JPH07332790A - Heat carrying equipment - Google Patents

Heat carrying equipment

Info

Publication number
JPH07332790A
JPH07332790A JP13018894A JP13018894A JPH07332790A JP H07332790 A JPH07332790 A JP H07332790A JP 13018894 A JP13018894 A JP 13018894A JP 13018894 A JP13018894 A JP 13018894A JP H07332790 A JPH07332790 A JP H07332790A
Authority
JP
Japan
Prior art keywords
fluid
heater
gas
liquid
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13018894A
Other languages
Japanese (ja)
Other versions
JP3513912B2 (en
Inventor
Shigeru Iwanaga
茂 岩永
Kazuo Fujishita
和男 藤下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13018894A priority Critical patent/JP3513912B2/en
Publication of JPH07332790A publication Critical patent/JPH07332790A/en
Application granted granted Critical
Publication of JP3513912B2 publication Critical patent/JP3513912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To realize energy-saving regarding a heat carrying equipment which takes out power from the fluid energy of a phase change fluid on the occasion when it is vaporized with a rise in pressure by heating, and utilizes the power. CONSTITUTION:This equipment has a hermetically closed circulation passage 13 wherein a heater 3 having a fluid passage 3a, a utilizing part 14 having a fluid passage 14a and a circulating pump 1 are connected in a loop sequentially by a piping and a phase change fluid is sealed, and a fluid power collecting part 15 which is provided on the outlet side of the heater 3 of the phase change fluid and collects the fluid energy of the phase change fluid vaporized with a rise in pressure by the heater 3. A power generating part 16 is made to operate by the energy obtained by the fluid power collecting part 15, a blower 18 is driven to send air in the utilizing part 14, through a control part 17, and thereby energy-saving can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加熱により気化昇圧する
際の相変化流体の流体エネルギーから動力を取り出して
利用する熱搬送装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer device for extracting power from the fluid energy of a phase change fluid for use in vaporizing and raising the pressure by heating.

【0002】[0002]

【従来の技術】従来の熱搬送方式として特公昭60−2
3258号公報に示される図6の構成がある。これは低
入力で熱を搬送するため相変化流体の潜熱を利用すると
ともに、流体を循環させるため相変化流体の液域に外部
動力により駆動される循環ポンプ1を設けたものであ
る。すなわち、放熱作用を行なう凝縮器2と相変化流体
の蒸発作用を行なう加熱器3とを循環ポンプ1を介して
環状に連結して密閉回路を形成してこの密閉回路にフロ
ン系冷媒を封入したものであり、凝縮器2には送風ファ
ン4が設けられ、加熱器3には燃焼装置5が設けられて
いる。
2. Description of the Related Art As a conventional heat transfer system, Japanese Patent Publication No. 60-2
There is a configuration of FIG. 6 shown in Japanese Patent No. 3258. This uses the latent heat of the phase change fluid to convey heat with a low input, and provides a circulation pump 1 driven by external power in the liquid region of the phase change fluid to circulate the fluid. That is, a condenser 2 for radiating heat and a heater 3 for evaporating a phase change fluid are annularly connected via a circulation pump 1 to form a closed circuit, and a chlorofluorocarbon-based refrigerant is sealed in the closed circuit. The condenser 2 is provided with a blower fan 4, and the heater 3 is provided with a combustion device 5.

【0003】この構成において、循環ポンプ1と送風フ
ァン4および燃焼装置5の運転により相変化流体である
フロン系冷媒は加熱器3で加熱され蒸発気化して凝縮器
2に流入する。凝縮器2で送風ファン4との作用により
放熱し凝縮液化する。液化した相変化流体は循環ポンプ
1により搬送駆動されて加熱器3に送り込まれ、上記し
た循環を繰り返すものである。
In this structure, by operating the circulation pump 1, the blower fan 4 and the combustion device 5, the fluorocarbon refrigerant, which is a phase change fluid, is heated by the heater 3 to be evaporated and vaporized and flow into the condenser 2. The condenser 2 radiates heat by the action of the blower fan 4 to condense and liquefy. The liquefied phase-change fluid is conveyed and driven by the circulation pump 1 and sent to the heater 3 to repeat the above-described circulation.

【0004】また、従来の他の熱搬送方式として特開平
1−131828号公報に示される図7の構成がある。
これは熱を送るため流体を循環させる動力、すなわち熱
搬送動力を図6に示した従来例よりもさらに大幅低減す
るもので、相変化流体の潜熱を利用するとともに、循環
ポンプを使用せずに加熱されて気化昇圧する相変化流体
の圧力上昇を利用して流体を微少外部動力で搬送するも
のである。すなわち、燃焼装置5により相変化流体を加
熱する加熱器3を気液分離器6より下方に配設し加熱器
3と気液分離器6とを環状に配管接続するとともに、受
液器7を気液分離器6より上方に配設し、凝縮器2、第
一逆止弁8、受液器7、第二逆止弁9、気液分離器6を
順次環状に配管接続し、さらに気液分離器6と受液器7
の間に開閉弁10を有する均圧管11を設け、燃焼装置
5と開閉弁10を制御する制御装置12を設けたもので
ある。
Further, as another conventional heat transfer system, there is a configuration of FIG. 7 shown in Japanese Patent Laid-Open No. 1-131828.
This significantly reduces the power for circulating the fluid to send heat, that is, the heat transfer power, compared with the conventional example shown in FIG. 6, and utilizes the latent heat of the phase change fluid without using the circulation pump. The fluid is conveyed by a slight external power by utilizing the pressure rise of the phase-change fluid that is heated and vaporized and raised. That is, the heater 3 for heating the phase change fluid by the combustion device 5 is arranged below the gas-liquid separator 6, and the heater 3 and the gas-liquid separator 6 are connected in an annular pipe, and the liquid receiver 7 is connected. The condenser 2, the first check valve 8, the liquid receiver 7, the second check valve 9, and the gas-liquid separator 6 are sequentially arranged in an annular shape by pipes arranged above the gas-liquid separator 6, and the gas is further separated. Liquid separator 6 and liquid receiver 7
A pressure equalizing pipe 11 having an on-off valve 10 is provided between the two, and a control device 12 for controlling the combustion device 5 and the on-off valve 10 is provided.

【0005】この構成において、加熱器3において燃焼
装置5の燃焼熱で加熱された相変化流体は、気体と液体
の混ざった二相状態で加熱器3を出て気液分離器6へ流
入して気体と液体が分離される。分離された液体は加熱
器3に再び戻るとともに、気体は凝縮器2に流入する。
凝縮器2において放熱させ凝縮液化し過冷却液化させ
る。凝縮器2で凝縮し過冷却液となった流体は、開閉弁
10が閉成しているときに第一逆止弁8を通って受液器
7内の気相流体を過冷却液で冷やして凝縮させることに
より受液器7に流入する。このとき受液器7内は過冷却
液で冷やされるため気液分離器6より低圧となり、第二
逆止弁9は圧力差で閉止状態となっている。
In this structure, the phase change fluid heated by the combustion heat of the combustion device 5 in the heater 3 exits the heater 3 in a two-phase state in which gas and liquid are mixed and flows into the gas-liquid separator 6. Gas and liquid are separated. The separated liquid returns to the heater 3 again, and the gas flows into the condenser 2.
In the condenser 2, heat is radiated to be condensed and liquefied to be supercooled and liquefied. The fluid condensed into the supercooled liquid in the condenser 2 passes through the first check valve 8 to cool the vapor phase fluid in the receiver 7 with the supercooled liquid when the on-off valve 10 is closed. And then condensed to flow into the liquid receiver 7. At this time, since the inside of the liquid receiver 7 is cooled by the supercooled liquid, the pressure becomes lower than that of the gas-liquid separator 6, and the second check valve 9 is closed due to the pressure difference.

