
つ、配向状態のメモリ性を有さない強誘電性液晶であ
る。液晶11は、螺旋ピッチが、可視光帯域の波長であ
る700nm〜400nm以下(例えば、400nm〜
300nm)であり、自発分極が大きく、コーンアング
ルが約27度ないし45°(望ましくは、27°ないし
30°)の強誘電性液晶組成物からなる。なお、図1に
おいて、符号12は両基板1、2の間隔を規制するギ
ップ材を示し、ギャップ材12は液晶封入領域内に点在
状態で配置されている。
The lower substrate 1 and the upper substrate 2 are adhered to each other at their outer peripheral edges via a frame-shaped sealing material 10. A liquid crystal 11 is enclosed in a region surrounded by the substrates 1 and 2 and the sealing material 10. The liquid crystal 11 is a chiral smectic C
It is a ferroelectric liquid crystal in which the spiral pitch of the phase is smaller than the distance between the substrates 1 and 2 and does not have the memory property of the alignment state. The liquid crystal 11 has a helical pitch of 700 nm to 400 nm or less, which is a wavelength in the visible light band (for example, 400 nm to
300 nm), large spontaneous polarization and a cone angle of about 27 ° to 45 ° (desirably 27 ° to 30 °). 1, reference numeral 12 denotes the conservation catcher <br/>-up material to regulate the spacing between the substrates 1 and 2, a gap material 12 are arranged in a dotted state liquid crystal sealing area.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0044[Correction target item name] 0044

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0044】(2) 印加電圧0Vでは、平均的分子長
軸方向が層の法線方向に揃わず、印加電圧0V以外の2
つの電圧値で平均的分子長軸方向が、層の法線方向に揃
い、透過率が最小となる反強誘電性液晶。図8はこの種
の反強誘電性液晶の光学応答特性の一例を示す。この光
学応答特性も一対の偏光板を図3に示すように配置し、
0.1Hz程度の十分低周波の三角波電圧を印加して得
られたものである。この特性を有する反強誘電性液晶
は、印加電圧0Vでは、平均的分子長軸方向が層法線方
向に揃わず、印加電圧0V以外の2つの電圧値で平均的
分子長軸方向が、層法線方向に揃い、透過率が最小とな
る。即ち、暗状態になる電圧領域が2つに分離してお
り、印加電圧が0V付近に平坦な部分が存在しない。こ
の種の反強誘電性液晶は、反強誘電−強誘電相転移前駆
現象を呈する印加電圧の範囲が広いため、印加電圧に応
じて無数の中間的光学状態を有し、その光学応答特性に
明確な閾値が存在せず、この発明の駆動方法に適してい
る。
(2) When the applied voltage is 0V, the average long axis of the molecules are not aligned with the normal direction of the layer, and when the applied voltage is 0V, 2
An antiferroelectric liquid crystal in which the average long axis direction of molecules is aligned with the normal direction of the layer at two voltage values, and the transmittance is minimized. FIG. 8 shows an example of the optical response characteristics of this type of antiferroelectric liquid crystal. This optical response characteristic also has a pair of polarizing plates arranged as shown in FIG.
It was obtained by applying a triangular wave voltage having a sufficiently low frequency of about 0.1 Hz. An antiferroelectric liquid crystal having this characteristic has an average molecular major axis direction which is not aligned with the layer normal direction at an applied voltage of 0 V, and the average molecular major axis direction is at a voltage of two layers other than the applied voltage of 0 V. It is aligned in the normal direction and has the minimum transmittance. That is, the voltage region in the dark state is separated into two, and there is no flat portion near the applied voltage of 0V. Since this type of antiferroelectric liquid crystal has a wide range of applied voltage exhibiting the antiferroelectric-ferroelectric phase transition precursor phenomenon, it has innumerable intermediate optical states depending on the applied voltage, and its optical response characteristics Since there is no clear threshold value, it is suitable for the driving method of the present invention.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0045[Name of item to be corrected] 0045

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0045】第1及び第2の反強誘電性液晶は、コーン
アングルが30°から45°(望ましくは、35°以
上)と大きく、自発分極が約200以上と大きく、さら
に、相シーケンスがI、SmA(スメクティックA
相)、SmCA(カイラルスメクティックCA
相転移する液晶である。
The first and second antiferroelectric liquid crystals have a large cone angle of 30 ° to 45 ° (preferably 35 ° or more), a large spontaneous polarization of about 200 or more, and a phase sequence of I. , SmA (Smectic A
Phase) and SmCA * (chiral smectic CA * ) .

