JPH07333399A - X-ray transmission window part - Google Patents

X-ray transmission window part

Info

Publication number
JPH07333399A
JPH07333399A JP6131964A JP13196494A JPH07333399A JP H07333399 A JPH07333399 A JP H07333399A JP 6131964 A JP6131964 A JP 6131964A JP 13196494 A JP13196494 A JP 13196494A JP H07333399 A JPH07333399 A JP H07333399A
Authority
JP
Japan
Prior art keywords
ray transmission
transmission window
ray
support
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6131964A
Other languages
Japanese (ja)
Inventor
Shinichi Takahashi
進一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6131964A priority Critical patent/JPH07333399A/en
Publication of JPH07333399A publication Critical patent/JPH07333399A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an X-ray transmission window part which has superior mechanical strength and X-ray transmission even with large area of the X-ray transmission window. CONSTITUTION:On a chip 23, X-ray transmission windows 23a made of an X-ray transmissive material and supports 23b projecting on the X-ray transmission windows 23a for strengthening the X-ray transmission windows 23a. By putting a spacer 12 in between the two chips 23, a sample room 13 is partitioned between the spacer 12 and the X-ray transmission windows 23a. The support 23b is provided as a grid. The material consisting the X-ray transmission windows 23a is favorably made of at least one of high X-ray transmission materials, Si3N4, SiC, SiO3, BN or Be.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線顕微鏡に用いられ
る試料容器やX線が透過する真空隔壁などに用いられる
X線透過窓部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray transmission window member used for a sample container used in an X-ray microscope, a vacuum partition through which X-rays pass, and the like.

【0002】[0002]

【従来の技術】医学や生物学の分野では、一般的に光学
顕微鏡により生体試料の観察が行われているが、光学顕
微鏡では観察に可視光を用いているため、高い分解能で
観察をすることができない。一方、高い分解能で観察が
できる電子顕微鏡では、生体試料を直接真空中に置かな
ければならず、生体のままで観察することができなかっ
た。このため、波長が約2〜5nmの軟X線を用いるX
線顕微鏡の利用が進められている。X線顕微鏡では、X
線透過窓が設けられた試料容器に、培養液と共に生体試
料を密閉することにより、生体のまま観察することがで
きる。
2. Description of the Related Art In the fields of medicine and biology, a biological sample is generally observed with an optical microscope. However, since visible light is used for observation in an optical microscope, it is necessary to perform observation with high resolution. I can't. On the other hand, in an electron microscope capable of observing with high resolution, a biological sample has to be placed directly in a vacuum, and it has not been possible to observe the biological sample as it is. Therefore, X using a soft X-ray having a wavelength of about 2 to 5 nm is used.
The use of line microscopes is being promoted. With an X-ray microscope, X
The biological sample can be observed as it is by sealing the biological sample together with the culture solution in the sample container provided with the linear transmission window.

【0003】図11はX線顕微鏡の一例を示す概略構成
図である。図11において、X線発生器1の出力光軸上
に照明光学系2、試料容器3、拡大光学系4および撮像
装置5が、排気装置6を備えた真空容器7の内部に直列
に配置されている。真空容器7は、空気によるX線の吸
収を避けるために、排気装置6により真空に保たれる。
このように構成されたX線顕微鏡では、生体試料はX線
透過窓が設けられた不図示の試料カプセル内に密閉収納
され、この試料カプセルが試料容器3に収容された後、
真空容器7内が排気装置6で真空排気される。X線発生
器1から射出された軟X線ビームは照明光学系2により
集束され、試料容器3に収容された試料カプセル内の試
料を透過し、透過像は拡大光学系4によって拡大され、
この拡大像は撮像装置5に結像される。8は撮影モニタ
ーであり、撮像装置5に結像された拡大像を撮影モニタ
ー8により観察する。
FIG. 11 is a schematic configuration diagram showing an example of an X-ray microscope. In FIG. 11, the illumination optical system 2, the sample container 3, the magnifying optical system 4, and the imaging device 5 are arranged in series inside the vacuum container 7 having the exhaust device 6 on the output optical axis of the X-ray generator 1. ing. The vacuum container 7 is kept vacuum by the exhaust device 6 in order to avoid absorption of X-rays by air.
In the X-ray microscope configured as above, the biological sample is hermetically housed in a sample capsule (not shown) provided with an X-ray transmission window, and after the sample capsule is housed in the sample container 3,
The inside of the vacuum container 7 is evacuated by the exhaust device 6. The soft X-ray beam emitted from the X-ray generator 1 is focused by the illumination optical system 2, passes through the sample in the sample capsule housed in the sample container 3, and the transmitted image is magnified by the magnifying optical system 4.
This magnified image is formed on the image pickup device 5. Reference numeral 8 denotes a photographing monitor, and the magnified image formed on the imaging device 5 is observed by the photographing monitor 8.

【0004】図12は、図11の試料容器3と、これに
収容される試料カプセルの構造を示す断面図である。試
料カプセル9は、スペーサー12を平板状のチップ1
0,11で挟んだ構造をしており、スペーサー12とチ
ップ10,11のX線透過窓10a,11aとの間に試
料室13が画成される。X線透過窓10a,11aは、
X線を透過する物質で構成されている。試料室13内に
は、生体試料を含んだ培養液が装填される。試料容器3
は、一対のフランジ14,15を備える。フランジ1
4,15の互いに相対する面にはそれぞれ凹部20,2
1が形成され、試料カプセル9が凹部20と凹部21と
の間に挟み付けるように収容される。フランジ14,1
5がボルト16で相互に固定されることにより、試料カ
プセル9がOリング17,18の間に挟持され、試料室
13はOリング17,18,19により真空から隔離さ
れる。
FIG. 12 is a cross-sectional view showing the structure of the sample container 3 of FIG. 11 and the sample capsule accommodated therein. The sample capsule 9 includes a spacer 12 and a flat chip 1
The sample chamber 13 is sandwiched between 0 and 11, and the sample chamber 13 is defined between the spacer 12 and the X-ray transmission windows 10a and 11a of the chips 10 and 11. The X-ray transmission windows 10a and 11a are
It is composed of a substance that transmits X-rays. A culture solution containing a biological sample is loaded into the sample chamber 13. Sample container 3
Includes a pair of flanges 14 and 15. Flange 1
The concave portions 20 and 2 are provided on the surfaces of the concave portions 4 and 15 facing each other.
1 is formed, and the sample capsule 9 is housed so as to be sandwiched between the recess 20 and the recess 21. Flange 14,1
By fixing 5 to each other with bolts 16, the sample capsule 9 is clamped between the O-rings 17, 18, and the sample chamber 13 is isolated from the vacuum by the O-rings 17, 18, 19.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の試料カ
プセル9においては、観察のために真空容器7内を真空
排気した時に、真空容器7内の圧力と試料室13内の圧
力との差圧によりX線透過窓10a,11aが変形した
り、破損したりする等の欠点があった。
In the conventional sample capsule 9 described above, when the vacuum container 7 is evacuated for observation, the differential pressure between the pressure in the vacuum container 7 and the pressure in the sample chamber 13 is reduced. Due to this, there is a defect that the X-ray transmission windows 10a and 11a are deformed or damaged.