【0006】次に、この状態で開閉弁10を開成する
と、受液器7と気液分離器6とは均圧管11で連通され
均圧状態となり、受液器7内の液相流体は重力および加
熱器3を出た昇圧した流体の流動圧が印加されて第二逆
止弁9を通って気液分離器6内に流出するとともに受液
器7内は加熱器3を出た気相流体で満たされる。気液分
離器6に供給された液相流体は加熱器3に再び流入す
る。次に、開閉弁10を閉成すると蒸発圧力のわずかな
上昇および受液器7の温度低下などにより凝縮器2から
の過冷却液が流入開始するとともに、受液器7内の気相
流体がこの過冷却液により冷却されて凝縮し、気相から
液相にその体積を急縮小するため受液器7内が急減圧さ
れ受液器7内が液相流体で満たされる。このように開閉
弁10の開成、閉成の繰り返しで循環サイクルがなされ
るもので、気液分離器6から凝縮器2へは流体の蒸発圧
力による連続的な自然圧送サイクルであり、気液分離器
6と加熱器3の間は蒸発気化した流体圧による自然循環
サイクルであり、受液器7から気液分離器6および加熱
器3への液相流体の供給は開閉弁10の開閉周期による
間欠動作サイクルである。
Next, when the on-off valve 10 is opened in this state, the liquid receiver 7 and the gas-liquid separator 6 are communicated with each other by the pressure equalizing pipe 11 to be in a pressure equalized state, and the liquid phase fluid in the liquid receiver 7 is gravitated. And the flow pressure of the pressurized fluid that has flowed out of the heater 3 is applied, flows out into the gas-liquid separator 6 through the second check valve 9, and the inside of the liquid receiver 7 is the gas phase that has left the heater 3. Filled with fluid. The liquid-phase fluid supplied to the gas-liquid separator 6 flows into the heater 3 again. Next, when the on-off valve 10 is closed, the supercooled liquid from the condenser 2 starts to flow due to a slight increase in the evaporation pressure and the temperature drop in the receiver 7, and the gas phase fluid in the receiver 7 The supercooled liquid cools and condenses, and the volume of the liquid phase is rapidly reduced from the gas phase to the liquid phase, so that the inside of the liquid receiver 7 is rapidly depressurized and the inside of the liquid receiver 7 is filled with the liquid phase fluid. In this way, a circulation cycle is performed by repeating opening and closing of the on-off valve 10, and a continuous natural pressure feeding cycle from the gas-liquid separator 6 to the condenser 2 by the evaporation pressure of the fluid is used. There is a natural circulation cycle between the vessel 6 and the heater 3 due to the vaporized and vaporized fluid pressure, and the supply of the liquid phase fluid from the liquid receiver 7 to the gas-liquid separator 6 and the heater 3 depends on the opening / closing cycle of the on-off valve 10. This is an intermittent operation cycle.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図6に
示した従来例では外部動力による循環ポンプで搬送する
ため相変化流体の蒸発圧力を活かした動作がされておら
ず、より一層の省エネルギー性の追求に課題がある。ま
た、図7に示した従来例では開閉弁10の閉成のあと圧
力上昇と温度低下を待つという要因のため若干時間遅れ
で過冷却液が受液器7に流入開始するため開閉周期を早
くするのに限界があり、熱搬送量の大能力化に課題があ
った。
However, in the conventional example shown in FIG. 6, since the circulation pump is carried by external power, the operation utilizing the evaporating pressure of the phase change fluid is not carried out, resulting in further energy saving. There are challenges in pursuit. Further, in the conventional example shown in FIG. 7, the supercooling liquid starts to flow into the receiver 7 with a slight time delay due to the factor of waiting for the pressure increase and the temperature decrease after closing the opening / closing valve 10, so that the opening / closing cycle is shortened. However, there was a problem in increasing the heat transfer capacity.

【0008】本発明は上記課題を解決するもので、流体
エネルギーを有効利用して省エネルギー化を図った熱搬
送装置を提供することを第一の目的としたものであり、
流体搬送動力の低減を図った熱搬送装置を提供すること
を第二の目的としたものである。また、流体搬送動力の
低減と熱搬送量の大能力化を図った熱搬送装置を提供す
ることを第三の目的とし、さらに信頼性の向上を図った
熱搬送装置を提供することを第四の目的としたものであ
る。
The present invention is intended to solve the above problems, and it is a first object of the present invention to provide a heat transfer device in which fluid energy is effectively used to save energy.
A second object is to provide a heat transfer device that reduces fluid transfer power. A third object is to provide a heat transfer device with reduced fluid transfer power and increased heat transfer capacity, and a fourth object is to provide a heat transfer device with further improved reliability. The purpose is.

【0009】[0009]

【課題を解決するための手段】本発明は上記第一の目的
を達成するため、流体通路を有する加熱器と流体通路を
有する利用部と循環ポンプを順次環状に配管接続し相変
化流体を封入した密閉循環路と、相変化流体の前記加熱
器の出口側に設けられ加熱器で気化昇圧された相変化流
体の流体エネルギーを回収する流体動力回収部を有する
構成としたものである。
In order to achieve the first object of the present invention, a heater having a fluid passage, a utilization portion having a fluid passage, and a circulation pump are sequentially connected in an annular pipe to seal a phase change fluid. And a fluid power recovery unit that is provided on the outlet side of the phase change fluid and that recovers the fluid energy of the phase change fluid that has been vaporized and boosted by the heater.

【0010】また、第二の目的を達成するため、流体通
路を有する加熱器と流体通路を有する利用部とを環状に
配管接続し相変化流体を封入した密閉循環路と、相変化
流体の前記加熱器の出口側に設けられ加熱器で気化昇圧
された相変化流体の流体エネルギーで駆動される駆動羽
根車を設けた流体動力回収部と、前記加熱器の入口側に
設けたポンプ部をこの流体動力回収部に動力伝達可能に
連結した流体駆動循環ポンプを有する構成としたもので
ある。
Further, in order to achieve the second object, a closed circuit in which a heater having a fluid passage and a utilization portion having a fluid passage are connected to each other by pipes in an annular shape and a phase change fluid is sealed, and the phase change fluid is described above. A fluid power recovery unit provided on the outlet side of the heater and provided with a drive impeller driven by the fluid energy of the phase-change fluid vaporized and boosted by the heater, and a pump unit provided on the inlet side of the heater. It is configured to have a fluid-driven circulation pump connected to the fluid power recovery unit so as to be capable of transmitting power.

【0011】また、第三の目的を達成するため、加熱器
の入口側と出口側を気液分離器に接続した加熱循環路と
前記気液分離器の上方に設けた受液器と、前記気液分離
器の気相出口、利用部、受液器、気液分離器の液相入口
を順次配管接続した利用側循環路と、気液分離器と受液
器に連通する均圧管に設けた開閉弁と、加熱器の出口側
の加熱循環路に駆動羽根車を設けた流体動力回収部と、
利用部と受液器の間の利用側循環路に設けたポンプ部を
前記流体動力回収部に動力伝達可能に連結した流体駆動
循環ポンプを設け、相変化流体を封入した構成としたも
のである。
In order to achieve the third object, a heating circuit connecting the inlet side and the outlet side of the heater to a gas-liquid separator, a liquid receiver provided above the gas-liquid separator, and Provided on the user-side circulation path in which the gas-phase outlet of the gas-liquid separator, the use part, the liquid receiver, and the liquid-phase inlet of the gas-liquid separator are connected in sequence, and the pressure equalizing pipe that connects the gas-liquid separator and the liquid receiver And an on-off valve, and a fluid power recovery unit provided with a drive impeller in the heating circulation path on the outlet side of the heater,
A fluid-driven circulation pump is provided in which a pump portion provided in a utilization-side circulation path between a utilization portion and a liquid receiver is connected to the fluid power recovery portion so that power can be transmitted, and a phase-change fluid is enclosed. .

