JPH07327354A - Rotor for superconducting generator - Google Patents

Rotor for superconducting generator

Info

Publication number
JPH07327354A
JPH07327354A JP6116759A JP11675994A JPH07327354A JP H07327354 A JPH07327354 A JP H07327354A JP 6116759 A JP6116759 A JP 6116759A JP 11675994 A JP11675994 A JP 11675994A JP H07327354 A JPH07327354 A JP H07327354A
Authority
JP
Japan
Prior art keywords
mounting shaft
winding
winding mounting
rotor
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6116759A
Other languages
Japanese (ja)
Inventor
Nobuhisa Suzuki
信久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP6116759A priority Critical patent/JPH07327354A/en
Publication of JPH07327354A publication Critical patent/JPH07327354A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To realize a high capacity rotor by increasing the diameter restricted by rejective casting texture or segregation caused by a precipitation hardening Ni based alloy. CONSTITUTION:A winding fixing shaft for holding a laminate conductor 22 is split into a winding fixing shaft 20 and a wedge stopper 24 wherein the winding fixing shaft 20 is made of a precipitation hardening Ni based alloy and integrated with the wedge stopper 24. Consequently, the diameter of the winding fixing shaft 20 can be decreased. Since the diameter of winding fixing shaft can be made larger by an amount corresponding to the part not formed of the precipitation hardening Ni based alloy than the diameter restricted by the rejective basting texture or segregation, capacity of generator can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導発電機の回転子
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a rotor of a superconducting generator.

【0002】[0002]

【従来の技術】図4は超電導発電機の回転子の構成図で
あり、図5はその巻線取付軸の断面図である。巻線取付
軸1には、複数の積層導体(界磁巻線)2が保持されて
いる。この巻線取付軸1は、液体ヘリウムにより冷却さ
れて積層導体2の超電導状態を維持し、かつこの状態で
回転するものとなっている。
2. Description of the Related Art FIG. 4 is a block diagram of a rotor of a superconducting generator, and FIG. 5 is a sectional view of its winding mounting shaft. A plurality of laminated conductors (field windings) 2 are held on the winding mounting shaft 1. The winding mounting shaft 1 is cooled by liquid helium, maintains the superconducting state of the laminated conductor 2, and rotates in this state.

【0003】この巻線取付軸1において各積層導体2
は、それぞれくさび3により直径方向に圧縮されて保持
されている。具体的には、図6に示すように巻線取付軸
1に挿入した積層導体2に対してくさび3を押し付け、
かつこのくさび3に対して各肩くさび4を押圧して固定
している。
In this winding mounting shaft 1, each laminated conductor 2
Are respectively compressed and held by the wedges 3 in the diametrical direction. Specifically, as shown in FIG. 6, the wedge 3 is pressed against the laminated conductor 2 inserted in the winding mounting shaft 1,
Moreover, each shoulder wedge 4 is pressed against and fixed to the wedge 3.

【0004】又、エンドリング5により積層導体2のエ
ンド部が圧縮保持され、保持環6により液体ヘリウムが
外部に漏れるのを防止している。さらに、ラジューショ
ンシード7は巻線取付軸1を液体ヘリウム温度に保つた
めに設けられ、常温ダンパー8は磁界の遮断効果及びロ
ータのトルクを持つ機能を有している。
The end ring 5 holds the end portion of the laminated conductor 2 under compression, and the holding ring 6 prevents liquid helium from leaking to the outside. Further, the ratio seed 7 is provided to keep the winding mounting shaft 1 at the liquid helium temperature, and the room temperature damper 8 has a function of blocking the magnetic field and a torque of the rotor.

【0005】電機子巻線9には交流電流が流れ、かつ磁
気シールド10は外部への漏れ磁束のシールドと主磁束
の増大のために設けられている。トルクチューブ11は
ロータのトルク伝達を行うとともに外部からの浸入熱を
低減している。
An alternating current flows through the armature winding 9, and a magnetic shield 10 is provided to shield the leakage magnetic flux to the outside and to increase the main magnetic flux. The torque tube 11 transmits the torque of the rotor and reduces heat entering from the outside.