【0006】図13は、X線透過窓用部材の材料として
用いられるSi34膜の厚さとX線透過率との関係を示
す図である。図に示したX線の波長は、生物観察用のX
線顕微鏡で用いられる「水の窓領域」と呼ばれる波長域
(2.3〜4.3nm)の中の波長を選んで示した。厚
さ0.05μmのSi34膜では、3.0nmのX線に
対して85%の透過率があるが、厚さ0.2μmでは5
3%と著しく透過率が悪くなる。X線の透過率を上げる
ためにはできるだけ厚さの小さいX線透過窓を使用しな
ければならないことがわかる。
FIG. 13 is a diagram showing the relationship between the thickness of the Si 3 N 4 film used as the material of the X-ray transmission window member and the X-ray transmittance. The X-ray wavelength shown in the figure is the X-ray for biological observation.
A wavelength in a wavelength range (2.3 to 4.3 nm) called a “water window region” used in a line microscope is selected and shown. The 0.05 μm thick Si 3 N 4 film has a transmittance of 85% with respect to 3.0 nm X-rays, but the thickness of 0.2 μm is 5%.
The transmittance is remarkably deteriorated to 3%. It can be seen that in order to increase the X-ray transmittance, it is necessary to use an X-ray transmission window having the smallest possible thickness.

【0007】一方、図14は、厚さ0.1μmのSi3
4により形成された1mm角,0.5mm角,0.2
mm角の正方形のX線透過窓10a,11aが、上述の
差圧により膨らんだ時の最大歪量を示した図であるが、
X線顕微鏡で観察しているときには、試料カプセル9の
X線透過窓10a,11aに真空容器内の圧力と大気圧
との圧力差である約1気圧の圧力がかかっている。例え
ば、1.0mm角の窓では約39μmの膨らみとなり、
試料カプセル内でのX線の吸収が増加し、X線顕微鏡に
よる観察が困難になる。また、圧力に耐えきれず破損し
てしまうおそれもある。
On the other hand, FIG. 14 shows Si 3 having a thickness of 0.1 μm.
1 mm square, 0.5 mm square, 0.2 formed by N 4
It is a figure showing the maximum amount of strain when the X-ray transmission windows 10a and 11a of a square of mm square swell by the above-mentioned differential pressure.
When observing with an X-ray microscope, a pressure of about 1 atm, which is the pressure difference between the pressure inside the vacuum container and the atmospheric pressure, is applied to the X-ray transmission windows 10a and 11a of the sample capsule 9. For example, a 1.0 mm square window will have a bulge of approximately 39 μm,
The absorption of X-rays in the sample capsule increases, making it difficult to observe with an X-ray microscope. In addition, there is a possibility that the product cannot withstand the pressure and is damaged.

【0008】従来、この様なX線透過窓10a,11a
の変形や破損を避けるために、X線透過窓10a,11
aの面積を小さくしたり、強度を上げるために厚さを大
きくしたりする等の対策が取られていた。しかし、X線
透過窓10a,11aの面積を小さくすると観察領域が
制限され、また、X線透過窓10a,11aの厚さを大
きくすると、X線透過窓10a,11a自体のX線吸収
量が増加し、コントラストの低い試料の観察に必要なX
線光量が得られないという問題点があった。
Conventionally, such X-ray transmission windows 10a and 11a have been used.
In order to avoid the deformation and damage of the X-ray transmission windows 10a, 11
Measures have been taken such as reducing the area of a and increasing the thickness to increase the strength. However, when the area of the X-ray transmission windows 10a and 11a is reduced, the observation area is limited, and when the thickness of the X-ray transmission windows 10a and 11a is increased, the X-ray absorption amount of the X-ray transmission windows 10a and 11a itself is reduced. X required for observing samples with increased and low contrast
There was a problem that the amount of linear light could not be obtained.

【0009】また、X線透過窓をX線顕微鏡の真空隔壁
として用いた場合、X線の光路を確保するためにX線透
過窓の面積が大きくなり、X線透過率の良い、薄くて機
械的強度に優れたX線透過窓を設けることは困難であっ
た。
Further, when the X-ray transmission window is used as a vacuum partition of an X-ray microscope, the area of the X-ray transmission window becomes large in order to secure the optical path of the X-ray, and the X-ray transmission has a good X-ray transmittance and is thin and mechanical. It was difficult to provide an X-ray transmission window excellent in dynamic strength.

【0010】本発明の目的は、X線透過窓の面積が大き
くかつX線透過窓の厚みが薄くても機械的な強度に優
れ、X線透過率の良いX線透過窓部材を提供することに
ある。
An object of the present invention is to provide an X-ray transmission window member having a large X-ray transmission window area and a small X-ray transmission window thickness, excellent mechanical strength, and good X-ray transmittance. It is in.