【0012】さらに、第四の目的を達成するため、加熱
器の入口側と出口側を気液分離器に接続した加熱循環路
と前記気液分離器の上方に設けた受液器と、前記気液分
離器の気相出口、利用部、受液器、気液分離器の液相入
口を順次配管接続した利用側循環路と、気液分離器と受
液器に連通する均圧管に設けた開閉弁と、加熱器の出口
側の加熱循環路に駆動羽根車を設けた流体動力回収部
と、利用部と受液器の間の利用側循環路に設けたポンプ
部を前記流体動力回収部に動力伝達可能に連結した流体
駆動循環ポンプと、前記流体動力回収部に並列に設けた
流体制御弁を有するバイパス路を設け、相変化流体を封
入した構成としたものである。
Further, in order to achieve the fourth object, a heating circulation path connecting an inlet side and an outlet side of the heater to a gas-liquid separator, a liquid receiver provided above the gas-liquid separator, Provided on the user-side circulation path in which the gas-phase outlet of the gas-liquid separator, the use part, the liquid receiver, and the liquid-phase inlet of the gas-liquid separator are connected in sequence, and the pressure equalizing pipe that connects the gas-liquid separator and the liquid receiver. The on-off valve, the fluid power recovery section with a drive impeller in the heating circulation path on the outlet side of the heater, and the pump section provided in the usage side circulation path between the usage section and the receiver And a bypass passage having a fluid control valve provided in parallel with the fluid power recovery unit, and a phase change fluid is sealed therein.

【0013】[0013]

【作用】本発明は上記構成によって、第一の手段のもの
は加熱器で気化昇圧された密閉循環路内の相変化流体を
流体動力回収部に流入させて駆動し、流体エネルギーを
取り出し省エネルギー化に有効利用するものである。
According to the present invention, according to the above-mentioned structure, the first means has the phase change fluid in the closed circulation path vaporized and boosted by the heater to flow into the fluid power recovery section to be driven to take out fluid energy and save energy. It is effectively used for.

【0014】また、第二の手段のものは、加熱器で気化
昇圧された密閉循環路内の相変化流体を流体動力回収部
に流入させて駆動羽根車を駆動し、この流体動力回収部
に動力が伝達できるように連結したポンプ部を動作させ
て相変化流体を循環させるもので、気化昇圧した流体エ
ネルギーによりポンプ部を駆動するものである。
In the second means, the phase change fluid in the closed circulation path, which is vaporized and boosted by the heater, is caused to flow into the fluid power recovery section to drive the drive impeller, and the fluid power recovery section is driven. The pump unit connected so that power can be transmitted is operated to circulate the phase change fluid, and the pump unit is driven by the fluid energy that is vaporized and boosted.

【0015】また、第三の手段のものは、加熱器で気化
昇圧された加熱循環路内の相変化流体を流体動力回収部
に流入させて駆動羽根車を駆動し、この流体動力回収部
に動力が伝達できるように連結したポンプ部を動作させ
て、液相流体を開閉弁の閉成とともに時間遅れなしで受
液器へ送り込むことで流入促進を図り、開閉弁の開閉周
期を小さく速くすることで熱搬送量の増大を図るもので
ある。
In the third means, the phase change fluid in the heating circuit, which has been vaporized and boosted by the heater, is introduced into the fluid power recovery section to drive the drive impeller, and the fluid power recovery section is connected to the fluid power recovery section. By operating the pump part connected so that power can be transmitted, the liquid phase fluid is closed and the pump valve is sent to the receiver without time delay and the inflow is promoted, and the opening / closing cycle of the opening / closing valve is made smaller and faster. Therefore, the heat transfer amount is increased.

【0016】また、第四の手段のものは、流体動力回収
部に併設した流体制御弁を有するバイパス路に相変化流
体を流すことにより流体動力回収部への流量を制御し、
流体駆動循環ポンプへの負荷を低減することで信頼性の
向上を図るものである。
The fourth means controls the flow rate to the fluid power recovery section by causing the phase change fluid to flow through a bypass passage having a fluid control valve provided in the fluid power recovery section.
The reliability is improved by reducing the load on the fluid driven circulation pump.

【0017】[0017]

【実施例】以下本発明の実施例を図1〜図5を参照して
説明する。なお、従来例と同一機能、同一部材のところ
は同一符号を付与し詳細な説明は省略する。
Embodiments of the present invention will be described below with reference to FIGS. The same functions and members as those of the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted.

【0018】図1において、13は流体通路3aを有す
る加熱器3と流体通路14aを有し放熱部となる利用部
14と循環ポンプ1を順次環状に配管接続し相変化流体
を封入した密閉循環路である。15は加熱器3の出口側
に設けられ加熱器3において燃焼装置5の燃焼熱で加熱
され気化昇圧された相変化流体の流体エネルギーを回収
する流体動力回収部であり、発電部16が動力伝達が可
能なように連結されている。17は制御部であり、発電
部16と利用部14に設けた送風機18の電動モータ1
8aに電気的に接続されている。
In FIG. 1, reference numeral 13 denotes a heater 3 having a fluid passage 3a, a utilization portion 14 having a fluid passage 14a, which serves as a heat radiating portion, and a circulation pump 1 which are sequentially connected in an annular pipe to hermetically circulate a phase change fluid. It is a road. Reference numeral 15 is a fluid power recovery unit that is provided on the outlet side of the heater 3 and recovers the fluid energy of the phase change fluid that is heated by the combustion heat of the combustion device 5 in the heater 3 and is vaporized and boosted. Are connected as possible. Reference numeral 17 denotes a control unit, which is an electric motor 1 of a blower 18 provided in the power generation unit 16 and the use unit 14.
8a is electrically connected.

【0019】上記構成において、熱搬送装置および流体
動力回収部15の動作を説明する。循環ポンプ1と燃焼
装置5の運転により、液相流体を加熱器3に送り燃焼装
置5の燃焼熱で加熱して気化させる。気化した流体は体
積膨脹により昇圧し高速流となって加熱器3から流出
し、流体動力回収部15に流入する。流体動力回収部1
5において流体の流動エネルギーにより回転力を生み出
し、この回転力により動力が伝達できるように連結され
た発電部16を駆動して発電する。発電された電気エネ
ルギーは制御部17により送風機18の電動モータ18
aに給電し、送風機18を運転する。なお、流体のエネ
ルギーにより発電された電気だけでは容量不足で送風機
18を運転できない場合は、外部の電源(図示せず)の
助けを借りることも可能である。
The operation of the heat transfer device and the fluid power recovery section 15 in the above configuration will be described. By operating the circulation pump 1 and the combustion device 5, the liquid phase fluid is sent to the heater 3 and heated by the combustion heat of the combustion device 5 to be vaporized. The vaporized fluid rises in pressure due to volume expansion and becomes a high-speed flow, flows out from the heater 3, and flows into the fluid power recovery section 15. Fluid power recovery unit 1
At 5, the rotational energy is generated by the flow energy of the fluid, and the rotational force drives the power generation unit 16 connected so that power can be transmitted to generate power. The electric energy generated is controlled by the control unit 17 by the electric motor 18 of the blower 18.
Power is supplied to a and the blower 18 is operated. If the blower 18 cannot be operated due to insufficient capacity only with electricity generated by the energy of the fluid, it is possible to use an external power source (not shown).

【0020】流体動力回収部15を出た流体は、利用部
14に流入して送風機18の運転により送られてくる風
で放熱し凝縮液化する。液化した流体は循環ポンプ1の
運転により加熱器3に再び流入する。このように密閉循
環路13内の流体は液相、気相と相変化して図中矢印で
示した方向に繰り返し循環する。
The fluid discharged from the fluid power recovery unit 15 flows into the utilization unit 14 and radiates heat by the air blown by the operation of the blower 18 to be condensed and liquefied. The liquefied fluid flows into the heater 3 again by operating the circulation pump 1. In this way, the fluid in the closed circulation path 13 changes its phase between the liquid phase and the gas phase and is circulated repeatedly in the direction shown by the arrow in the figure.

【0021】本実施例によれば、加熱され気化膨脹し昇
圧した流体のエネルギーを動力エネルギーに有効利用す
ることにより熱搬送装置の消費エネルギーを低減し、省
エネルギー化がいっそう推進できるという効果がある。
また、外部からの電気消費量が低減するためランニング
コストの安価な機器が提供できる。
According to the present embodiment, there is an effect that the energy consumption of the heat transfer device can be reduced and energy saving can be further promoted by effectively utilizing the energy of the fluid which has been heated, vaporized and expanded and increased in pressure as motive energy.
Further, since the amount of electricity consumed from the outside is reduced, it is possible to provide a device with low running cost.