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0063[Correction target item name] 0063

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0063】図3では、第1の方向11Aと第2の方向
11Bの中間の方向11Cに一方の偏光板14の透過軸
14Aを一致させ、他方の偏光板13の透過軸13Aを
透過軸14Aに直交させるようにしたが、他方の偏光板
13の透過軸13Aを透過軸14Aに平行にしてもよ
い。この場合、印加電圧が0(又はほぼ0)の時に液晶
表示素子の透過率が最大となり、印加電圧の絶対値が大
きくなるに従って透過率が低下する。しかし、この場合
も、絶対値が等しければ、その極性によらず透過率が等
しくなり、この発明の駆動方法が適用できる。また、第
1の方向11Aと第2の方向11Bの中間の方向11C
に一方の偏光板14の吸収軸を一致させ、他方の偏光板
13の吸収軸を一方の偏光板14の吸収軸に直交させる
ようにしてもよい。
In FIG. 3, the transmission axis 14A of one polarizing plate 14 is aligned with the intermediate direction 11C between the first direction 11A and the second direction 11B, and the transmission axis 13A of the other polarizing plate 13 is changed to the transmission axis 14A. However, the transmission axis 13A of the other polarizing plate 13 may be parallel to the transmission axis 14A. In this case, when the applied voltage is 0 (or almost 0), the liquid crystal
The transmittance of the display element is maximum, and the absolute value of the applied voltage is large.
The transmittance decreases as the intensity increases. But in this case
However, if the absolute values are the same, the transmittance is the same regardless of the polarity.
The driving method of the present invention can be applied. Also, a direction 11C intermediate between the first direction 11A and the second direction 11B.
The absorption axis of one of the polarizing plates 14 may be aligned with each other, and the absorption axis of the other polarizing plate 13 may be orthogonal to the absorption axis of the one polarizing plate 14.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】画素電極が形成された一方の基板と、 前記画素電極に対向する対向電極が形成された他方の基
板と、 前記2つの基板間に配置された強誘電性を持つ液晶と、 前記2つの基板を挟む位置に配置された一対の偏光板
と、を有し、 前記画素電極と前記対向電極との間に印加される極性の
異なる電圧の絶対値の変化に対応して実質的に等しい光
学的変化を示す強誘電性液晶表示素子と、 表示画像に対応する信号を受け、この信号に対応する絶
対値を持ち且つ極性が異なる電圧を前記画素電極と前記
対向電極間に複数のフレームにわたって交互に印加する
駆動手段と、を備えることを特徴とする強誘電性液晶表
示装置。
1. A substrate on which a pixel electrode is formed, another substrate on which a counter electrode facing the pixel electrode is formed, and a liquid crystal having ferroelectricity disposed between the two substrates, A pair of polarizing plates arranged at positions sandwiching the two substrates, and substantially corresponding to a change in absolute value of voltages having different polarities applied between the pixel electrode and the counter electrode. And a ferroelectric liquid crystal display element exhibiting an optical change equal to, and receiving a signal corresponding to a display image and applying a voltage having an absolute value corresponding to the signal and having a different polarity between the pixel electrode and the counter electrode. A ferroelectric liquid crystal display device, comprising: a driving unit that alternately applies the voltage over a frame.
【請求項2】画素電極と該画素電極に接続されたアクテ
ィブ素子がマトリクス状に配列された一方の基板と、前
記画素電極に対向する対向電極が形成された他方の基板
と、前記基板間に配置され、層構造をもち、前記画素電
極と前記対向電極間に印加された電圧に応じて液晶分子
が第1の方向にほぼ配列した第1の配向状態と、液晶分
子が第2の方向にぼぼ配列した第2の配向状態と、液晶
分子がその平均的な配列方向を前記第1と第2の配向状
態の間の任意の方向に向けて配列した中間の配向状態と
に配向する強誘電性液晶と、前記一方の基板側に配置さ
れ、前記強誘電性液晶の層の法線方向と実質的に平行な
方向に光学軸が設定された一方の偏光板と、前記他方の
基板側に配置され、前記一方の偏光板の光学軸に直交又
は平行に光学軸が設定された他方の偏光板と、を備えた
強誘電性液晶表示素子と、 前記アクティブ素子に接続され、表示画像を定義する信
号を受け、各画素の選択期間に、絶対値が表示階調に対
応し且つ複数フレームにわたって共通で、極性がフレー
ム毎に反転する複数の電圧パルスを前記アクティブ素子
を介して前記画素電極に印加する駆動手段と、 を備えることを特徴とする強誘電性液晶表示装置。
2. A substrate between one substrate on which a pixel electrode and active elements connected to the pixel electrode are arranged in a matrix, another substrate on which a counter electrode facing the pixel electrode is formed, and between the substrates. A first alignment state in which liquid crystal molecules are arranged in a layered structure and liquid crystal molecules are substantially aligned in a first direction according to a voltage applied between the pixel electrode and the counter electrode; and liquid crystal molecules are in a second direction. Ferroelectricity in which the liquid crystal molecules are aligned