【0011】[0011]

【課題を解決するための手段】一実施例を示す図1に対
応付けて説明すると、請求項1の発明は、X線を透過さ
せる物質で構成されるX線透過窓23aと、X線透過窓
23a上に突設され、このX線透過窓23aを補強する
サポート23bとを備えるX線透過窓部材23を用いる
ことにより上述の目的を達成する。請求項2の発明で
は、請求項1のX線透過窓部材23において、サポート
23bは格子状に設けられる。図10に対応付けて説明
すると、請求項3の発明では、X線透過窓57aが環状
に設けられ、サポート57bがX線透過窓57aに対し
て放射状に並んでいる。請求項4の発明では、請求項1
〜請求項3のいずれかに記載のX線透過窓部材23,5
7において、X線透過窓23a,57aはSi34,S
iC,SiO2,BNまたはBeのうち少なくとも一つ
から形成される。
When the invention of claim 1 is described in association with FIG. 1 showing an embodiment, an X-ray transmission window 23a made of a substance that transmits X-rays and an X-ray transmission window are provided. The above-described object is achieved by using the X-ray transmission window member 23 that is provided on the window 23a and has a support 23b that reinforces the X-ray transmission window 23a. In the invention of claim 2, in the X-ray transmission window member 23 of claim 1, the supports 23b are provided in a lattice shape. To explain in association with FIG. 10, in the invention of claim 3, the X-ray transmission window 57a is provided in an annular shape, and the supports 57b are arranged radially with respect to the X-ray transmission window 57a. In the invention of claim 4, claim 1
~ X-ray transmission window member 23, 5 according to any one of claims 3 to
7, the X-ray transmission windows 23a and 57a are made of Si 3 N 4 and S.
It is formed of at least one of iC, SiO 2 , BN, and Be.

【0012】[0012]

【作用】請求項1の発明では、X線透過窓23a上にサ
ポート23bを突設することにより、X線透過窓23a
の機械的強度が向上する。請求項2の発明では、格子状
のサポートによりX線透過窓が小さな領域に分割され、
各領域の機械的強度が向上する。請求項3の発明では、
ウォルター型斜入射鏡のようにX線発生器から射出され
るX線の環状部分を利用する光学系を用いる場合、光学
系に対するX線透過窓の面積を必要最小限に済ませるこ
とができる。しかも、サポートによりX線透過窓の機械
的強度が向上する。請求項4の発明では、X線透過窓2
3a,57aがSi34,SiC,SiO2,BNまた
はBeのうち少なくとも一つから形成されることによ
り、X線に対する透過率の高いX線透過窓を得ることが
できる。
According to the first aspect of the present invention, the support 23b is provided so as to project on the X-ray transmission window 23a, so that the X-ray transmission window 23a.
The mechanical strength of is improved. In the invention of claim 2, the X-ray transmission window is divided into small regions by the lattice-shaped support,
The mechanical strength of each region is improved. According to the invention of claim 3,
When an optical system that uses an annular portion of X-rays emitted from an X-ray generator, such as a Walter type oblique incidence mirror, is used, the area of the X-ray transmission window for the optical system can be minimized. Moreover, the support improves the mechanical strength of the X-ray transmission window. In the invention of claim 4, the X-ray transmission window 2
By forming 3a and 57a from at least one of Si 3 N 4 , SiC, SiO 2 , BN and Be, an X-ray transmission window having a high X-ray transmittance can be obtained.

【0013】なお、本発明の構成を説明する上記課題を
解決するための手段と作用の項では、本発明を分かり易
くするために実施例の図を用いたが、これにより本発明
が実施例に限定されるものではない。
Incidentally, in the section of means and action for solving the above problems for explaining the constitution of the present invention, the drawings of the embodiments are used for making the present invention easy to understand. It is not limited to.

【0014】[0014]

【実施例】以下、図1〜図10を参照して本発明の実施
例を説明する。なお、図1〜図10において、図11お
よび図12との共通部分には同一符号をなし、説明を省
略する。 −第1実施例− 図1は本発明の第1実施例を示す図であり、本発明によ
るX線透過窓部材を試料カプセル22に用いた例であ
る。図1(a)は、試料カプセル22の断面図であり、
図1(b)は図1(a)のAから見た平面図を示す。チ
ップ23には、Si34で形成される1mm角のX線透
過窓23aが設けられている。X線透過窓23aの試料
室13側の面とは反対側の面上には、0.2mmの間隔
でサポート23bが格子状に突設される。サポート23
bは、例えばSi,Au,Cr,Ti等で構成する。ま
た、サポート23bの寸法として、例えば図1では、w
=70μm、t=70μmとしているが、X線透過窓2
3aの面積やサポート23bの機械的強度等により、種
々の寸法w,tを選ぶことができる。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 10, the same parts as those in FIGS. 11 and 12 are designated by the same reference numerals, and the description thereof will be omitted. First Example FIG. 1 is a diagram showing a first example of the present invention, which is an example in which an X-ray transmission window member according to the present invention is used for a sample capsule 22. FIG. 1A is a cross-sectional view of the sample capsule 22,
FIG. 1B shows a plan view seen from A in FIG. The chip 23 is provided with a 1 mm square X-ray transmission window 23a made of Si 3 N 4 . On the surface of the X-ray transmission window 23a opposite to the surface on the sample chamber 13 side, supports 23b are projected in a grid pattern at intervals of 0.2 mm. Support 23
b is made of, for example, Si, Au, Cr, Ti or the like. The size of the support 23b is, for example, w in FIG.
= 70 μm and t = 70 μm, the X-ray transmission window 2
Various dimensions w and t can be selected depending on the area of 3a and the mechanical strength of the support 23b.