【0022】次に、図2、図3に示す本発明の第二の実
施例について説明する。なお、図1に示した実施例ある
いは図6に示した従来例と同一機能、同一部材のところ
は同一符号を付与し詳細な説明は省略する。
Next, a second embodiment of the present invention shown in FIGS. 2 and 3 will be described. The same functions and members as those of the embodiment shown in FIG. 1 or the conventional example shown in FIG. 6 are designated by the same reference numerals and detailed description thereof will be omitted.

【0023】図2において、19は加熱器3の入口側に
設けたポンプ部20と加熱器3の出口側に設けた流体動
力回収部15を動力が伝達できるように連結した流体駆
動循環ポンプである。
In FIG. 2, reference numeral 19 denotes a fluid-driven circulation pump in which a pump unit 20 provided on the inlet side of the heater 3 and a fluid power recovery unit 15 provided on the outlet side of the heater 3 are connected so that power can be transmitted. is there.

【0024】この流体駆動循環ポンプ19について図3
で説明する。21は加熱器3の出口側に接続される駆動
流体通路22に設けられ密閉循環路13の流体を回転力
の駆動源とする駆動羽根車であり、23は加熱器3の出
口側に接続される被駆動流体通路24に設けられ密閉循
環路13の流体を循環させるポンプ羽根車である。
This fluid-driven circulation pump 19 is shown in FIG.
Described in. Reference numeral 21 is a drive impeller provided in a drive fluid passage 22 connected to the outlet side of the heater 3 and using the fluid in the closed circulation passage 13 as a drive source of rotational force, and 23 is connected to the outlet side of the heater 3. Is a pump impeller provided in the driven fluid passage 24 for circulating the fluid in the closed circulation passage 13.

【0025】25は駆動流体通路22と被駆動流体通路
24との間を気密に分離する隔壁である。26は動力伝
達手段であり、駆動羽根車21に取り付けられた駆動側
マグネット27とポンプ羽根車23に取り付けられたポ
ンプ側マグネット28とが磁力により吸引および反発し
合って動力伝達が可能なように磁気結合するマグネット
カップリングで構成している。駆動羽根車21とポンプ
羽根車23はこの隔壁25を介して対向して配置される
とともに動力伝達手段26により動力が伝達できるよう
に連結されている。
Reference numeral 25 is a partition for airtightly separating the drive fluid passage 22 and the driven fluid passage 24. Reference numeral 26 denotes a power transmission means, which enables a drive-side magnet 27 attached to the drive impeller 21 and a pump-side magnet 28 attached to the pump impeller 23 to attract and repel each other by magnetic force to transmit power. It is composed of a magnetic coupling that is magnetically coupled. The drive impeller 21 and the pump impeller 23 are arranged so as to face each other via the partition wall 25, and are connected by a power transmission means 26 so that power can be transmitted.

【0026】29は駆動羽根車21を収納する駆動羽根
車室30を形成する駆動ケーシング31に設けた駆動流
体入口、32は駆動流体入口29と羽根車室30の間に
設けた駆動ノズル、33は駆動ケーシング31に設けた
駆動流体出口である。34はポンプ羽根車23を収納す
るポンプ羽根車室35を形成するポンプケーシング36
に設けたポンプ入口、37はポンプケーシング36に設
けたポンプ出口である。38は駆動羽根車21を回転自
在に支持する駆動側支持軸、39はポンプ羽根車23を
回転自在に支持するポンプ側支持軸である。従って、流
体駆動循環ポンプ19は駆動羽根車21、駆動ケーシン
グ31、駆動ノズル32などで構成される流体動力回収
部15と、ポンプ羽根車23、ポンプケーシング36な
どで構成されるポンプ部20とを隔壁25を介して配置
し、動力伝達手段26により動力伝達可能に連結して構
成されるものである。
29 is a drive fluid inlet provided in a drive casing 31 forming a drive impeller chamber 30 for accommodating the drive impeller 21, 32 is a drive nozzle provided between the drive fluid inlet 29 and the impeller chamber 30, 33 Is a drive fluid outlet provided in the drive casing 31. 34 is a pump casing 36 that forms a pump impeller chamber 35 that houses the pump impeller 23.
A pump inlet provided in the pump casing 37 and a pump outlet 37 provided in the pump casing 36. Reference numeral 38 is a drive side support shaft that rotatably supports the drive impeller 21, and 39 is a pump side support shaft that rotatably supports the pump impeller 23. Therefore, the fluid-driven circulation pump 19 includes the fluid power recovery unit 15 including the drive impeller 21, the drive casing 31, the drive nozzle 32, and the pump unit 20 including the pump impeller 23 and the pump casing 36. It is arranged via a partition wall 25, and is connected by a power transmission means 26 so that power can be transmitted.

【0027】上記構成において、流体駆動循環ポンプ1
9の動作を説明する。燃焼装置5の運転により、加熱器
3内の液相流体が燃焼装置5の燃焼熱で加熱され気化す
る。気化した流体は体積膨脹により昇圧し高速流となっ
て加熱器3から流出し、流体動力回収部15に流入す
る。
In the above structure, the fluid driven circulation pump 1
The operation of No. 9 will be described. By operating the combustion device 5, the liquid phase fluid in the heater 3 is heated by the combustion heat of the combustion device 5 and vaporized. The vaporized fluid rises in pressure due to volume expansion and becomes a high-speed flow, flows out from the heater 3, and flows into the fluid power recovery section 15.

【0028】流体動力回収部15において、気化した流
体は駆動流体入口29から流入し断面積を縮小した駆動
ノズル32を通りより高流速化されて駆動羽根車21に
向け噴出し、流体の流動エネルギーにより駆動羽根車2
1を回転させ、駆動流体出口33より流出する。
In the fluid power recovery unit 15, the vaporized fluid flows in from the drive fluid inlet 29, passes through the drive nozzle 32 having a reduced cross-sectional area, and has a higher flow velocity, and is ejected toward the drive impeller 21 to generate the flow energy of the fluid. Driven by impeller 2
1 is rotated to flow out from the driving fluid outlet 33.

【0029】この駆動羽根車21の回転とともに隔壁2
5を介して動力伝達手段26により動力が伝達できるよ
うに連結されたポンプ羽根車23が回転し、密閉循環路
13の加熱器3の入口側の液相流体をポンプ入口34か
ら吸入しポンプ出口37から吐出して加熱器3に向けて
循環させる。
As the drive impeller 21 rotates, the partition wall 2
5, the pump impeller 23 connected so that power can be transmitted by the power transmission means 26 through 5, the liquid phase fluid on the inlet side of the heater 3 of the closed circulation path 13 is sucked in from the pump inlet 34 and the pump outlet. It is discharged from 37 and circulated toward the heater 3.

【0030】即ち、流体動力回収部15において流体の
流動エネルギーから駆動羽根車21の回転力を生み出
し、この回転力により動力伝達可能に連結したポンプ部
20のポンプ羽根車23を駆動して密閉循環路13の流
体を循環させる。
That is, in the fluid power recovery unit 15, the rotational force of the drive impeller 21 is generated from the flow energy of the fluid, and the rotational force causes the pump impeller 23 of the pump unit 20 connected so as to be able to transmit power to be driven to hermetically circulate. Circulate the fluid in line 13.

【0031】流体動力回収部15を出た流体は、利用部
14に流入して送風機18の運転により送られてくる風
に放熱し凝縮液化する。液化した流体は流体駆動循環ポ
ンプ19の作動により加熱器3に再び流入する。このよ
うに密閉循環路13内の流体は液相、気相と相変化して
図中矢印で示した方向に繰り返し循環する。
The fluid exiting the fluid power recovery unit 15 flows into the utilization unit 14 and radiates heat to the air sent by the operation of the blower 18 to be condensed and liquefied. The liquefied fluid flows into the heater 3 again by the operation of the fluid-driven circulation pump 19. In this way, the fluid in the closed circulation path 13 changes its phase between the liquid phase and the gas phase and is circulated repeatedly in the direction shown by the arrow in the figure.