【0006】継ぎシャフト12はトルク伝達を行い、フ
レキシブルサポート13はロータ熱収縮時の軸方向伸び
差を吸収している。冷却筒14は蒸発したガスヘリウム
を旋回してトルクチューブ11の冷却を行っている。
The joint shaft 12 transmits the torque, and the flexible support 13 absorbs the difference in axial expansion when the rotor is thermally contracted. The cooling cylinder 14 swirls the evaporated gas helium to cool the torque tube 11.

【0007】しかしながら、このような構成の超電導発
電機の回転子では、巻線取付軸1として高強度、高電気
抵抗率が要求されるので、析出硬化型Ni基合金により
製造する必要があり、このために大容量機用に直径を大
きくした場合、ESR(Eiectro Slag Remelting)
インゴットに偏析が発生したり、鋳肌不良を生じてしま
う。
However, in the rotor of the superconducting generator having such a structure, since the winding mounting shaft 1 is required to have high strength and high electric resistivity, it is necessary to manufacture it by a precipitation hardening Ni-based alloy, For this reason, when the diameter is increased for large capacity machines, ESR (Eiectro Slag Remelting)
Segregation may occur in the ingot, or defective casting surface may occur.

【0008】すなわち、巻線取付軸1は、図6に示すよ
うにくさび3により積層導体2を押さえ付ける部分まで
を一体化して製造しているため、ESRインゴット直径
は発電容量の増加とともに大きくなる。
That is, since the winding mounting shaft 1 is integrally manufactured up to the portion for pressing the laminated conductor 2 by the wedge 3 as shown in FIG. 6, the ESR ingot diameter increases as the power generation capacity increases. .

【0009】ところで、超電導発電機用巻線取付軸の材
料として析出硬化型Ni基合金があるが、この析出硬化
型Ni基合金により巻線取付軸1を製造する場合、鋳肌
不良や偏析によるERSインゴットの制約直径があり、
これを越える直径にて溶解した場合には巻線取付軸1の
表面に鍛造割れが発生したり、絞りが低下する等の問題
が生じる。
By the way, there is a precipitation hardening type Ni-base alloy as a material for a winding mounting shaft for a superconducting power generator. However, when the winding mounting shaft 1 is manufactured from this precipitation hardening type Ni-based alloy, casting surface defects or segregation may occur. There is a constraint diameter of ERS ingot,
If it melts with a diameter exceeding this, problems such as the occurrence of forging cracks on the surface of the winding mounting shaft 1 and a reduction in drawing occur.

【0010】すなわち、析出硬化型Ni基合金のESR
では、インゴットの制約直径(例えばd´)までは、鋳
肌不良領域と偏析発生領域との中間での溶解速度により
健全なインゴットを製作することができるが、この制約
直径d´を越えては健全なインゴットの製作は困難とな
る。このため、この制約直径d´が巻線取付軸1の製造
上の制約となる。
That is, ESR of precipitation hardening Ni-based alloy
Then, up to the constraint diameter (for example, d ') of the ingot, a sound ingot can be manufactured by the melting rate in the middle of the defective casting surface region and the segregation generation region, but if the constraint diameter d'is exceeded, Making a healthy ingot becomes difficult. Therefore, this constraint diameter d'is a constraint in manufacturing the winding mounting shaft 1.

【0011】図7は析出硬化型Ni基合金のESRイン
ゴットの絞りと温度との関係を示している。ESRイン
ゴットの制約直径d´以下にて製作した場合は、高い延
性(絞り)を示すが、制約直径d´を越える直径により
製作した場合には延性が低下するため、鍛造性が悪く、
巻線取付軸として良好な機械的性質が得られない。
FIG. 7 shows the relationship between the drawing and temperature of the ESR ingot of precipitation hardening Ni-based alloy. When manufactured with a restricted diameter d'or less than the ESR ingot, high ductility (drawing) is exhibited, but when manufactured with a diameter exceeding the restricted diameter d ', ductility decreases, so forgeability is poor,
Good mechanical properties cannot be obtained as a winding mounting shaft.