in a second alignment state in which they are roughly aligned, and an intermediate alignment state in which liquid crystal molecules are arranged so that their average alignment direction is an arbitrary direction between the first and second alignment states. Liquid crystal, one polarizing plate disposed on the one substrate side and having an optical axis set in a direction substantially parallel to the normal direction of the layer of the ferroelectric liquid crystal, and one polarizing plate on the other substrate side. And the optical axis of the one polarizing plate is orthogonal or parallel to the optical axis of the one polarizing plate. A ferroelectric liquid crystal display device including the other polarizing plate that is set, and a signal that is connected to the active device and that defines a display image, and receives a signal that defines a display image, and an absolute value becomes a display gradation. A ferroelectric liquid crystal display device, comprising: a driving unit that applies a plurality of voltage pulses corresponding to each other and common to a plurality of frames, the polarity of which is inverted every frame to the pixel electrode via the active element. .
【請求項3】前記駆動手段は、前記各画素の表示階調を
表す1つの信号に対応し、絶対値が実質的に等しく、且
つ、極性が異なる電圧を各フレーム毎に前記画素電極に
印加することを特徴とする請求項1又は2に記載の強誘
電性液晶表示装置。
3. The driving means applies a voltage corresponding to one signal representing a display gradation of each pixel, the absolute value of which is substantially the same and the polarity of which is different, to the pixel electrode for each frame. The ferroelectric liquid crystal display device according to claim 1 or 2, wherein
【請求項4】前記駆動手段は、前記各画素の表示階調を
表す1つの信号に対応し、絶対値が実質的に等しく、且
つ、極性が異なる電圧を偶数個のフレームにわたって前
記画素電極に交互に順次印加することを特徴とする請求
項1又は2に記載の強誘電性液晶表示装置。
4. The driving means corresponds to one signal representing a display gradation of each pixel, and applies a voltage having substantially the same absolute value and different polarities to the pixel electrode over an even number of frames. The ferroelectric liquid crystal display device according to claim 1 or 2, wherein the voltages are applied alternately and sequentially.
【請求項5】前記アクティブ素子は電流路の一端が対応
する画素電極に接続された薄膜トランジスタから構成さ
れ、 前記駆動手段は、 対応する行の複数の前記薄膜トランジスタのゲートに接
続されたゲートラインと、 対応する列の複数の前記薄膜トランジスタの電流路の他
端に接続されたデータラインと、 各選択期間に、対応する行の前記ゲートラインに前記薄
膜トランジスタをオンさせるゲート電圧を供給する行駆
動手段と、 各選択期間に、絶対値が前記表示階調に対応し、極性が
異なる電圧をフレーム毎に前記データラインに印加する
列駆動手段と、 を備えることを特徴とする請求項2に記載の強誘電性液
晶表示装置。
5. The active element comprises a thin film transistor whose one end of a current path is connected to a corresponding pixel electrode, and the driving means includes a gate line connected to the gates of the plurality of thin film transistors in a corresponding row, A data line connected to the other end of the current path of the plurality of thin film transistors in the corresponding column; and row driving means for supplying a gate voltage for turning on the thin film transistor to the gate line of the corresponding row in each selection period, The column driving means for applying a voltage having an absolute value corresponding to the display gradation and different polarities to the data line for each frame in each selection period, the ferroelectric device according to claim 2. Liquid crystal display device.
【請求項6】前記液晶は、前記画素電極と前記対向電極
間に低周波三角の電圧を印加した際に、明確なしきい値
を持たない光学応答特性を示す液晶物質から構成される
ことを特徴とする請求項1乃至5のいずれか1つに記載
の強誘電性液晶表示装置。
6. The liquid crystal is composed of a liquid crystal material that exhibits optical response characteristics without a clear threshold value when a low frequency triangular voltage is applied between the pixel electrode and the counter electrode. The ferroelectric liquid crystal display device according to any one of claims 1 to 5.
【請求項7】前記液晶は、DHF液晶、SBF液晶、反
強誘電性液晶のいずれか1つから構成されることを特徴
とする請求項1乃至6のいずれか1つに記載の強誘電性
液晶表示装置。
7. The ferroelectric substance according to claim 1, wherein the liquid crystal is composed of any one of DHF liquid crystal, SBF liquid crystal and antiferroelectric liquid crystal. Liquid crystal display device.
【請求項8】画素電極と画素電極に接続された薄膜トラ
ンジスタがマトリクス状に複数配列された一方の基板
と、前記画素電極に対向する対向電極が形成された他方
の基板と、これらの基板の間に配置され、層構造をも
ち、前記画素電極と対向電極間に印加された電圧に応じ
て液晶分子が第1の方向にほぼ配列した第1の配向状態
と、液晶分子が第2の方向にぼぼ配列した第2の配向状
態と、液晶分子の平均的な配列方向が前記第1の方向と
第2の方向の間の任意の方向となる中間の配向状態にそ
れぞれ配向する強誘電性液晶と、前記一方の基板側に配
置され、前記強誘電性液晶層の法線と実質的に平行な方
向に光学軸が設定された一方の偏光板と、前記他方の基
板側に配置され、前記一方の偏光板の光学軸に直交又は
平行に光学軸が設定された他方の偏光板と、を備えた強
誘電性液晶表示素子の駆動方法において、 絶対値が表示階調に対応し、1つの表示階調に対してフ
レーム毎に極性が異なる電圧パルスを前記アクティブ素
子を介して前記画素電極に印加する、ことを特徴とする
強誘電性液晶表示素子の駆動方法。
8. A substrate on which a plurality of pixel electrodes and thin film transistors connected to the pixel electrodes are arranged in a matrix, another substrate on which a counter electrode facing the pixel electrode is formed, and between these substrates. And has a layered structure and has a first alignment state in which liquid crystal molecules are substantially aligned in a first direction in accordance with a voltage applied between the pixel electrode and a counter electrode, and liquid crystal molecules in a second direction. A second alignment state that is roughly aligned, and a ferroelectric liquid crystal that is aligned in an intermediate alignment state in which the average alignment direction of liquid crystal molecules is an arbitrary direction between the first direction and the second direction. , One of the polarizing plates disposed on the one substrate side and having an optical axis set in a direction substantially parallel to the normal line of the ferroelectric liquid crystal layer, and the one polarizing plate disposed on the other substrate side. The optical axis is set to be orthogonal or parallel to the optical axis of the polarizing plate of In the method for driving a ferroelectric liquid crystal display device including the other polarizing plate, a voltage pulse whose absolute value corresponds to a display gradation and whose polarity is different for each frame for one display gradation is activated. A method for driving a ferroelectric liquid crystal display element, characterized in that the voltage is applied to the pixel electrode via an element.
【請求項9】前記液晶は、前記画素電極と前記対向電極
間に低周波三角波電圧を印加した際に、明確なしきい値
を持たない光学応答特性を示す液晶物質から構成される
ことを特徴とする請求項8に記載の強誘電性液晶表示素
子の駆動方法。
9. The liquid crystal is composed of a liquid crystal material that exhibits optical response characteristics without a clear threshold value when a low frequency triangular wave voltage is applied between the pixel electrode and the counter electrode. The method for driving a ferroelectric liquid crystal display element according to claim 8.
【請求項10】前記液晶は、DHF液晶、SBF液晶、
反強誘電性液晶のいずれか1つから構成されることを特
徴とする請求項8又は9に記載の強誘電性液晶表示素子
の駆動方法。
10. The liquid crystal is a DHF liquid crystal, an SBF liquid crystal,
10. The method for driving a ferroelectric liquid crystal display element according to claim 8 or 9, wherein the method is constituted by any one of antiferroelectric liquid crystals.
JP6151817A 1994-06-10 1994-06-10 Ferroelectric liquid crystal display device and method for driving ferroelectric liquid crystal display element Pending JPH07333580A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6151817A JPH07333580A (en) 1994-06-10 1994-06-10 Ferroelectric liquid crystal display device and method for driving ferroelectric liquid crystal display element
EP95108911A EP0686956A3 (en) 1994-06-10 1995-06-09 Liquid crystal display apparatus using liquid crystal having ferroelectric phase and method of driving liquid crystal display device using liquid crystal having ferroelectric phase
US08/622,090 US5920301A (en) 1994-06-10 1996-03-26 Liquid crystal display apparatus using liquid crystal having ferroelectric phase and method of driving liquid crystal display device using liquid crystal having ferroelectric phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6151817A JPH07333580A (en) 1994-06-10 1994-06-10 Ferroelectric liquid crystal display device and method for driving ferroelectric liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH07333580A true JPH07333580A (en) 1995-12-22