【0032】本実施例によれば、加熱され気化膨脹し昇
圧した流体の流動エネルギーを流体を循環させる動力エ
ネルギーに有効利用することにより熱搬送装置の搬送動
力エネルギーを低減し、省エネルギー化がいっそう推進
できるという効果がある。また、電動モータで駆動する
ポンプを使用しないので外部からの電気消費量が低減さ
れランニングコストの安価な機器が提供でき、さらに高
価な電動モータを使用しないのでイニシャルコストの安
価な機器が提供できる。
According to this embodiment, the flow energy of the heated, vaporized, expanded, and pressurized fluid is effectively used as the power energy for circulating the fluid, thereby reducing the transport power energy of the heat transport device and further promoting the energy saving. The effect is that you can do it. Further, since a pump driven by an electric motor is not used, it is possible to provide a device that consumes less electricity from the outside and has a low running cost, and since an expensive electric motor is not used, a device that has a low initial cost can be provided.

【0033】次に、図4に示す本発明の第三の実施例に
ついて説明する。なお、図1〜図3に示した実施例ある
いは図7に示した従来例と同一機能、同一部材のところ
は同一符号を付与し詳細な説明は省略する。
Next, a third embodiment of the present invention shown in FIG. 4 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 3 or the conventional example shown in FIG. 7 are designated by the same reference numerals and detailed description thereof will be omitted.

【0034】40は加熱器3を気液分離器6より下方に
配設するとともに加熱器3の流体通路3aの入口側3b
と出口側3cをそれぞれ気液分離器6の液相出口6a、
気相入口6bに配管接続した環状の加熱循環路であり、
41は気液分離器6の気相出口6c、利用部14、気液
分離器6の上方に設けた受液器7、気液分離器6の液相
入口6dを順次環状に配管接続した利用側循環路であ
る。この利用側循環路41の受液器7の入口側7aには
第一逆止弁8が受液器7に向かってのみ流動するように
設けられ、受液器7の出口側7bと気液分離器6の液相
入口6dの間には第二逆止弁9が気液分離器6に向かっ
てのみ流動するように設けられている。また、受液器7
の入口側7aと気液分離器6は開閉弁10を有する均圧
管11により開閉弁10の開成時に連通可能なように接
続されている。
Reference numeral 40 denotes the heater 3 arranged below the gas-liquid separator 6 and the inlet side 3b of the fluid passage 3a of the heater 3.
The liquid phase outlet 6a of the gas-liquid separator 6, and the outlet side 3c,
An annular heating circuit connected to the gas phase inlet 6b by piping,
Reference numeral 41 designates a gas phase outlet 6c of the gas-liquid separator 6, a utilization part 14, a liquid receiver 7 provided above the gas-liquid separator 6, and a liquid-phase inlet 6d of the gas-liquid separator 6 which are sequentially connected in an annular pipe. It is a side circuit. A first check valve 8 is provided on an inlet side 7a of the liquid receiver 7 of the use side circulation path 41 so as to flow only toward the liquid receiver 7, and an outlet side 7b of the liquid receiver 7 and a gas liquid. A second check valve 9 is provided between the liquid phase inlets 6d of the separator 6 so as to flow only toward the gas-liquid separator 6. Also, the receiver 7
The inlet side 7a and the gas-liquid separator 6 are connected by a pressure equalizing pipe 11 having an opening / closing valve 10 so that they can communicate with each other when the opening / closing valve 10 is opened.

【0035】さらに、加熱循環路40の加熱器3の出口
側3cに駆動羽根車21を設けた流体動力回収部15を
設けるとともに、利用部14と受液器7の間の利用側循
環路41に設けたポンプ部20と流体動力回収部15を
動力が伝達できるように連結して流体駆動循環ポンプ1
9としたものである。なお、この流体駆動循環ポンプ1
9の構成は図3に示した実施例と同様なので説明を省略
する。
Further, a fluid power recovery section 15 having a drive impeller 21 is provided on the outlet side 3c of the heater 3 of the heating circulation path 40, and a utilization side circulation path 41 between the utilization section 14 and the liquid receiver 7 is provided. The fluid drive circulation pump 1 is formed by connecting the pump unit 20 and the fluid power recovery unit 15 provided in the
9 is used. In addition, this fluid drive circulation pump 1
The configuration of 9 is similar to that of the embodiment shown in FIG.

【0036】上記構成において、熱搬送装置の動作を説
明する。加熱器3で燃焼装置5の燃焼熱で加熱された相
変化流体は、その大部分が気化して体積膨脹することに
より昇圧し高速流となって気体と液体の混ざった二相状
態で加熱器3から連続して流出し、流体駆動循環ポンプ
19の流体動力回収部15に流入する。
The operation of the heat transfer device having the above structure will be described. Most of the phase-change fluid heated by the combustion heat of the combustion device 5 in the heater 3 is vaporized and volume-expanded to become a high-speed flow and a two-phase state in which gas and liquid are mixed. 3 continuously flow out and flow into the fluid power recovery unit 15 of the fluid driven circulation pump 19.

【0037】流体動力回収部15において、流入した流
体の流動エネルギーにより駆動羽根車21を回転駆動
し、この駆動羽根車21に動力伝達手段26により動力
が伝達できるように連結されたポンプ部20のポンプ羽
根車23を駆動羽根車21の動作とともに回転させ、利
用側循環路41の液相流体を受液器7の方向に加圧す
る。
In the fluid power recovery section 15, the drive impeller 21 is rotationally driven by the flow energy of the inflowing fluid, and the pump section 20 is connected to the drive impeller 21 by the power transmission means 26 so that power can be transmitted. The pump impeller 23 is rotated along with the operation of the drive impeller 21 to pressurize the liquid phase fluid in the utilization side circulation path 41 toward the liquid receiver 7.

【0038】流体動力回収部15を出た二相状態の流体
は、気相入口6bより気液分離器6へ流入して気体と液
体が分離される。分離された液体は液相出口6aから加
熱器3に再び戻るとともに、気体は気相出口6cを出て
連続的に利用部14に流入する。利用部14において、
電動モータなど外部動力で駆動される送風機18の運転
により送られてくる風に放熱させ凝縮液化し過冷却液化
させる。
The two-phase fluid that has flowed out of the fluid power recovery section 15 flows into the gas-liquid separator 6 from the gas-phase inlet 6b, and is separated into gas and liquid. The separated liquid returns from the liquid phase outlet 6a to the heater 3 again, and the gas exits the gas phase outlet 6c and continuously flows into the utilization part 14. In the use unit 14,
The air sent by the operation of the blower 18 driven by external power such as an electric motor radiates heat to condense and liquefy it.

【0039】利用部14で凝縮し過冷却液となった流体
は、流体駆動循環ポンプ19のポンプ部20によりわず
かに加圧されているため開閉弁10の閉成とともに時間
遅れなしで第一逆止弁8を通って受液器7に流入し、そ
こで受液器7内にあった気相流体を流入した過冷却液で
冷やして凝縮させることにより気相から液相に体積を瞬
時に急縮小せしめて受液器7内を急減圧し、この受液器
7内の急減圧による圧力差で液相流体がポンプ部20の
加圧力には関係なしに一気に流入し受液器7が液相流体
で満たされる。このとき受液器7内は過冷却液で冷やさ
れるため気液分離器6より低圧となり、第二逆止弁9は
圧力差で閉止状態となっている。
The fluid condensed into the supercooled liquid in the utilization portion 14 is slightly pressurized by the pump portion 20 of the fluid-driven circulation pump 19, so that the opening / closing valve 10 is closed and there is no time delay. It flows through the stop valve 8 into the receiver 7, where the gas-phase fluid in the receiver 7 is cooled and condensed by the inflowing supercooled liquid, and the volume is instantaneously suddenly changed from the gas phase to the liquid phase. The inside of the receiver 7 is reduced in size and suddenly decompressed, and due to the pressure difference due to the sudden decompression inside the receiver 7, the liquid phase fluid flows in at a dash regardless of the pressurization force of the pump portion 20, and the receiver 7 becomes liquid. Filled with phase fluid. At this time, since the inside of the liquid receiver 7 is cooled by the supercooled liquid, the pressure becomes lower than that of the gas-liquid separator 6, and the second check valve 9 is closed due to the pressure difference.