【0012】図8は析出硬化型Ni基合金の健全部及び
偏析部の絞りと温度との関係を示している。制約直径d
´以上のESRインゴットから製作した巻線取付軸1で
は、健全部と偏析部とが混在し、ある温度T以下におい
て偏析部は健全部よりも延性が低下する。
FIG. 8 shows the relationship between the temperature of the sound hardening portion and the segregation portion of the precipitation hardening Ni-based alloy and the temperature. Constraint diameter d
In the winding mounting shaft 1 manufactured from ESR ingots of 'or more', the sound part and the segregation part are mixed, and the segregation part is lower in ductility than the sound part at a certain temperature T or lower.

【0013】このため、制約直径d´以下のESRイン
ゴットから製作した場合のように巻線取付軸全体を健全
部にして延性を確保することが困難である。図9は巻線
取付軸1内に固定される積層導体2の圧縮荷重と導体厚
さ(又は変位量)との関係を示す。超電導線から成る積
層導体2は、図6に示すように肩くさび4により導体厚
さを管理し、かつ電磁力、遠心力、熱収縮差相当の圧縮
荷重Poを負荷することによりクエンチ(常電導遷移)
を防止しているが(A点)、肩くさび4では使用中にそ
の位置がずれると、圧縮荷重が減少し、クエンチが生じ
る場合がある(B点)。
Therefore, it is difficult to secure ductility by making the entire winding mounting shaft a sound part, as in the case of manufacturing from an ESR ingot having a restricted diameter d'or less. FIG. 9 shows the relationship between the compressive load of the laminated conductor 2 fixed in the winding mounting shaft 1 and the conductor thickness (or displacement amount). As shown in FIG. 6, the laminated conductor 2 made of a superconducting wire is quenched by controlling the conductor thickness with a shoulder wedge 4 and applying an electromagnetic force, a centrifugal force, and a compressive load Po equivalent to the difference in thermal contraction. transition)
However, if the position of the shoulder wedge 4 shifts during use, the compressive load may decrease and quenching may occur (point B).

【0014】[0014]

【発明が解決しようとする課題】以上のように巻線取付
軸として高強度、高電気抵抗率が要求されるので、析出
硬化型Ni基合金により製造する必要があるが、このた
めに大容量機用に直径を大きくした場合、ESRインゴ
ットに偏析が発生したり、鋳肌不良を生じてしまう。
As described above, since the winding mounting shaft is required to have high strength and high electric resistivity, it is necessary to manufacture it by a precipitation hardening type Ni-based alloy. For this reason, a large capacity is required. If the diameter is increased for a machine, segregation may occur in the ESR ingot or defective casting surface may occur.

【0015】そこで本発明は、析出硬化型Ni基合金に
よる鋳肌不良や偏析による制約直径を大きくして大容量
のロータにできる超電導発電機の回転子を提供すること
を目的とする。
Therefore, an object of the present invention is to provide a rotor of a superconducting generator capable of forming a large-capacity rotor by increasing a restriction diameter due to a casting surface defect due to a precipitation hardening Ni-based alloy or segregation.

【0016】[0016]

【課題を解決するための手段】請求項1によれば、巻線
取付軸に対して積層導体を保持させるとともにこの積層
導体を冷却して超電導状態を維持する超電導発電機の回
転子において、巻線取付軸を、2分割して一体化した構
成とし、かつこれら分割された各巻線取付軸のうち少な
くとも一方を析出硬化型Ni基合金により形成して上記
目的を達成しようとする超電導発電機の回転子である。
According to a first aspect of the present invention, there is provided a rotor for a superconducting generator which holds a laminated conductor with respect to a winding mounting shaft and cools the laminated conductor to maintain a superconducting state. In a superconducting power generator, the wire mounting shaft is divided into two and integrated, and at least one of the divided winding mounting shafts is formed of a precipitation hardening Ni-based alloy to achieve the above object. It is a rotor.

【0017】請求項2によれば、巻線取付軸は、積層巻
線を保持する巻線取付軸本体と、積層巻線を巻線取付軸
本体に対して圧縮保持させるくさび押えとを備えてい
る。請求項3によれば、巻線取付軸は、析出硬化型Ni
基合金により形成された内側円筒と、この内側円筒の外
周に配置されて積層巻線を保持する外周円筒とを備えて
いる。請求項4によれば、巻線取付軸は、ティース付け
根部の高応力負担部を析出硬化型Ni基合金により形成
している。
According to claim 2, the winding mounting shaft comprises a winding mounting shaft main body for holding the laminated winding, and a wedge retainer for compressively holding the laminated winding on the winding mounting shaft main body. There is. According to claim 3, the winding mounting shaft is made of precipitation hardening Ni.
An inner cylinder formed of a base alloy and an outer cylinder arranged on the outer circumference of the inner cylinder to hold the laminated winding are provided. According to the fourth aspect, in the winding mounting shaft, the high stress bearing portion of the tooth root portion is formed of a precipitation hardening Ni-based alloy.

【0018】[0018]

【作用】請求項1によれば、積層導体を保持する巻線取
付軸を、2分割してその一方を析出硬化型Ni基合金に
より形成し、かつこれらを一体化する構成となる。これ
により、析出硬化型Ni基合金から成る部分の直径を小
さくできる。従って、鋳肌不良や偏析によるESRイン
ゴットの制約直径よりも、析出硬化型Ni基合金により
形成しない部分だけ大きな巻線取付軸を製作でき、発電
機容量も大きくできる。
According to the first aspect of the present invention, the winding mounting shaft for holding the laminated conductor is divided into two, one of which is formed of the precipitation hardening Ni-based alloy, and these are integrated. This can reduce the diameter of the portion made of the precipitation hardening Ni-based alloy. Therefore, it is possible to manufacture a winding mounting shaft that is larger than the restricted diameter of the ESR ingot due to defective casting surface or segregation only in the portion that is not formed by the precipitation hardening Ni-based alloy, and it is possible to increase the generator capacity.

【0019】請求項2によれば、巻線取付軸は、くさび
押え肉厚の分だけ巻線取付軸の直径を大きくできる。請
求項3によれば、巻線取付軸は、内側円筒のみを析出硬
化型Ni基合金により形成すればよく、さらに巻線取付
軸の直径を大きくできる。
According to the second aspect of the present invention, the diameter of the winding mounting shaft can be increased by the wedge presser wall thickness. According to the third aspect, only the inner cylinder of the winding mounting shaft may be formed of the precipitation hardening Ni-based alloy, and the diameter of the winding mounting shaft can be further increased.

【0020】請求項4によれば、巻線取付軸は、ティー
ス付け根部の高応力負担部を析出硬化型Ni基合金によ
り形成しすることにより、他の一般応力負担部を任意の
直径で製作できる。
According to the fourth aspect of the invention, the winding mounting shaft is produced by forming the high stress bearing portion of the tooth root portion with a precipitation hardening type Ni-based alloy to produce another general stress bearing portion with an arbitrary diameter. it can.

【0021】[0021]

【実施例】【Example】

(1) 以下、本発明の第1の実施例について図面を参照し
て説明する。図1は超電導発電機の回転子の構成図であ
る。巻線取付軸本体20は、析出硬化型Ni基合金によ
り形成されている。
(1) Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a rotor of a superconducting generator. The winding mounting shaft body 20 is formed of a precipitation hardening Ni-based alloy.

【0022】この巻線取付軸本体20の外周には、複数
の巻線保持用穴21が形成され、これら巻線保持用穴2
1の内部に各積層導体22が保持されている。これら巻
線保持用穴21の開口部、つまり積層導体22と当接し
て各くさび23が配置されている。
A plurality of winding holding holes 21 are formed on the outer periphery of the winding mounting shaft main body 20, and these winding holding holes 2 are provided.
Each of the laminated conductors 22 is held inside the unit 1. The wedges 23 are arranged in contact with the openings of the winding holding holes 21, that is, the laminated conductor 22.

【0023】又、巻線取付軸本体20における各巻線保
持用穴21間の外周は、平面20aに形成されている。
この平面20aには、くさび押え24が配置されてい
る。このくさび押え24は、隣り合う各くさび23、2
3における各傾斜面23aと面接触し、かつボルト25
による巻線取付軸本体20への締め付けによって各くさ
び23、23を介して各積層導体22を巻線取付軸本体
20の直径方向に圧縮保持するものである。
Further, the outer circumference of each winding holding hole 21 in the winding mounting shaft main body 20 is formed into a flat surface 20a.
A wedge retainer 24 is arranged on this plane 20a. This wedge presser 24 is provided for each of the adjacent wedges 23, 2.
3 is in surface contact with each inclined surface 23a and the bolt 25
The laminated conductor 22 is compressed and held in the diametrical direction of the winding mounting shaft main body 20 through the wedges 23, 23 by being tightened to the winding mounting shaft main body 20 by.

【0024】かかる構成では、巻線取付軸本体20とく
さび押え24とを一体化して本来の巻線取付軸としてい
る。すなわち、巻線取付軸本体20の直径dとくさび押
え24の肉厚(直径で2t)とを組み合わせることによ
り、巻線取付軸本来の直径D D=2t+d …(1) を構成している。
In such a structure, the winding mounting shaft main body 20 and the wedge retainer 24 are integrated to form the original winding mounting shaft. That is, by combining the diameter d of the winding mounting shaft main body 20 and the wall thickness of the wedge retainer 24 (diameter 2t), the original diameter D D of the winding mounting shaft D = 2t + d (1) is formed.

【0025】従って、かかる巻線取付軸では、制約直径
d´にくさび押え24の肉厚2tを加えた分だけ、巻線
取付軸としての直径を大きくすることができ、これに伴
って発電機容量を大きくできる。
Therefore, in such a winding mounting shaft, the diameter as the winding mounting shaft can be increased by the amount of the wall thickness 2t of the wedge retainer 24 added to the restricted diameter d ', and accordingly the generator. The capacity can be increased.

【0026】又、上記巻線取付軸では、ESRインゴッ
トが制約直径d´を越えた場合でも、図7に示すように
小直径ESRインゴットの絞りと温度との関係のように
高い延性を保つことができ、鍛造性がよく、巻線取付軸
として良好な機械的性質を得ることができる。
Further, in the above winding mounting shaft, even if the ESR ingot exceeds the restricted diameter d ', a high ductility is maintained as shown in FIG. 7 due to the relation between the diameter of the small diameter ESR ingot and the temperature. Therefore, the forgeability is good, and good mechanical properties can be obtained as the winding mounting shaft.

【0027】さらに、上記巻線取付軸では、制約直径d
´を越えるESRインゴットから製作しても、図8に示
すように巻線取付軸全体を健全部とすることが可能であ
り、制約直径d´以下の場合と同様に高い延性を確保で
きる。
Further, in the above winding mounting shaft, the constraint diameter d
Even if it is manufactured from an ESR ingot that exceeds ‘′, as shown in FIG. 8, the entire winding mounting shaft can be a sound portion, and high ductility can be secured as in the case of the constraint diameter d ′ or less.

【0028】又、くさび押え24を用いた場合、肩くさ
びを用いた従来のように位置ずれは起こらないため、巻
線取付軸の直径増加とともにクエンチ発生を抑制できて
その信頼性を向上できる。
Further, when the wedge retainer 24 is used, the positional displacement does not occur unlike the conventional case using the shoulder wedge, so that the quenching can be suppressed and the reliability can be improved with the increase of the diameter of the winding mounting shaft.

【0029】このように上記第1の実施例によれば、巻
線取付軸本体20にくさび押え24を組み合わせること
により本来の巻線取付軸としての直径を大きくすること
ができ、その分だけ発電機容量を大きくできる。
As described above, according to the first embodiment, by combining the winding mounting shaft main body 20 with the wedge retainer 24, the diameter of the original winding mounting shaft can be increased, and the power generation is correspondingly increased. The capacity can be increased.