Family

ID=15526968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6151817A Pending JPH07333580A (en) 1994-06-10 1994-06-10 Ferroelectric liquid crystal display device and method for driving ferroelectric liquid crystal display element

Country Status (2)

Country Link
EP (1) EP0686956A3 (en)
JP (1) JPH07333580A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042290A (en) * 1999-05-14 2001-02-16 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US6921600B2 (en) 2001-09-28 2005-07-26 Nissan Motor Co., Ltd. Separator for fuel cell and method of manufacture therefor
US7768488B2 (en) 1999-05-14 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163360A (en) 1996-06-24 2000-12-19 Casio Computer Co., Ltd. Liquid crystal display apparatus
GB2324899A (en) * 1997-04-30 1998-11-04 Sharp Kk Active matrix display

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5381253A (en) * 1991-11-14 1995-01-10 Board Of Regents Of University Of Colorado Chiral smectic liquid crystal optical modulators having variable retardation
JP2866518B2 (en) * 1992-01-17 1999-03-08 シャープ株式会社 Driving method of antiferroelectric liquid crystal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001042290A (en) * 1999-05-14 2001-02-16 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US7768488B2 (en) 1999-05-14 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US6921600B2 (en) 2001-09-28 2005-07-26 Nissan Motor Co., Ltd. Separator for fuel cell and method of manufacture therefor

Also Published As

Publication number Publication date
EP0686956A3 (en) 1996-08-21
EP0686956A2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JP2677593B2 (en) Display device
JP3551702B2 (en) Liquid crystal display device and driving method thereof
US5920301A (en) Liquid crystal display apparatus using liquid crystal having ferroelectric phase and method of driving liquid crystal display device using liquid crystal having ferroelectric phase
US5963187A (en) Liquid crystal display apparatus using liquid crystal having ferroelectric phase and method of driving liquid crystal display device using liquid crystal having ferroelectric phase
US6175401B1 (en) Liquid crystal display device having a liquid crystal layer which contains liquid crystal molecules in a plurality of alignment state and method for driving the same
JPH0764056A (en) Anti-ferroelectric liquid crystal display element and driving method therefor
JPH07333580A (en) Ferroelectric liquid crystal display device and method for driving ferroelectric liquid crystal display element
JP2984789B2 (en) Display element device and display element driving method
JP3259633B2 (en) Antiferroelectric liquid crystal display
JPH07334130A (en) Ferroelectric liquid crystal display device and driving method for ferroelectric liquid crystal display device
JP3039170B2 (en) Driving method of ferroelectric liquid crystal display device
JP3259600B2 (en) Antiferroelectric liquid crystal display
JPH0815671A (en) Liquid crystal display device and method of driving it
JP2857976B2 (en) Liquid crystal display device showing ferroelectric phase and method of driving liquid crystal display element
JP2984788B2 (en) Display element device and display element driving method
JP3259632B2 (en) Antiferroelectric liquid crystal display
US6046788A (en) Liquid crystal display device and method for driving the same
JP3259601B2 (en) Antiferroelectric liquid crystal display
JPH1082985A (en) Display element and display element device
JPH10301091A (en) Liquid crystal display element and its driving method
JP2984790B2 (en) Display element device and display element driving method
JP3551699B2 (en) Liquid crystal display device and driving method thereof
JP3551701B2 (en) Liquid crystal display device and driving method thereof
JPH10307306A (en) Liquid crystal display element and its production
JPH07294887A (en) Ferroelectric liquid crystal display device and driving method for ferroelectric liquid crystal display element