【0040】次に、この状態で開閉弁10を開成する
と、受液器7と気液分離器6とは均圧管11で連通され
均圧状態となり、受液器7内の液相流体は重力および加
熱器3の出口側3cより噴出した流体の流動圧の付加に
より第二逆止弁9を通って気液分離器6内に流入すると
ともに受液器7内は加熱器3を出た気相流体で満たされ
る。気液分離器6に流入した液相流体は液相出口6aよ
り加熱器3に再び流入し加熱され気化が連続される。
Next, when the on-off valve 10 is opened in this state, the liquid receiver 7 and the gas-liquid separator 6 are communicated with each other by the pressure equalizing pipe 11 to be in a pressure equalized state, and the liquid phase fluid in the liquid receiver 7 is gravitated. And the flow pressure of the fluid ejected from the outlet side 3c of the heater 3 flows into the gas-liquid separator 6 through the second check valve 9 and the inside of the receiver 7 is the gas leaving the heater 3. Filled with phase fluid. The liquid-phase fluid that has flowed into the gas-liquid separator 6 again flows into the heater 3 through the liquid-phase outlet 6a, is heated, and is continuously vaporized.

【0041】次に再び開閉弁10を閉成すると、前述の
ように流体駆動循環ポンプ19のポンプ部20により加
圧されているため従来例のように蒸発圧力のわずかな上
昇および受液器7の温度低下などにより利用部14から
の過冷却液が流入するのを待つことなく時間遅れなしで
受液器7に過冷却液が流入し、再び受液器7内の気相流
体をこの過冷却液により冷却凝縮させてその体積を急縮
小を発生させ、受液器7内の急減圧により受液器7内に
液相流体を一気に充填する。
Next, when the on-off valve 10 is closed again, since the pressure is increased by the pump portion 20 of the fluid-driven circulation pump 19 as described above, the evaporation pressure slightly increases and the liquid receiver 7 as in the conventional example. The supercooled liquid flows into the receiver 7 without a time delay without waiting for the supercooled liquid from the utilization section 14 to flow in due to a decrease in the temperature of the user part 14, and the gas-phase fluid in the receiver 7 is replaced by this supercooled liquid again. The liquid is cooled and condensed by the cooling liquid to rapidly reduce the volume, and the liquid receiver 7 is rapidly depressurized to fill the liquid receiver 7 with the liquid phase fluid at a stretch.

【0042】このように加熱循環路40および利用側循
環路41の相変化流体を液相、気相と相変化させて図中
矢印で示した方向に繰り返し循環させる。
In this way, the phase change fluid in the heating circulation path 40 and the utilization side circulation path 41 is phase-changed between the liquid phase and the gas phase and repeatedly circulated in the direction shown by the arrow in the figure.

【0043】本実施例によれば、開閉弁を開、閉させる
のにごくわずかの入力(電磁弁で開閉動作させる場合は
5〜10Wの電気入力)で熱搬送する省エネルギー性に
すぐれ低ランニングコストの熱搬送装置を提供できるだ
けでなく、加熱器で気化昇圧した相変化流体により流体
動力回収部の駆動羽根車を回転駆動し動力伝達可能に連
結されたポンプ部を動作させ、受液器の入口側の液相流
体を加圧することにより開閉弁の閉成と同時に時間遅れ
なしで過冷却液を受液器に送り込むことで閉成初期にお
ける流入促進を図り、開閉弁の開閉周期を小さく速くす
ることでより多くの液相流体を加熱器に供給し、熱搬送
量の大能力化が実現する熱搬送装置を提供できる。
According to this embodiment, heat is transferred with a very small input (5 to 10 W of electric input when the solenoid valve is opened and closed) to open and close the on-off valve, which is excellent in energy saving and low running cost. In addition to providing a heat transfer device, the drive impeller of the fluid power recovery part is driven to rotate by the phase-change fluid vaporized and boosted by the heater to operate the pump part connected so that power can be transmitted, and the inlet of the receiver By pressing the liquid phase fluid on the side, the supercooled liquid is sent to the liquid receiver without closing the opening / closing valve at the same time as closing the opening / closing valve, thereby promoting the inflow in the initial stage of closing and shortening the opening / closing cycle of the opening / closing valve. As a result, it is possible to supply a larger amount of liquid-phase fluid to the heater and to provide a heat transfer device that realizes a large capacity of heat transfer.

【0044】次に、図5に示す本発明の第四の実施例に
ついて説明する。なお、図4に示した実施例あるいは図
7に示した従来例と同一機能、同一部材のところは同一
符号を付与し詳細な説明は省略する。
Next, a fourth embodiment of the present invention shown in FIG. 5 will be described. The same functions and members as those of the embodiment shown in FIG. 4 or the conventional example shown in FIG. 7 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0045】42は加熱循環路40の加熱器3の出口側
3cに配置した流体動力回収部15に対して並列に設け
たバイパス路であり、このバイパス路42には流体制御
弁43が設けられている。なお、他の構成は図4の実施
例と同一なので説明は省略する。上記構成において熱搬
送動作は図4の実施例と同一なので説明を省略し、ここ
ではこのバイパス路42の動作を中心に説明する。
Reference numeral 42 denotes a bypass passage provided in parallel with the fluid power recovery section 15 arranged on the outlet side 3c of the heater 3 of the heating circulation passage 40. The bypass passage 42 is provided with a fluid control valve 43. ing. The other structure is the same as that of the embodiment of FIG. In the above structure, the heat transfer operation is the same as that of the embodiment shown in FIG. 4, and therefore its explanation is omitted. Here, the operation of the bypass 42 will be mainly described.

【0046】まず、流体制御弁43として流体の流れる
通路を切換える流路切換弁とした場合は、開閉弁10が
閉成する時、つまり受液器7に液相流体が流れ込む場合
は流体制御弁43を流体動力回収部15側に切換えて駆
動羽根車21を駆動しポンプ部20を動作させ、開閉弁
10が開成する時、つまり受液器7内の液相流体が気液
分離器6に流入する場合は流体制御弁43をバイパス路
42側に切換えて加熱器3の出口側3cから噴出した気
化した流体の流動圧を流体動力回収部15を介さずに直
接加えて流体動力回収部15での流路抵抗を除いたより
強い流動圧を受液器7内の液相流体に加えて液相流体の
流出を促進させる。なお、ポンプ部20の動作に若干の
立ち上がり時間が必要な時は開閉弁10が閉成する少し
前に流体制御弁43を流体動力回収部15側にすれば良
い。
First, in the case where the fluid control valve 43 is a flow passage switching valve for switching the passage of the fluid, the fluid control valve is used when the on-off valve 10 is closed, that is, when the liquid phase fluid flows into the receiver 7. When 43 is switched to the fluid power recovery unit 15 side to drive the drive impeller 21 to operate the pump unit 20 and the opening / closing valve 10 is opened, that is, the liquid phase fluid in the receiver 7 is transferred to the gas-liquid separator 6. In the case of inflow, the fluid control valve 43 is switched to the bypass 42 side and the flow pressure of the vaporized fluid ejected from the outlet side 3c of the heater 3 is directly applied without passing through the fluid power recovery section 15 and the fluid power recovery section 15 is added. A stronger flow pressure excluding the flow path resistance in (3) is added to the liquid phase fluid in the liquid receiver 7 to promote the outflow of the liquid phase fluid. In addition, when a slight rise time is required for the operation of the pump unit 20, the fluid control valve 43 may be provided on the fluid power recovery unit 15 side shortly before the opening / closing valve 10 is closed.