【0030】又、くさび押え24を用いることにより、
肩くさびを用いたときのような位置ずれは起こらず、ク
エンチ発生に対する信頼性を向上できる。 (2) 以下、本発明の第2の実施例について図面を参照し
て説明する。
By using the wedge retainer 24,
There is no displacement as in the case of using a shoulder wedge, and the reliability against the occurrence of quench can be improved. (2) Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.

【0031】図2は超電導発電機の回転子の構成図であ
る。巻線取付軸30は、析出硬化型Ni基合金により形
成される内側円筒31と、この内側円筒31の外周に配
置される外側円筒32とを拡散接合により一体化した構
成となっている。
FIG. 2 is a block diagram of the rotor of the superconducting generator. The winding mounting shaft 30 has a configuration in which an inner cylinder 31 formed of a precipitation hardening Ni-based alloy and an outer cylinder 32 arranged on the outer periphery of the inner cylinder 31 are integrated by diffusion bonding.

【0032】このうち内側円筒31は、高強度が要求さ
れるティース付け根部に到達する直径で形成されてい
る。なお、内側円筒31及び外側円筒32を貫いて巻線
保持用穴33が形成され、この巻線保持用穴33内に積
層導体22が保持されている。この積層導体2は、くさ
び3により押し付けられ、かつこのくさび3に対して各
肩くさび4により押圧されて固定されている。
Of these, the inner cylinder 31 is formed with a diameter that reaches the tooth root portion where high strength is required. A winding holding hole 33 is formed through the inner cylinder 31 and the outer cylinder 32, and the laminated conductor 22 is held in the winding holding hole 33. The laminated conductor 2 is pressed by a wedge 3 and is pressed and fixed to the wedge 3 by each shoulder wedge 4.

【0033】かかる構成であれば、内側円筒31のみ析
出硬化型Ni基合金により製作すればよいので、上記第
1の実施例よりもさらに巻線取付軸としての直径を大き
くでき、その分だけ発電機容量をさらに大きくできる。 (3) 以下、本発明の第3の実施例について図面を参照し
て説明する。
With such a structure, since only the inner cylinder 31 may be manufactured from the precipitation hardening Ni-based alloy, the diameter of the winding mounting shaft can be made larger than that of the first embodiment, and the power generation is correspondingly increased. The capacity can be further increased. (3) Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.

【0034】図3は超電導発電機の回転子の構成図であ
る。巻線取付軸40は、ティース付け根部に析出硬化型
Ni基合金から形成される高応力負担部41を形成し、
他の部分を一般応力負担部42として形成している。そ
して、これら高応力負担部41と一般応力負担部42と
は、拡散接合により一体化する構成となっている。
FIG. 3 is a block diagram of the rotor of the superconducting generator. The winding mounting shaft 40 has a high stress bearing portion 41 formed of a precipitation hardening type Ni-based alloy at the root of the tooth,
The other portion is formed as the general stress bearing portion 42. The high stress bearing portion 41 and the general stress bearing portion 42 are integrated by diffusion bonding.

【0035】かかる構成であれば、高応力負担部41の
みを析出硬化型Ni基合金により製作すればよく、一般
応力負担部42を任意の直径で製作することができる。
従って、巻線取付軸40は、析出硬化型Ni基合金の制
約直径d´による制約を受けず、任意の発電機容量のも
のとして製作できる。
With such a structure, only the high stress bearing portion 41 need be manufactured from the precipitation hardening type Ni-based alloy, and the general stress bearing portion 42 can be manufactured with an arbitrary diameter.
Therefore, the winding mounting shaft 40 can be manufactured as an arbitrary generator capacity without being restricted by the restriction diameter d ′ of the precipitation hardening Ni-based alloy.

【0036】なお、本発明は、上記各実施例に限定され
るものでなく次の通りに変形してもよい。例えば、上記
第1の実施例における巻線取付軸本体20に対して積層
巻線22を圧縮保持させるくさび押え24とを備え、か
つ巻線取付軸本体20のティース付け根部まで析出硬化
型Ni基合金による内側円筒31を形成してもよく、又
はティース付け根部を析出硬化型Ni基合金により形成
して高応力負担部41を設けてもよい。
The present invention is not limited to the above embodiments, but may be modified as follows. For example, the winding mounting shaft main body 20 of the first embodiment is provided with a wedge retainer 24 for compressing and holding the laminated winding 22, and the precipitation hardening Ni-based material up to the tooth root of the winding mounting shaft main body 20. The inner cylinder 31 made of an alloy may be formed, or the tooth root may be made of a precipitation hardening Ni-based alloy to provide the high stress bearing portion 41.

【0037】[0037]

【発明の効果】以上詳記したように本発明によれば、析
出硬化型Ni基合金による鋳肌不良や偏析による制約直
径を大きくして大容量のロータにできる超電導発電機の
回転子を提供できる。
As described above in detail, according to the present invention, there is provided a rotor of a superconducting generator capable of forming a large-capacity rotor by increasing a restriction diameter due to a casting surface defect or segregation due to a precipitation hardening Ni-based alloy. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる超電導発電機の回転子の第1の
実施例を示す構成図。
FIG. 1 is a configuration diagram showing a first embodiment of a rotor of a superconducting generator according to the present invention.

【図2】本発明に係わる超電導発電機の回転子の第2の
実施例を示す構成図。
FIG. 2 is a configuration diagram showing a second embodiment of the rotor of the superconducting generator according to the present invention.

【図3】本発明に係わる超電導発電機の回転子の第3の
実施例を示す構成図。
FIG. 3 is a configuration diagram showing a third embodiment of the rotor of the superconducting generator according to the present invention.

【図4】従来の超電導発電機の断面構成図。FIG. 4 is a cross-sectional configuration diagram of a conventional superconducting generator.

【図5】同超電導発電機における回転子の断面構成図。FIG. 5 is a sectional configuration diagram of a rotor in the same superconducting generator.

【図6】巻線取付軸の断面構成図。FIG. 6 is a sectional configuration diagram of a winding mounting shaft.

【図7】ESRインゴットの絞りと温度との関係を示す
図。
FIG. 7 is a view showing the relationship between the ESR ingot diaphragm and temperature.

【図8】析出硬化型Ni基合金の健全部及び偏析部の絞
りと温度との関係を示す図。
FIG. 8 is a graph showing the relationship between the temperature of the sound part and segregation part of the precipitation hardening Ni-based alloy and the temperature.

【図9】積層導体を肩くさび又はくさび押えにより固定
する際の圧縮荷重と導体厚さの関係を示す図。
FIG. 9 is a diagram showing a relationship between a compressive load and a conductor thickness when a laminated conductor is fixed by a shoulder wedge or a wedge retainer.

【符号の説明】[Explanation of symbols]