【0015】試料カプセル22は、試料容器3に収容さ
れた後、真空容器7内にセットされる。真空容器7内が
排気装置6により真空排気されると、試料室13内の圧
力と真空容器7内の圧力との差圧によりX線透過窓23
aは試料室13が膨らむように歪む。しかし、X線透過
窓23aはサポート23bにより支持されているため、
X線透過窓23aと同じ面積を持つ従来のX線透過窓に
比べ、歪量は小さく抑えられる。また、同等の歪量で考
えると、従来のX線透過窓より大きな面積のX線透過窓
23aを設けることができ、より広い観察領域を確保す
ることが可能となる。なお、本実施例では、サポート2
3bの厚さに制限されないで、スペーサー12を任意の
厚さに設定することができる。
The sample capsule 22 is housed in the sample container 3 and then set in the vacuum container 7. When the inside of the vacuum container 7 is evacuated by the exhaust device 6, the X-ray transmission window 23 is generated due to the pressure difference between the pressure inside the sample chamber 13 and the inside pressure of the vacuum container 7.
a is distorted so that the sample chamber 13 swells. However, since the X-ray transmission window 23a is supported by the support 23b,
The distortion amount can be suppressed to be smaller than that of the conventional X-ray transmission window having the same area as the X-ray transmission window 23a. Further, considering the same amount of distortion, the X-ray transmission window 23a having a larger area than the conventional X-ray transmission window can be provided, and a wider observation area can be secured. In this embodiment, the support 2
The spacer 12 can be set to an arbitrary thickness without being limited to the thickness of 3b.

【0016】本実施例のX線透過窓部材の製作方法を、
図2を参照して説明する。図2(a)に示すように、シ
リコンウエハー25の両面にX線透過窓23aの材料と
なるSi34膜26をLP−CVD法、スパッタリン
グ、蒸着等により形成した後、片面側のSi34膜26
上にレジスト27を塗布する。ついで、図2(b)に示
すように、X線透過窓23aに対応するパターン28を
持つマスク29を用いて、X線透過窓23aに相当する
孔30をフォトリソグラフィー法によりレジスト27に
形成する。次に、図2(c)に示すように、ウェットエ
ッチング等の異方性エッチングにより、孔30を通して
シリコンウエハー25をサポート23bに相当する厚さ
に達するまで除去する。そして、図2(d)に示すよう
に、エッチングされたシリコンウエハー25および同じ
側のSi34膜26上にレジスト31を積層した後、図
2(e)に示すように、サポート23bに対応する格子
状のパターン32を持つマスク33を用いて、フォトリ
ソグラフィー法によりサポート23bの隙間部分に相当
する孔34をレジスト31に形成する。さらに、図2
(f)に示すように、孔34を介して異方性エッチング
によりSi34膜26に達するまでシリコンウエハー2
5を除去する。このようにして、シリコンによる格子状
のサポート23bを設けたX線透過窓23aが形成され
る。
A method of manufacturing the X-ray transmission window member of this embodiment will be described below.
This will be described with reference to FIG. As shown in FIG. 2A, after a Si 3 N 4 film 26, which is a material of the X-ray transmission window 23a, is formed on both surfaces of the silicon wafer 25 by LP-CVD, sputtering, vapor deposition, etc., Si on one side is formed. 3 N 4 film 26
A resist 27 is applied on top. Then, as shown in FIG. 2B, using a mask 29 having a pattern 28 corresponding to the X-ray transmission window 23a, a hole 30 corresponding to the X-ray transmission window 23a is formed in the resist 27 by photolithography. . Next, as shown in FIG. 2C, the silicon wafer 25 is removed through the hole 30 by anisotropic etching such as wet etching until the thickness corresponding to the support 23b is reached. Then, as shown in FIG. 2D, after a resist 31 is laminated on the etched silicon wafer 25 and the Si 3 N 4 film 26 on the same side, as shown in FIG. Using a mask 33 having a corresponding grid-shaped pattern 32, holes 34 corresponding to the gaps of the support 23b are formed in the resist 31 by photolithography. Furthermore, FIG.
As shown in (f), the silicon wafer 2 is anisotropically etched through the holes 34 until the Si 3 N 4 film 26 is reached.
Remove 5. In this manner, the X-ray transmission window 23a provided with the lattice-shaped support 23b made of silicon is formed.

【0017】図3は、X線透過窓部材の第2の製作方法
を示す図である。図3(a),3(b)は図2(a),
2(b)と同様の手順であり、シリコンウエハー25の
両面にSi34膜26を形成し、片面側のSi34膜2
6上にレジスト27を塗布した後、マスク29を用いた
フォトリソグラフィー法によりX線透過窓23aに相当
する孔30をレジスト27に形成する。ついで、図3
(c)に示すように、ウェットエッチング等の異方性エ
ッチングにより、孔30に相当する部分のシリコンウエ
ハー25をSi34膜26に達するまで除去する。次
に、図3(d)に示すように、サポート材となるAu,
Cr,Ti等の金属37をスパッタリング,蒸着,メッ
キ等の方法で、Si34膜26の試料室13側の面とは
反対側の面上に積層し、その面上および同じ側のSi3
4膜26上にレジスト38を塗布する。そして、図3
(e)では図2(e)と同様に、サポート23bに対応
する格子状のパターン32を持つマスク33を用いて、
フォトリソグラフィー法によりサポート23bの隙間部
分に相当する孔34をレジスト38に形成する。さら
に、図3(f)に示すように、孔34を介してドライエ
ッチング,ウェットエッチング等によりSi34膜26
に達するまで金属37を除去する。このようにして、金
属による格子状のサポート23bを設けたX線透過窓2
3aが形成される。
FIG. 3 is a diagram showing a second manufacturing method of the X-ray transmission window member. 3 (a) and 3 (b) are shown in FIG.
The procedure is the same as that of 2 (b), and the Si 3 N 4 film 26 is formed on both surfaces of the silicon wafer 25, and the Si 3 N 4 film 2 on one side is formed.
After applying the resist 27 on the resist 6, the holes 30 corresponding to the X-ray transmission windows 23a are formed in the resist 27 by the photolithography method using the mask 29. Then, Fig. 3
As shown in (c), the silicon wafer 25 in the portion corresponding to the hole 30 is removed by anisotropic etching such as wet etching until the Si 3 N 4 film 26 is reached. Next, as shown in FIG. 3D, Au, which becomes a support material,
A metal 37 such as Cr or Ti is laminated on the surface of the Si 3 N 4 film 26 opposite to the surface on the sample chamber 13 side by a method such as sputtering, vapor deposition or plating, and Si on the same surface and on the same side. 3
A resist 38 is applied on the N 4 film 26. And FIG.
In (e), as in FIG. 2 (e), using a mask 33 having a grid-shaped pattern 32 corresponding to the support 23b,
A hole 34 corresponding to the gap portion of the support 23b is formed in the resist 38 by the photolithography method. Further, as shown in FIG. 3F, the Si 3 N 4 film 26 is formed through the hole 34 by dry etching, wet etching, or the like.
The metal 37 is removed until In this way, the X-ray transmission window 2 provided with the metal grid-shaped support 23b is provided.
3a is formed.

【0018】図4は、X線透過窓部材の第3の製作方法
を示す図である。ここでは、第2の製作方法により図2
(c)に示す段階まで進んだら、サポート23bに相当
する貫通孔40を持つマスク41を用いて、スパッタリ
ング,蒸着等によりマスク41の貫通部分のみに金属を
Si34膜26上に堆積し、サポート23bを形成す
る。
FIG. 4 is a diagram showing a third manufacturing method of the X-ray transmission window member. Here, as shown in FIG.
After reaching the stage shown in (c), using a mask 41 having a through hole 40 corresponding to the support 23b, metal is deposited on the Si 3 N 4 film 26 only on the penetrating portion of the mask 41 by sputtering, vapor deposition or the like. , The support 23b is formed.

【0019】図5は、X線透過窓部材の第4の製作方法
を示す図である。図5(a)では、図2(a)と同様に
シリコンウエハー25の両面にSi34膜26を形成し
た後、片面側のSi34膜26上にレジスト27を塗布
する。次に、図5(b)に示すように、サポート23b
に対応するパターン32を持つマスク33を用いて、フ
ォトリソグラフィー法によりサポート23bの隙間部分
に相当する孔45をレジスト27に形成する。さらに、
図5(c)示すように、異方性エッチングによりシリコ
ンウエハー25を孔45を通してSi34膜26に達す
るまで除去する。このようにして、格子状のサポート2
3bを設けたX線透過窓23aが形成される。この製作
方法は第1〜第3の方法に比べて簡便であるが、サポー
ト23bが厚くなり試料観察に影響を与えるという欠点
がある。しかし、機械的強度が大きくなり、大面積のX
線透過窓を形成することが可能となる。
FIG. 5 is a view showing a fourth manufacturing method of the X-ray transmission window member. In FIG. 5A, similarly to FIG. 2A, after the Si 3 N 4 film 26 is formed on both sides of the silicon wafer 25, the resist 27 is applied on the Si 3 N 4 film 26 on one side. Next, as shown in FIG. 5B, the support 23b
Using the mask 33 having the pattern 32 corresponding to, holes 45 corresponding to the gaps of the support 23b are formed in the resist 27 by the photolithography method. further,
As shown in FIG. 5C, the silicon wafer 25 is removed by anisotropic etching through the hole 45 until the Si 3 N 4 film 26 is reached. In this way, the grid-shaped support 2
The X-ray transmission window 23a provided with 3b is formed. This manufacturing method is simpler than the first to third methods, but has a drawback that the support 23b becomes thick and affects sample observation. However, the mechanical strength increases, and the large area of X
It is possible to form a line transparent window.

【0020】本実施例ではサポートの形状を格子状とし
ているが、マスクによって自由な形状のサポートを形成
することも可能である。また、サポートの強度が許す限
りX線透過窓を大きくすることが可能であり、X線透過
窓に用いられる物質はSi34に限定されず、使用する
X線領域でX線透過率の高いSiC,SiO2,BN,
Be等の物質も用いられる。本実施例は、以上述べた製
作方法に限定されない。
In this embodiment, the support has a lattice shape, but it is also possible to form the support with a free shape by using a mask. Further, the X-ray transmission window can be made as large as the strength of the support allows, and the substance used for the X-ray transmission window is not limited to Si 3 N 4 , and the X-ray transmission rate in the X-ray region used can be increased. High SiC, SiO 2 , BN,
A substance such as Be is also used. This embodiment is not limited to the manufacturing method described above.

【0021】−第2実施例− 図6は本発明の第2実施例を示す図であり、本発明によ
るX線透過窓部材を試料カプセル43に用いた例であ
る。図6(a)は、試料カプセル44の断面図であり、
図6(b)は図6(a)のBから見た平面図を示す。チ
ップ44には、Si34で形成される1mm角のX線透
過窓44aが設けられている。X線透過窓44aの互い
に向い合った面上にはサポート44bが0.2mmの間
隔で格子状に突設される。2つのチップ44が、互いの
サポート44bを突き合わせて重ねられることにより、
試料室13が画成される。本実施例では、サポート44
bが第1実施例におけるスペーサー12の役割も兼ねて
おり、より少ない部品で試料カプセルを構成することが
できる。また、試料室13がサポート44bによりいく
つかの小さな部屋に分離されているので、広い視野を持
ちながら、かつ試料室13内で観察試料が動き回れない
という特徴も持っている。
Second Embodiment FIG. 6 is a view showing a second embodiment of the present invention, which is an example in which the X-ray transmission window member according to the present invention is used for the sample capsule 43. FIG. 6A is a cross-sectional view of the sample capsule 44,
FIG. 6B shows a plan view seen from B of FIG. 6A. The chip 44 is provided with a 1 mm square X-ray transmission window 44a made of Si 3 N 4 . Supports 44b are projected in a grid pattern at intervals of 0.2 mm on the surfaces of the X-ray transmission windows 44a facing each other. By the two chips 44 being overlapped by butting the supports 44b of each other,
A sample chamber 13 is defined. In this embodiment, the support 44
b also serves as the spacer 12 in the first embodiment, and the sample capsule can be configured with fewer parts. Further, since the sample chamber 13 is divided into several small chambers by the support 44b, it has a feature that it has a wide field of view and that the observation sample cannot move around in the sample chamber 13.

【0022】第2の実施例におけるX線透過窓部材の製
作方法を、図7を参照して説明する。図7(a)に示す
ように、シリコンウエハー25の両面にX線透過窓44
aの材料となるSi34膜26をLP−CVD法、スパ
ッタリング、蒸着等により形成した後、サポート材とな
るAu,Cr,Ti等の金属46をスパッタリング,蒸
着,メッキ等の方法で片面側のSi34膜26上に積層
し、金属46の上にレジスト47を塗布する。ついで、
図7(b)に示すように、サポート44bに対応する格
子状のパターン32を持つマスク33を用いて、レジス
ト47にサポート44bの隙間部分に相当する孔34を
フォトリソグラフィー法により形成する。次に、図7
(c)に示すように、ドライエッチング,ウェットエッ
チング等の異方性エッチングにより、孔34を通して金
属46をレジスト47を塗布した側のSi34膜26に
達するまで除去する。このようにして、格子状のサポー
ト44bが形成される。そして、図7(d)に示すよう
に、サポート44bを形成した面とは反対側のSi34
膜26上に、レジスト49を塗布した後、図7(e)に
示すように、X線透過窓44aに対応するパターン28
を持つマスク29を用いて、孔50をフォトリソグラフ
ィー法によりレジスト49に形成する。さらに、図7
(f)に示すように、孔50を介して異方性エッチング
によりX線透過窓44aに相当する部分のシリコンウエ
ハー25を、サポート44bを形成した側のSi34
26に達するまで除去する。このようにして、格子状の
サポート44bが設けられたX線透過窓44aが形成さ
れる。
A method of manufacturing the X-ray transmission window member in the second embodiment will be described with reference to FIG. As shown in FIG. 7A, an X-ray transmission window 44 is formed on both surfaces of the silicon wafer 25.
After forming the Si 3 N 4 film 26 which is a material of a by LP-CVD method, sputtering, vapor deposition, etc., the metal 46 such as Au, Cr, Ti which becomes a support material is sputtered, vapor deposited, plated or the like on one side. It is laminated on the side Si 3 N 4 film 26, and a resist 47 is applied on the metal 46. Then,
As shown in FIG. 7B, using a mask 33 having a grid-shaped pattern 32 corresponding to the support 44b, a hole 34 corresponding to a gap portion of the support 44b is formed in the resist 47 by a photolithography method. Next, FIG.
As shown in (c), the metal 46 is removed through the hole 34 by anisotropic etching such as dry etching or wet etching until the Si 3 N 4 film 26 on the side where the resist 47 is applied is reached. In this way, the lattice-shaped support 44b is formed. Then, as shown in FIG. 7D, Si 3 N 4 on the side opposite to the surface on which the support 44b is formed is formed.
After applying the resist 49 on the film 26, as shown in FIG. 7E, the pattern 28 corresponding to the X-ray transmission window 44a is formed.
The holes 50 are formed in the resist 49 by the photolithography method using the mask 29 having Furthermore, FIG.
As shown in (f), the portion of the silicon wafer 25 corresponding to the X-ray transmission window 44a is removed by anisotropic etching through the hole 50 until it reaches the Si 3 N 4 film 26 on the side where the support 44b is formed. To do. In this way, the X-ray transmission window 44a provided with the lattice-shaped support 44b is formed.

【0023】−第3実施例− 図8は本発明の第3実施例を示す図で、本発明によるX
線透過窓部材を試料カプセル51に用いた例である。図
8(a)は試料カプセル51の断面図であり、図8
(b)は図8(a)のCから見た平面図を示す。チップ
52には、Si34で形成される1mm角のX線透過窓
52aが設けられている。X線透過窓52aの両面に
は、サポート52bがそれぞれ0.2mmの間隔で格子
状に突設される。2つのチップ52が合わされた時に、
互いに向い合ったサポート54がスペーサー12の役割
も兼ねる。本実施例では、X線透過窓52aの両面にサ
ポート52aが設けられるため、機械的強度がさらに向
上され、より広い観察領域を持つ試料カプセルが可能と
なる。また、第2の実施例と同様に観察試料が動き回れ
ない。
[Third Embodiment] FIG. 8 is a view showing a third embodiment of the present invention.
This is an example in which a line transmission window member is used for the sample capsule 51. FIG. 8A is a sectional view of the sample capsule 51.
8B shows a plan view seen from C in FIG. 8A. The chip 52 is provided with a 1 mm square X-ray transmission window 52a made of Si 3 N 4 . Supports 52b are provided on both surfaces of the X-ray transmission window 52a at intervals of 0.2 mm in a grid pattern. When the two chips 52 are put together,
The supports 54 facing each other also serve as the spacer 12. In this embodiment, since the supports 52a are provided on both sides of the X-ray transmission window 52a, the mechanical strength is further improved, and a sample capsule having a wider observation area becomes possible. Further, the observation sample does not move around as in the second embodiment.

【0024】−第4実施例− 図9、図10は本発明の第4実施例を示す図であり、図
9は真空隔壁を用いたX線顕微鏡の概略構成図で、図1
0は真空隔壁の詳細図を示す。図9で、真空容器7に対
して真空隔壁57で隔離された真空容器55が設けら
れ、その内部にはX線発生器1が収納されている。真空
容器55内は、排気装置56によって真空排気されてい
る。このような構成では、X線発生器1が収納される真
空容器55内は、他に比べて真空度を低くすることが可
能となる。ここで、照明光学系2にウォルター型の斜入
射反射鏡が用いられる場合、X線発生器1から射出され
たX線の内、実際に利用されるX線は輪帯状の部分だけ
である。
Fourth Embodiment FIGS. 9 and 10 are views showing a fourth embodiment of the present invention, and FIG. 9 is a schematic configuration diagram of an X-ray microscope using a vacuum partition, and FIG.
Reference numeral 0 indicates a detailed view of the vacuum partition. In FIG. 9, a vacuum container 55 isolated from the vacuum container 7 by a vacuum partition 57 is provided, and the X-ray generator 1 is housed inside the vacuum container 55. The inside of the vacuum container 55 is evacuated by the exhaust device 56. With such a configuration, the degree of vacuum inside the vacuum container 55 in which the X-ray generator 1 is housed can be made lower than other vacuum chambers. Here, when a Walter type grazing incidence reflecting mirror is used for the illumination optical system 2, of the X-rays emitted from the X-ray generator 1, the X-rays actually used are only the annular portion.

【0025】図10に示すように、真空隔壁57には、
上述した輪帯状部分のX線が通過する部分にX線透過窓
が設けられている。図では、真空隔壁位置を通過するX
線の輪帯状部58が点線で示されている。X線透過窓部
材59には、八角形の環状をなすようにX線透過窓57
aが設けられており、X線透過窓57aには8つのサポ
ート57bが放射状に設けられている。本発明の真空隔
壁では、X線透過窓の面積を必要最小限に抑え、さらに
サポートによって機械的強度を高めているため、X線透
過窓の膜の厚さを薄くすることができ、耐圧強度が高
く、かつX線透過率の高い真空隔壁が可能となる。
As shown in FIG. 10, the vacuum partition 57 includes:
An X-ray transmission window is provided in a portion of the above-mentioned annular portion through which X-rays pass. In the figure, X passing through the vacuum partition position
The zonal portion 58 of the line is shown in dotted lines. The X-ray transmission window member 59 has an X-ray transmission window 57 formed in an octagonal ring shape.
a is provided, and eight supports 57b are radially provided on the X-ray transmission window 57a. In the vacuum partition wall of the present invention, since the area of the X-ray transmission window is minimized and the mechanical strength is increased by the support, the thickness of the film of the X-ray transmission window can be reduced, and the pressure resistance strength can be reduced. It is possible to form a vacuum partition wall having high X-ray transmittance and high X-ray transmittance.

【0026】以上説明した実施例と請求の範囲との関係
において、チップ23,44,52および真空隔壁57
はX線透過窓部材に対応する。
In the relationship between the embodiment described above and the scope of the claims, the chips 23, 44 and 52 and the vacuum partition 57 are provided.
Corresponds to the X-ray transmission window member.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
X線透過窓にサポートを設けたので機械的強度が増加し
て、窓の表裏の差圧に対する耐圧強度を向上させること
ができる。そのため、面積を大きくしても、厚さが薄く
X線透過率の高いX線透過窓を得ることができる。
As described above, according to the present invention,
Since the X-ray transmission window is provided with the support, the mechanical strength is increased and the pressure resistance against the pressure difference between the front and back of the window can be improved. Therefore, even if the area is increased, an X-ray transmission window having a small thickness and a high X-ray transmittance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例のX線透過窓部材が用いら
れる試料カプセルを示す図であり、(a)は断面図、
(b)は平面図である。
FIG. 1 is a view showing a sample capsule in which an X-ray transmission window member of a first embodiment of the present invention is used, (a) is a sectional view,
(B) is a plan view.

【図2】本発明の第1実施例に係わるX線透過窓部材の
第1の製作方法を説明する図である。
FIG. 2 is a diagram illustrating a first method of manufacturing an X-ray transmission window member according to the first embodiment of the present invention.

【図3】本発明の第1実施例に係わるX線透過窓部材の
第2の製作方法を説明する図である。
FIG. 3 is a diagram illustrating a second manufacturing method of the X-ray transmission window member according to the first embodiment of the present invention.

【図4】本発明の第1実施例に係わるX線透過窓部材の
第3の製作方法を説明する図である。
FIG. 4 is a diagram illustrating a third manufacturing method of the X-ray transmission window member according to the first embodiment of the present invention.

【図5】本発明の第1実施例に係わるX線透過窓部材の
第4の製作方法を説明する図である。
FIG. 5 is a diagram illustrating a fourth manufacturing method of the X-ray transmission window member according to the first embodiment of the present invention.

【図6】本発明の第2実施例のX線透過窓部材が用いら
れる試料カプセルを示す図であり、(a)は断面図、
(b)は平面図である。
FIG. 6 is a view showing a sample capsule in which the X-ray transmission window member of the second embodiment of the present invention is used, (a) is a sectional view,
(B) is a plan view.

【図7】本発明の第2実施例に係わるX線透過窓部材の
製作方法を説明する図である。
FIG. 7 is a diagram illustrating a method of manufacturing an X-ray transmission window member according to the second embodiment of the present invention.

【図8】本発明の第3実施例のX線透過窓部材が用いら
れる試料カプセルを示す図であり、(a)は断面図、
(b)は平面図である。
FIG. 8 is a view showing a sample capsule in which an X-ray transmission window member of a third embodiment of the present invention is used, (a) is a sectional view,
(B) is a plan view.

【図9】本発明の第4実施例の真空隔壁を用いたX線顕
微鏡の概略構成図。
FIG. 9 is a schematic configuration diagram of an X-ray microscope using a vacuum partition according to a fourth embodiment of the present invention.

【図10】本発明の第4実施例のX線透過窓部材が用い
られる真空隔壁の平面図。
FIG. 10 is a plan view of a vacuum partition in which the X-ray transmission window member according to the fourth embodiment of the present invention is used.

【図11】X線顕微鏡の概略構成図。FIG. 11 is a schematic configuration diagram of an X-ray microscope.

【図12】従来のX線透過窓部材が用いられている試料
カプセルの断面図。
FIG. 12 is a sectional view of a sample capsule in which a conventional X-ray transmission window member is used.

【図13】Si34膜の厚さとX線透過率との関係を示
す図。
FIG. 13 is a diagram showing the relationship between the thickness of a Si 3 N 4 film and X-ray transmittance.

【図14】Si34膜の差圧と最大歪量との関係を示す
図。
FIG. 14 is a diagram showing the relationship between the differential pressure of the Si 3 N 4 film and the maximum strain amount.

【符号の説明】[Explanation of symbols]

1 X線発生器 2 照明光学系 3 試料容器 4 拡大光学系 5 撮像装置 6,56 排気装置 7,55 真空容器 8 撮影モニター 12 スペーサー 13 試料室 22,43,51 試料カプセル 23,44,52 チップ 23a,44a,52a,57a X線透過窓 23b,44b,52b,57b サポート 57 真空隔壁 58 輪帯状部 1 X-ray generator 2 Illumination optical system 3 Sample container 4 Enlarging optical system 5 Imaging device 6,56 Exhaust device 7,55 Vacuum container 8 Imaging monitor 12 Spacer 13 Sample chamber 22, 43, 51 Sample capsule 23, 44, 52 Chip 23a, 44a, 52a, 57a X-ray transmission window 23b, 44b, 52b, 57b Support 57 Vacuum partition 58 Ring-shaped part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 X線を透過させる物質で構成されるX線
透過窓と、 前記X線透過窓上に突設されて該X線透過窓を補強する
サポートとが備えられることを特徴とするX線透過窓部
材。
1. An X-ray transmission window made of a substance that transmits X-rays, and a support projecting from the X-ray transmission window to reinforce the X-ray transmission window. X-ray transparent window member.
【請求項2】 請求項1に記載のX線透過窓部材におい
て、 前記サポートは、格子状に設けられることを特徴とする
X線透過窓部材。
2. The X-ray transmission window member according to claim 1, wherein the support is provided in a lattice shape.
【請求項3】 請求項1に記載のX線透過窓部材におい
て、前記X線透過窓が環状に設けられ、前記サポートが
前記X線透過窓に対して放射状に並んでいることを特徴
とするX線透過窓部材。
3. The X-ray transmission window member according to claim 1, wherein the X-ray transmission window is provided in an annular shape, and the support is arranged radially with respect to the X-ray transmission window. X-ray transparent window member.
【請求項4】 請求項1〜請求項3のいずれかに記載の
X線透過窓部材において、 前記X線透過窓は、Si34,SiC,SiO2,BN
またはBeのうち少なくとも一つから形成されることを
特徴とするX線透過窓部材。
4. The X-ray transmission window member according to claim 1, wherein the X-ray transmission window is Si 3 N 4 , SiC, SiO 2 , BN.
Alternatively, the X-ray transmission window member is formed of at least one of Be.
JP6131964A 1994-06-14 1994-06-14 X-ray transmission window part Pending JPH07333399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6131964A JPH07333399A (en) 1994-06-14 1994-06-14 X-ray transmission window part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6131964A JPH07333399A (en) 1994-06-14 1994-06-14 X-ray transmission window part

Publications (1)

Publication Number Publication Date
JPH07333399A true JPH07333399A (en) 1995-12-22

Family

ID=15070344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6131964A Pending JPH07333399A (en) 1994-06-14 1994-06-14 X-ray transmission window part

Country Status (1)

Country Link
JP (1) JPH07333399A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087997A (en) * 2005-09-20 2007-04-05 Nissin Electric Co Ltd Method of forming semiconductor microcrystal particle
JP2010521656A (en) * 2007-03-02 2010-06-24 プロトチップス,インコーポレイテッド Membrane support with reinforcing features
CN105914121A (en) * 2016-04-26 2016-08-31 苏州原位芯片科技有限责任公司 Triangle mono-crystalline silicon support beam structure type X-ray silicon nitride window construction and the manufacturing method thereof
US9666323B2 (en) 2014-02-18 2017-05-30 Horiba, Ltd. Radiolucent window, radiation detector and radiation detection apparatus
EP2577705B1 (en) * 2010-06-03 2021-08-11 Ametek Finland OY Ultra thin radiation window and method for its manufacturing
US11393606B2 (en) 2020-03-30 2022-07-19 Jeol Ltd. Radiation transmissive window and radition detector

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087997A (en) * 2005-09-20 2007-04-05 Nissin Electric Co Ltd Method of forming semiconductor microcrystal particle
JP2010521656A (en) * 2007-03-02 2010-06-24 プロトチップス,インコーポレイテッド Membrane support with reinforcing features
JP2013228403A (en) * 2007-03-02 2013-11-07 Protochips Inc Membrane supports with reinforcement features
US9040939B2 (en) 2007-03-02 2015-05-26 Protochips, Inc. Membrane supports with reinforcement features
EP2577705B1 (en) * 2010-06-03 2021-08-11 Ametek Finland OY Ultra thin radiation window and method for its manufacturing
US9666323B2 (en) 2014-02-18 2017-05-30 Horiba, Ltd. Radiolucent window, radiation detector and radiation detection apparatus
US10147511B2 (en) 2014-02-18 2018-12-04 Horiba, Ltd. Radiolucent window, radiation detector and radiation detection apparatus
CN105914121A (en) * 2016-04-26 2016-08-31 苏州原位芯片科技有限责任公司 Triangle mono-crystalline silicon support beam structure type X-ray silicon nitride window construction and the manufacturing method thereof
US11393606B2 (en) 2020-03-30 2022-07-19 Jeol Ltd. Radiation transmissive window and radition detector

Similar Documents

Publication Publication Date Title
US5533083A (en) Vacuum optical system
JPH02138900A (en) Electron beam transmission window
JPH07333399A (en) X-ray transmission window part
JP3358097B2 (en) X-ray projection exposure equipment
US5781608A (en) X-ray exposure system
Horikawa et al. Design and fabrication of the Schwarzschild objective for soft x-ray microscopes
JPH03207000A (en) Holder frame for x-ray optical element
JP3301249B2 (en) Reflection optical element and method of manufacturing the same
JPH0674879A (en) Specimen container for x-ray microscope
JP3020460B2 (en) Vacuum optical system structure
JPH0784100A (en) Sample container for x-ray microscope
JPH01117252A (en) X-ray image observation device
JPH01134300A (en) X-ray microscope
JPH0720011A (en) Sample capsule for x-ray microscope
JPH03295440A (en) Sample container for x-ray microscope
JPH06180400A (en) Sample capsule for x-ray microscope
JPH08146197A (en) Reflecting mirror fixing method and reflecting mirror holder
JP3668776B2 (en) X-ray microscope
JPH0829600A (en) Imaging x-ray microscope
JPH10221500A (en) Soft x-ray tester
JP3291953B2 (en) Optical element for reflection
JPH0862399A (en) Vacuum device
JPH07167994A (en) X-ray optical system
JPH03197838A (en) Sample capsule for x-ray microscope
JPH07333119A (en) Sample holder