【0047】このように流体制御弁43により気化した
流体の流動通路を切換えることにより、ポンプ部20の
動作と受液器7内の液相流体の流出促進を共に実行し、
ポンプ部20の動作による受液器7への流入促進と、よ
り強い流動圧の印加による受液器7からの流出促進によ
り熱搬送装置の開閉周期をより小さく速くして熱搬送量
の一層の大能力化ができる。また流体駆動循環ポンプ1
9を常時運転せずにあいだに停止時を加えることにより
流体駆動循環ポンプ19の積算の運転時間を短くして耐
久性、信頼性を向上できる。ここでは流体制御弁43と
して流路切換弁とした場合を示したが、バイパス路42
内に開成、閉成の動作をする弁を設けても良い。
By thus switching the flow passage of the vaporized fluid by the fluid control valve 43, the operation of the pump section 20 and the outflow promotion of the liquid phase fluid in the liquid receiver 7 are both executed,
The opening / closing cycle of the heat transfer device is made smaller and faster by promoting the inflow to the liquid receiver 7 by the operation of the pump section 20 and the outflow from the liquid receiver 7 by applying a stronger flow pressure to further increase the heat transfer amount. Greater ability can be achieved. In addition, fluid-driven circulation pump 1
It is possible to shorten the cumulative operating time of the fluid-driven circulation pump 19 by adding a stop time between the 9 and 9 without always operating them, and to improve durability and reliability. Although the case where the fluid control valve 43 is a flow path switching valve is shown here, the bypass passage 42
A valve for opening and closing may be provided inside.

【0048】次に、流体制御弁43として流体の流量を
可変制御する流量比例弁とした場合は、搬送熱量に応じ
てポンプ部20を動作させる。つまり、搬送熱量が大き
い時は流体動力回収部15への流量を大きくし、搬送熱
量が小さくなると流体動力回収部15への流量を小さく
して受液器7への液相流体の流入を促進する。このよう
にすることによりバイパス路42への流量を可能な限り
多くでき、流体動力回収部15の流路抵抗を受けていな
いバイパス路42の流動圧をより多く受液器7に印加し
て受液器7への液相流体の流出を促進する。
Next, when the fluid control valve 43 is a flow rate proportional valve for variably controlling the flow rate of the fluid, the pump section 20 is operated according to the amount of heat transferred. That is, when the amount of heat transferred is large, the flow rate to the fluid power recovery unit 15 is increased, and when the amount of heat transferred is reduced, the flow rate to the fluid power recovery unit 15 is decreased to promote the inflow of the liquid phase fluid into the liquid receiver 7. To do. By doing so, the flow rate to the bypass passage 42 can be increased as much as possible, and a larger flow pressure of the bypass passage 42 which is not subjected to the flow passage resistance of the fluid power recovery section 15 is applied to the liquid receiver 7 to receive it. The outflow of the liquid phase fluid to the liquid container 7 is promoted.

【0049】このように流体制御弁43により流体動力
回収部15への流量を可変制御することによりポンプ部
20を過剰な運転をさせずに最適に制御して流体駆動循
環ポンプ19への負荷を減らして信頼性を向上できる。
また、より強い流動圧の印加により受液器7から液相流
体の流出促進と流体駆動循環ポンプ19の最適運転によ
る受液器7への液相流体の流入促進により開閉弁10の
開閉周期縮小による熱搬送量の大能力化ができる。
As described above, the flow rate to the fluid power recovery section 15 is variably controlled by the fluid control valve 43, so that the pump section 20 is optimally controlled without excessive operation and the load on the fluid driven circulating pump 19 is reduced. It can be reduced to improve reliability.
Further, the opening / closing cycle of the on-off valve 10 is shortened by promoting the outflow of the liquid-phase fluid from the receiver 7 by applying a stronger flow pressure and promoting the inflow of the liquid-phase fluid into the receiver 7 by the optimal operation of the fluid-driven circulation pump 19. With this, the heat transfer amount can be increased.

【0050】[0050]

【発明の効果】以上説明したように本発明の熱搬送装置
は、加熱され気化膨脹し昇圧した流体の流動エネルギー
を動力エネルギーに有効利用するもので、熱搬送装置の
消費エネルギーを低減して省エネルギー化が一層向上で
きるという効果がある。さらに、外部からの電気消費量
が低減するためランニングコストの安価な機器が提供で
きるという効果がある。
As described above, the heat transfer device of the present invention effectively uses the flow energy of a fluid that has been heated, vaporized and expanded, and increased in pressure as motive energy. Therefore, energy consumption of the heat transfer device is reduced to save energy. There is an effect that it can be further improved. Furthermore, since the amount of electricity consumed from the outside is reduced, it is possible to provide a device with a low running cost.

【0051】また、第二の発明の熱搬送装置は、加熱さ
れ気化膨脹し昇圧した流体の流動エネルギーを流体を循
環させる動力エネルギーとして直接に有効利用するもの
で、搬送動力エネルギーを低減して省エネルギー化が一
層向上できるという効果がある。また、電動モータで駆
動するポンプを使用しないので外部からの電気消費量が
低減されランニングコストの安価な機器が提供できると
いう効果がある。さらに、高価な電動モータを使用しな
いのでイニシャルコストの安価な機器が提供できるとい
う効果がある。
In the heat transfer device of the second invention, the flow energy of the heated, vaporized and expanded, and pressurized fluid is directly and effectively utilized as the power energy for circulating the fluid. There is an effect that it can be further improved. Moreover, since a pump driven by an electric motor is not used, there is an effect that the amount of electricity consumed from the outside is reduced and a device with low running cost can be provided. Furthermore, since an expensive electric motor is not used, it is possible to provide a device having a low initial cost.

【0052】また、第三の発明の熱搬送装置は、加熱循
環路の気化昇圧した流体の流動エネルギーを回収してポ
ンプ部を作動させ利用側循環路で受液器への流入促進を
図るもので、ごくわずかの入力で熱搬送する省エネルギ
ー性に優れランニングコストの安価で、そのうえに熱搬
送量の大能力化を実現する機器を提供できるという効果
がある。
Further, the heat transfer device of the third aspect of the invention collects the flow energy of the vaporized and pressurized fluid in the heating circulation path and operates the pump part to promote the inflow to the receiver in the utilization side circulation path. Therefore, there is an effect that it is possible to provide a device which has an excellent energy saving property of carrying heat with a very small input, has a low running cost, and has a large capacity of carrying a heat.

【0053】また、第四の発明の熱搬送装置は、加熱循
環路の気化昇圧した流体の流動エネルギーを回収してポ
ンプ部を作動させる流体動力回収部に流体制御弁をもつ
バイパス路を併設したもので、流体動力回収部への流量
を制御し受液器へより大きい流動圧を印加することによ
り、流体駆動循環ポンプへの負荷を低減して信頼性、耐
久性を向上できるという効果がある。さらに、熱搬送量
の大能力化を向上できるという効果がある。
Further, in the heat transfer apparatus of the fourth aspect of the invention, a bypass passage having a fluid control valve is attached to the fluid power recovery unit for operating the pump unit by recovering the flow energy of the vaporized and pressurized fluid in the heating circulation path. However, by controlling the flow rate to the fluid power recovery section and applying a larger flow pressure to the liquid receiver, there is the effect that the load on the fluid-driven circulation pump can be reduced and reliability and durability can be improved. . Further, there is an effect that it is possible to improve the capacity of the heat transfer amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例における熱搬送装置のシ
ステム構成図
FIG. 1 is a system configuration diagram of a heat transfer device according to a first embodiment of the present invention.

【図2】本発明の第二の実施例における熱搬送装置のシ
ステム構成図
FIG. 2 is a system configuration diagram of a heat transfer device according to a second embodiment of the present invention.

【図3】上記本発明の第二の実施例における流体駆動循
環ポンプの断面図
FIG. 3 is a sectional view of a fluid-driven circulation pump according to the second embodiment of the present invention.

【図4】本発明の第三の実施例における熱搬送装置のシ
ステム構成図
FIG. 4 is a system configuration diagram of a heat transfer device according to a third embodiment of the present invention.

【図5】本発明の第四の実施例における熱搬送装置のシ
ステム構成図
FIG. 5 is a system configuration diagram of a heat transfer device according to a fourth embodiment of the present invention.