20…巻線取付軸本体、21…巻線保持用穴、22…積
層導体、23…くさび、24…くさび押え、25…ボル
ト、30…巻線取付軸、31…内側円筒、32…外側円
筒、33…巻線保持用穴、40…巻線取付軸、41…高
応力負担部、42…一般応力負担部。
20 ... Winding mounting shaft body, 21 ... Winding holding hole, 22 ... Laminated conductor, 23 ... Wedge, 24 ... Wedge retainer, 25 ... Bolt, 30 ... Winding mounting shaft, 31 ... Inner cylinder, 32 ... Outer cylinder , 33 ... Winding holding hole, 40 ... Winding mounting shaft, 41 ... High stress bearing portion, 42 ... General stress bearing portion.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 巻線取付軸に対して積層導体を保持させ
るとともにこの積層導体を冷却して超電導状態を維持す
る超電導発電機の回転子において、 前記巻線取付軸を、2分割して一体化した構成とし、か
つこれら分割された各巻線取付軸のうち少なくとも一方
を析出硬化型Ni基合金により形成することを特徴とす
る超電導発電機の回転子。
1. A rotor of a superconducting generator which holds a laminated conductor on a winding mounting shaft and cools the laminated conductor to maintain a superconducting state, wherein the winding mounting shaft is divided into two parts. A rotor for a superconducting generator, which has a simplified structure and in which at least one of the divided winding mounting shafts is formed of a precipitation hardening Ni-based alloy.
【請求項2】 巻線取付軸は、積層巻線を保持する巻線
取付軸本体と、前記積層巻線を巻線取付軸本体に対して
圧縮保持させるくさび押えとを備えたことを特徴とする
請求項1記載の超電導発電機の回転子。
2. The winding mounting shaft comprises a winding mounting shaft main body for holding the laminated winding, and a wedge retainer for compressing and holding the laminated winding on the winding mounting shaft main body. The rotor for a superconducting generator according to claim 1.
【請求項3】 巻線取付軸は、析出硬化型Ni基合金に
より形成された内側円筒と、この内側円筒の外周に配置
されて積層巻線を保持する外周円筒とを備えたことを特
徴とする請求項1記載の超電導発電機の回転子。
3. The winding mounting shaft comprises an inner cylinder formed of a precipitation hardening Ni-based alloy, and an outer cylinder arranged around the inner cylinder to hold the laminated winding. The rotor for a superconducting generator according to claim 1.
【請求項4】 巻線取付軸は、ティース付け根部の高応
力負担部を析出硬化型Ni基合金により形成したことを
特徴とする請求項1記載の超電導発電機の回転子。
4. The rotor for a superconducting generator according to claim 1, wherein the winding mounting shaft has a high stress bearing portion of a tooth root portion formed of a precipitation hardening Ni-based alloy.
JP6116759A 1994-05-30 1994-05-30 Rotor for superconducting generator Pending JPH07327354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6116759A JPH07327354A (en) 1994-05-30 1994-05-30 Rotor for superconducting generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6116759A JPH07327354A (en) 1994-05-30 1994-05-30 Rotor for superconducting generator

Publications (1)

Publication Number Publication Date
JPH07327354A true JPH07327354A (en) 1995-12-12

Family

ID=14695040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6116759A Pending JPH07327354A (en) 1994-05-30 1994-05-30 Rotor for superconducting generator

Country Status (1)

Country Link
JP (1) JPH07327354A (en)

Similar Documents

Publication Publication Date Title
US5717262A (en) Cooling apparatus for an AC generator
US5777420A (en) Superconducting synchronous motor construction
US4302693A (en) Wedge shaped permanent magnet rotor assembly with magnet cushions
US6700274B2 (en) Torque transmission assembly for use in superconducting rotating machines
US4296544A (en) Method of making rotor assembly with magnet cushions
US7633192B2 (en) Superconducting coil support structures
US7999433B2 (en) Rotor winding shield for a superconducting electric generator
JP2004266988A (en) Cold structural enclosure for multi-pole rotor having super-conducting field coil windings
US4642495A (en) Electric rotary machine having superconducting rotor
JP2010502172A (en) Torque transmission assembly of superconducting rotating machine
KR20030011683A (en) High temperature superconducting synchronous rotor coil support insulators and method for assembly of the insulators
JPS61278109A (en) Conical impregnation-free winding for magnetic resonance
JP3453058B2 (en) Rotating electric machine stator
JPH07327354A (en) Rotor for superconducting generator
US4329602A (en) Superconducting rotor
JP2003299328A (en) Cooling structure for rotating electric machine
JPH0284037A (en) Claw pole type synchronous generator
JP2007282458A (en) Motor
JP3306278B2 (en) Thrust bearing
JP2003230261A (en) Rotor structure of induction machine and manufacturing method for rotor
JPH10285906A (en) Rotor of superconductive dynamoelectric machine
JPH03212137A (en) Claw pole type synchronous generator
JPS6028750A (en) Cooling structure of stator coil
JP2022186316A (en) Rotating electric machine and manufacturing method thereof
JP3930277B2 (en) Superconducting generator