【図6】従来の熱搬送装置のシステム構成図FIG. 6 is a system configuration diagram of a conventional heat transfer device.

【図7】従来の他の熱搬送装置のシステム構成図FIG. 7 is a system configuration diagram of another conventional heat transfer device.

【符号の説明】[Explanation of symbols]

1 循環ポンプ 3 加熱器 6 気液分離器 6c 気相出口 6d 液相入口 7 受液器 10 開閉弁 11 均圧管 13 密閉循環路 14 利用部 15 流体動力回収部 19 流体駆動循環ポンプ 20 ポンプ部 21 駆動羽根車 40 加熱循環路 41 利用側循環路 42 バイパス路 43 流体制御弁 1 Circulation Pump 3 Heater 6 Gas-Liquid Separator 6c Gas-Phase Outlet 6d Liquid-Phase Inlet 7 Liquid Receiver 10 Opening / Closing Valve 11 Pressure Equalizing Tube 13 Sealed Circulation Path 14 Utilization Section 15 Fluid Power Recovery Section 19 Fluid Drive Circulation Pump 20 Pump Section 21 Drive impeller 40 Heating circulation path 41 User side circulation path 42 Bypass path 43 Fluid control valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】流体通路を有する加熱器と流体通路を有す
る利用部と循環ポンプを順次環状に配管接続し相変化流
体を封入した密閉循環路と、相変化流体の前記加熱器の
出口側に設けられ加熱器で気化昇圧された相変化流体の
流体エネルギーを回収する流体動力回収部を有する熱搬
送装置。
1. A closed circulation path in which a heater having a fluid passage, a utilization portion having a fluid passage, and a circulation pump are sequentially connected in an annular pipe to enclose a phase change fluid, and an outlet side of the heater for the phase change fluid. A heat transfer device provided with a fluid power recovery unit that recovers fluid energy of a phase change fluid that is vaporized and boosted by a heater.
【請求項2】流体通路を有する加熱器と流体通路を有す
る利用部とを環状に配管接続し相変化流体を封入した密
閉循環路と、相変化流体の前記加熱器の出口側に設けら
れ加熱器で気化昇圧された相変化流体の流体エネルギー
で駆動される駆動羽根車を設けた流体動力回収部と、前
記加熱器の入口側に設けたポンプ部を前記流体動力回収
部に動力伝達可能に連結した流体駆動循環ポンプを有す
る熱搬送装置。
2. A closed circulation path in which a heater having a fluid passage and a utilization portion having a fluid passage are connected to each other by pipes in an annular shape and a phase change fluid is sealed, and a heating provided at an outlet side of the heater for the phase change fluid. Of the fluid power recovery unit provided with a drive impeller driven by the fluid energy of the phase-change fluid vaporized and boosted by the heater, and the pump unit provided at the inlet side of the heater to enable power transmission to the fluid power recovery unit. A heat transfer device having a fluid driven circulating pump connected thereto.
【請求項3】加熱器の入口側と出口側を気液分離器に接
続した加熱循環路と、前記気液分離器の上方に設けた受
液器と、前記気液分離器の気相出口、利用部、受液器、
気液分離器の液相入口を順次配管接続した利用側循環路
と、気液分離器と受液器に連通する均圧管に設けた開閉
弁と、加熱器の出口側の加熱循環路に駆動羽根車を設け
た流体動力回収部と、利用部と受液器の間の利用側循環
路に設けたポンプ部を前記流体動力回収部に動力伝達可
能に連結した流体駆動循環ポンプを設け、相変化流体を
封入した熱搬送装置。
3. A heating circuit having an inlet side and an outlet side of the heater connected to a gas-liquid separator, a receiver provided above the gas-liquid separator, and a gas-phase outlet of the gas-liquid separator. , User department, receiver,
Driven to the circulation path on the usage side where the liquid-phase inlets of the gas-liquid separator are sequentially piped, the on-off valve installed on the pressure equalizing pipe that communicates with the gas-liquid separator and the receiver, and the heating circulation path on the outlet side of the heater A fluid power recovery unit provided with an impeller and a fluid drive circulation pump in which a pump unit provided in a utilization side circulation path between the utilization unit and the receiver is connected to the fluid power recovery unit so that power can be transmitted, Heat transfer device that encloses variable fluid.
【請求項4】加熱器の入口側と出口側を気液分離器に接
続した加熱循環路と前記気液分離器の上方に設けた受液
器と、前記気液分離器の気相出口、利用部、受液器、気
液分離器の液相入口を順次配管接続した利用側循環路
と、気液分離器と受液器に連通する均圧管に設けた開閉
弁と、加熱器の出口側の加熱循環路に駆動羽根車を設け
た流体動力回収部と、利用部と受液器の間の利用側循環
路に設けたポンプ部を前記流体動力回収部に動力伝達可
能に連結した流体駆動循環ポンプと、前記流体動力回収
部に並列に設けた流体制御弁を有するバイパス路を設
け、相変化流体を封入した熱搬送装置。
4. A heating circulation path connecting an inlet side and an outlet side of the heater to a gas-liquid separator, a liquid receiver provided above the gas-liquid separator, and a gas phase outlet of the gas-liquid separator, User side circulation path in which the liquid phase inlets of the use part, the liquid receiver and the gas-liquid separator are sequentially connected by piping, the on-off valve provided in the pressure equalizing pipe communicating with the gas-liquid separator and the liquid receiver, and the outlet of the heater A fluid power recovery section having a drive impeller provided in the heating circulation path on the side and a pump section provided in the usage side circulation path between the usage section and the receiver for fluid transmission to the fluid power recovery section. A heat transfer device in which a drive circulation pump and a bypass passage having a fluid control valve provided in parallel with the fluid power recovery unit are provided and a phase change fluid is sealed.
JP13018894A 1994-06-13 1994-06-13 Heat transfer device Expired - Fee Related JP3513912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13018894A JP3513912B2 (en) 1994-06-13 1994-06-13 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13018894A JP3513912B2 (en) 1994-06-13 1994-06-13 Heat transfer device

Publications (2)

Publication Number Publication Date
JPH07332790A true JPH07332790A (en) 1995-12-22
JP3513912B2 JP3513912B2 (en) 2004-03-31

Family

ID=15028186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13018894A Expired - Fee Related JP3513912B2 (en) 1994-06-13 1994-06-13 Heat transfer device

Country Status (1)

Country Link
JP (1) JP3513912B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240467A (en) * 2002-02-15 2003-08-27 Showa Denko Kk Magnetic fluid drive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240467A (en) * 2002-02-15 2003-08-27 Showa Denko Kk Magnetic fluid drive device

Also Published As

Publication number Publication date
JP3513912B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
JP3886492B2 (en) Waste heat recovery system
JP2012533046A (en) Jet pump system, apparatus, arrangement, and method of use for heat and cold management
WO2007055854A1 (en) Refrigeration system including thermoelectric module
CN102326040A (en) Heat pump system
KR100358338B1 (en) Driving method and apparatus of refrigeration system
JP2011094814A (en) Refrigerating cycle device and refrigerant compressing method
JP2005257127A (en) Natural refrigerant heat pump system
JP2005337626A (en) Heat pump water heater system
US5505059A (en) Direct heated adsorbent bed heat pump
US6595022B2 (en) Computer system having a refrigeration cycle utilizing an adsorber/desorber for purposes of compression
CA1241848A (en) Twin reservoir heat transfer circuit
JP2007078260A (en) Thermal drive power generation air conditioning device
JP2006038333A (en) Air conditioning system using vapor compression refrigerating machine
KR20070022585A (en) Compressor with vapor injection system
JP2006307857A (en) Cogeneration system
JPH07332790A (en) Heat carrying equipment
JP2005233513A (en) Heat pump device
JPH07318114A (en) Heater
US3623333A (en) Absorption cooling system
JPS62218773A (en) Cold and heat accumulator
JP2011043273A (en) Heat pump type heating liquid system
JP2009047389A (en) Refrigerating cycle device
JP3557299B2 (en) Cooling method of lubricating oil in heat pump system
JP2006038365A (en) Heat exchange system
JPH11108492A (en) Air conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees