JPH07324851A - Malfunction detecting method for heat exchanger and absorption type hot and chilled water generator - Google Patents

Malfunction detecting method for heat exchanger and absorption type hot and chilled water generator

Info

Publication number
JPH07324851A
JPH07324851A JP6140856A JP14085694A JPH07324851A JP H07324851 A JPH07324851 A JP H07324851A JP 6140856 A JP6140856 A JP 6140856A JP 14085694 A JP14085694 A JP 14085694A JP H07324851 A JPH07324851 A JP H07324851A
Authority
JP
Japan
Prior art keywords
temperature difference
amount
heat exchange
heat exchanger
difference data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6140856A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
博之 鈴木
Yoshio Ozawa
芳男 小澤
Masahiro Furukawa
雅裕 古川
Masashi Yasuda
昌司 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6140856A priority Critical patent/JPH07324851A/en
Priority to US08/392,332 priority patent/US5623426A/en
Priority to CNB951006517A priority patent/CN1154824C/en
Priority to KR1019950008214A priority patent/KR100317155B1/en
Publication of JPH07324851A publication Critical patent/JPH07324851A/en
Priority to CNB01117613XA priority patent/CN1153035C/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a method for detecting the malfunction of a heat exchanger or an absorption type hot and chilled water generator in which the individual offset regulations of temperature sensors disposed to measure the temperatures when the malfunction is detected based on a logarithmic mean temperature difference is omitted or simplified in the exchanger or the generator to be detected. CONSTITUTION:A preliminary step calculates an offset amount (d) included in a logarithmic mean temperature difference from the mutual relationship between a heat exchanging quantity Q and the difference DELTAT, and then a main step corrects the difference by the amount (d) calculated by the preliminary step, and detects the malfunction of a heat exchanger or an absorption type hot and chilled water generator based on the corrected difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数の流体が流入して
相互の熱交換を行なう熱交換器、及び複数の熱交換器を
相互に配管接続してなる吸収式冷温水機の異常検出方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger in which a plurality of fluids flow into each other to exchange heat with each other, and an abnormality detecting system for an absorption chiller-heater having a plurality of heat exchangers connected to each other by piping. It is about the method.

【0002】[0002]

【従来の技術】吸収式冷温水機は、図8に示す如く、凝
縮器(11)及び低温再生器(12)からなる上胴(1)、蒸発器
(21)及び吸収器(22)からなる下胴(2)、バーナ(31)を内
蔵した高温再生器(3)、高温熱交換器(4)、低温熱交換
器(5)等を相互に配管接続し、吸収液ポンプ(6)によっ
て、吸収液を高温再生器(3)、低温再生器(12)及び吸収
器(22)の間で循環させ、冷凍サイクルを実現するもので
ある。
2. Description of the Related Art As shown in FIG. 8, an absorption chiller-heater has an upper body (1) including a condenser (11) and a low temperature regenerator (12), and an evaporator.
Lower body (2) consisting of (21) and absorber (22), high temperature regenerator (3) with built-in burner (31), high temperature heat exchanger (4), low temperature heat exchanger (5), etc. The refrigeration cycle is realized by connecting piping and circulating the absorbing liquid between the high temperature regenerator (3), the low temperature regenerator (12) and the absorber (22) by the absorbing liquid pump (6).

【0003】吸収式冷温水機においては、蒸発器(21)か
ら供給される冷水の温度を目標値に保つべく、ガス弁(3
2)の開度を制御して、バーナ(31)への燃料ガスの供給量
が調整される。
In the absorption chiller-heater, in order to keep the temperature of the chilled water supplied from the evaporator (21) at a target value, a gas valve (3
The amount of fuel gas supplied to the burner (31) is adjusted by controlling the opening degree of 2).

【0004】ところで、吸収式冷温水機においては、冷
却水の汚れ、吸収液循環量の異常、真空度の異常等、冷
温水機内部の各種異常を診断するべく、蒸発器(21)、凝
縮器(11)等の各種熱交換器について、対数平均温度差の
変化を監視することが行なわれる(1994年3月11日 日本
機械学会 RC123 第77〜82頁参照)。
By the way, in the absorption chiller-heater, in order to diagnose various abnormalities inside the chiller-heater, such as contamination of cooling water, abnormal absorption liquid circulation amount, and vacuum degree, the evaporator (21) and the condenser are condensed. With respect to various heat exchangers such as the vessel (11), changes in the logarithmic mean temperature difference are monitored (see the Mechanical Society of Japan RC123, pages 77 to 82, March 11, 1994).

【0005】例えば、凝縮器(11)の対数平均温度差ΔT
(cond)は、上胴(1)の圧力、冷媒出口温度Tcon
d_out、冷却水出口温度Tco_out、及び冷却
水中間温度Tco_midに基づいて、下記数1によっ
て算出される。又、吸収器(22)の対数平均温度差ΔT
(abso)は、吸収液溜り温度Ta_out、吸収液散
布温度Ta_in、冷却水中間温度Tco_mid、及
び冷却水入口温度Tco_inに基づいて、下記数2に
よって算出される。
For example, the logarithmic average temperature difference ΔT of the condenser (11)
(cond) is the pressure of the upper body (1), the refrigerant outlet temperature Tcon
It is calculated by the following formula 1 based on d_out, the cooling water outlet temperature Tco_out, and the cooling water intermediate temperature Tco_mid. Also, the logarithmic mean temperature difference ΔT of the absorber (22)
(abso) is calculated by the following equation 2 based on the absorption liquid pool temperature Ta_out, the absorption liquid spraying temperature Ta_in, the cooling water intermediate temperature Tco_mid, and the cooling water inlet temperature Tco_in.

【0006】[0006]

【数1】ΔT(cond)=(Tcond-Tco_out-Tcond+Tco_mid)/
ln{(Tcond-Tco_out)/(Tcond-Tco_mid)}
[Equation 1] ΔT (cond) = (Tcond-Tco_out-Tcond + Tco_mid) /
ln {(Tcond-Tco_out) / (Tcond-Tco_mid)}

【0007】[0007]

【数2】ΔT(abso)=(Ta_in-Tco_mid-Ta_out+Tco_in)/
ln{(Ta_in-Tco_mid)/(Ta_out-Tco_in)}
[Equation 2] ΔT (abso) = (Ta_in-Tco_mid-Ta_out + Tco_in) /
ln {(Ta_in-Tco_mid) / (Ta_out-Tco_in)}

【0008】上記の如く、各熱交換器について対数平均
温度差を算出するには、熱交換器出入口の流体温度を測
定する必要がある。そこで、熱電対やサーミスタ等の温
度センサーが各熱交換器の出入口に取り付けられてい
る。
As described above, in order to calculate the logarithmic mean temperature difference for each heat exchanger, it is necessary to measure the fluid temperature at the inlet and outlet of the heat exchanger. Therefore, temperature sensors such as thermocouples and thermistors are attached to the entrances and exits of each heat exchanger.

【0009】[0009]

【発明が解決しようとする課題】ところが、温度センサ
ーには一般に、基材の抵抗値変化等に起因する誤差(オ
フセット)が存在し、予め所定温度(例えば20℃)で初
期調整が施されているが、測定温度が所定温度からずれ
ると、オフセットが生じる。従って、温度センサーによ
る測定データをそのまま利用して、吸収式冷温水機の異
常診断を行なうとすると、その信頼性は低いものとな
る。
However, the temperature sensor generally has an error (offset) due to a change in the resistance value of the base material, etc., and is initially adjusted in advance at a predetermined temperature (for example, 20 ° C.). However, when the measured temperature deviates from the predetermined temperature, an offset occurs. Therefore, if the absorption data chiller / heater is diagnosed for abnormality using the measurement data of the temperature sensor as it is, its reliability is low.

【0010】正確な測定データを得るためには、全ての
温度センサーを冷温水機本体に取り付けた状態で、各温
度センサーについてオフセット調整を施せばよいが、吸
収式冷温水機においては、複数の熱交換器が配備され、
各熱交換器には夫々、3乃至4個の温度センサーが取り
付けられることになるから、温度センサーの総数は非常
に多くなる。従って、全ての温度センサーについて夫々
オフセット調整を施すのは煩雑であり、調整作業に長い
時間がかかる問題があった。本発明の目的は、各温度セ
ンサーについての個別のオフセット調整を省略し、或い
は簡略化出来る熱交換器及び吸収式冷温水機の異常検出
方法を提供することである。
In order to obtain accurate measurement data, offset adjustment may be performed for each temperature sensor in a state where all temperature sensors are attached to the body of the water cooler / heater. Heat exchanger is deployed,
Since three to four temperature sensors are attached to each heat exchanger, the total number of temperature sensors is very large. Therefore, it is complicated to perform the offset adjustment for all the temperature sensors, and there is a problem that the adjustment work takes a long time. An object of the present invention is to provide a method for detecting abnormality in a heat exchanger and an absorption chiller-heater, which can omit or simplify individual offset adjustment for each temperature sensor.

【0011】[0011]

【課題を解決する為の手段】本発明に係る熱交換器の異
常検出方法は、複数の流体が流入して相互の熱交換を行
なう熱交換器を対象として、熱交換量或いは熱交換量を
一義的に表わす他の物理量(熱量データQ)と、前記複数
の流体の熱交換器出入口での温度によって定義される温
度差データΔTとを測定し、熱量データQと温度差デー
タΔTの相互関係に基づいて、熱交換器の異常を検出す
る方法であって、異常検出に先立って、温度差データの
オフセット量を算出する予備ステップと、これによって
算出されたオフセット量だけ温度差データを補正し、補
正された温度差データに基づいて熱交換器の異常を検出
する主ステップとから構成される。
A method for detecting abnormality of a heat exchanger according to the present invention is applied to a heat exchanger in which a plurality of fluids flow into each other to exchange heat with each other. Another physical quantity (calorific data Q) that is uniquely expressed and temperature difference data ΔT defined by the temperatures of the plurality of fluids at the heat exchanger inlet and outlet are measured, and the mutual relationship between the calorific data Q and the temperature difference data ΔT is measured. A method for detecting abnormality of the heat exchanger based on the above, in which prior to the abnormality detection, a preliminary step of calculating the offset amount of the temperature difference data and the temperature difference data is corrected by the offset amount calculated thereby. , A main step of detecting abnormality of the heat exchanger based on the corrected temperature difference data.

【0012】具体的構成において、前記予備ステップ
は、前記複数の流体の熱交換器出入口での温度を異なる
熱量データにて測定し、これらの測定データから熱量デ
ータ毎の温度差データを算出して、熱量データを第1
軸、温度差データを第2軸とする直交座標系にて、温度
差データの変化を座標上に表わす第1ステップと、前記
座標上に表わされた温度差データの変化を直線で近似し
て、該直線が第2軸を横切る切片dを求め、これをオフ
セット量として主ステップの処理へ引き渡す第2ステッ
プとを有している。
In a specific configuration, in the preliminary step, the temperatures of the plurality of fluids at the heat exchanger inlet / outlet are measured by different heat quantity data, and temperature difference data for each heat quantity data is calculated from these measured data. First, calorific value data
In the Cartesian coordinate system having the axis and the temperature difference data as the second axis, the first step of expressing the change of the temperature difference data on the coordinates and the change of the temperature difference data expressed on the coordinates are approximated by a straight line. Then, a second step in which the straight line crosses the second axis to obtain an intercept d, and this is used as an offset amount and is transferred to the main step processing.

【0013】又、本発明に係る吸収式冷温水機の第1の
異常検出方法は、複数の熱交換器を相互に配管接続して
なる吸収式冷温水機を対象として、冷凍負荷と特定の熱
交換器における熱交換量とを測定し、冷凍負荷と熱交換
量の相互関係に基づいて、吸収式冷温水機の異常を検出
する方法であって、異常検出に先立って、熱交換量のオ
フセット量を算出する予備ステップと、これによって算
出されたオフセット量だけ熱交換量を補正し、補正され
た熱交換量に基づいて吸収式冷温水機の異常を検出する
主ステップとから構成される。
A first abnormality detecting method for an absorption chiller-heater according to the present invention is intended for an absorption chiller-heater having a plurality of heat exchangers connected to each other by piping, and a specific refrigeration load and A method of measuring the heat exchange amount in the heat exchanger, and based on the interrelationship between the refrigeration load and the heat exchange amount, a method of detecting an abnormality in the absorption chiller-heater. It consists of a preliminary step of calculating the offset amount, and a main step of correcting the heat exchange amount by the offset amount calculated thereby and detecting an abnormality of the absorption chiller-heater based on the corrected heat exchange amount. .

【0014】具体的構成において、前記予備ステップ
は、特定の熱交換器についての熱交換量を異なる冷凍負
荷にて測定し、冷凍負荷を第1軸、熱交換量を第2軸と
する直交座標系にて、熱交換量の変化を座標上に表わす
第1ステップと、前記座標上に表わされた熱交換量の変
化を直線で近似して、該直線が第2軸を横切る切片dを
求め、これをオフセット量として主ステップの処理へ引
き渡す第2ステップとを有している。
In a specific configuration, in the preliminary step, the heat exchange amount of a specific heat exchanger is measured under different refrigerating loads, and the refrigerating load is a first axis and the heat exchanging amount is a second axis. In the system, the first step of expressing the change of the heat exchange amount on the coordinate and the change of the heat exchange amount expressed on the coordinate are approximated by a straight line, and the intercept d where the straight line crosses the second axis is obtained. There is a second step of obtaining and offsetting this as the offset amount to the processing of the main step.

【0015】更に本発明に係る吸収式冷温水機の第2の
異常検出方法は、複数の熱交換器を相互に配管接続して
なる吸収式冷温水機を対象として、特定の熱交換器にお
ける熱交換量と、熱交換器出入口における流体の温度に
よって定義される温度差データと、吸収式冷温水機の冷
凍負荷とを測定し、これらの測定データに基づいて、吸
収式冷温水機の異常を検出する方法であって、異常検出
に先立って、冷凍負荷との関係で熱交換量に含まれるオ
フセット量を算出する第1予備ステップと、熱交換量と
の関係で温度差データに含まれるオフセット量を算出す
る第2予備ステップと、前記第1及び第2予備ステップ
にて算出された2つのオフセット量を温度差データにつ
いて合成し、合成オフセット量を算出する第3予備ステ
ップと、異常検出に際して、合成オフセット量だけ温度
差データを補正し、補正された温度差データに基づいて
吸収式冷温水機の異常を検出する主ステップとから構成
される。
Further, a second abnormality detecting method for an absorption chiller-heater according to the present invention is intended for an absorption chiller-heater having a plurality of heat exchangers connected to each other by pipes, in a specific heat exchanger. The amount of heat exchange, temperature difference data defined by the temperature of the fluid at the inlet and outlet of the heat exchanger, and the refrigeration load of the absorption chiller-heater were measured, and based on these measurement data, the abnormality of the absorption chiller-heater A first preliminary step of calculating the offset amount included in the heat exchange amount in relation to the refrigeration load and the temperature difference data in relation to the heat exchange amount prior to the abnormality detection. A second preliminary step of calculating an offset amount, a third preliminary step of combining the two offset amounts calculated in the first and second preliminary steps with respect to the temperature difference data, and calculating a combined offset amount, and abnormality detection Saishi and composed of a main step only synthetic offset the temperature difference data is corrected, it detects abnormality of the corrected temperature difference absorbing chiller based on the data.

【0016】[0016]

【作用】上記熱交換器の異常検出方法においては、先
ず、予備ステップにて、熱量データ(例えば熱交換量)が
変化している状態で熱交換器出入口の温度を測定して、
温度差データ(例えば対数平均温度差)を算出する。そし
て、熱量データに対する温度差データの変化から、熱量
データが零のときの温度差データ、即ち温度差データに
含まれるオフセット量を推定する。その後、主ステップ
では、熱交換器出入口の温度を測定しつつ、これらの測
定データから温度差データを算出する。そして、予備ス
テップで得られたオフセット量だけ温度差データを補正
する。これによって得られる温度差データは、オフセッ
トの無い温度センサによる測定データから計算した温度
差データと一致することになる。
In the above heat exchanger abnormality detection method, first, in the preliminary step, the temperature of the heat exchanger inlet / outlet is measured while the heat quantity data (for example, heat exchange quantity) is changing,
Temperature difference data (for example, logarithmic average temperature difference) is calculated. Then, from the change in the temperature difference data with respect to the heat amount data, the temperature difference data when the heat amount data is zero, that is, the offset amount included in the temperature difference data is estimated. Then, in the main step, the temperature difference data is calculated from these measurement data while measuring the temperature at the inlet and outlet of the heat exchanger. Then, the temperature difference data is corrected by the offset amount obtained in the preliminary step. The temperature difference data obtained by this coincides with the temperature difference data calculated from the measurement data obtained by the temperature sensor having no offset.

【0017】前記予備ステップの具体的構成において
は、熱量データを第1軸(横軸)、温度差データを第2軸
(縦軸)にとって、温度差データをプロットすると、2つ
のデータ間には直線関係が成立する。仮に全ての温度セ
ンサーにオフセットがなければ、その直線は座標原点を
通過するが、オフセットが存在する場合は、前記直線は
第2軸を横切ることになる。この第2軸の切片dが、温
度差データについてのオフセット量となる(図3参照)。
In the specific configuration of the preliminary step, the heat quantity data is the first axis (horizontal axis) and the temperature difference data is the second axis.
When plotting the temperature difference data on the (vertical axis), a linear relationship is established between the two data. If all the temperature sensors had no offset, the straight line would pass the coordinate origin, but if there was an offset, the straight line would cross the second axis. This second axis intercept d is the offset amount for the temperature difference data (see FIG. 3).

【0018】上記吸収式冷温水機の第1の異常検出方法
においては、先ず、予備ステップにて、冷凍負荷が変化
している状態で熱交換器出入口の温度と流量を測定し
て、熱交換量を算出する。そして、冷凍負荷に対する熱
交換量の変化から、冷凍負荷が零のときの熱交換量、即
ち熱交換量に含まれるオフセット量を推定する。その
後、主ステップでは、熱交換器出入口の温度と流量を測
定しつつ、これらの測定データから熱交換量を算出す
る。そして、予備ステップで得られたオフセット量だけ
熱交換量を補正する。これによって得られる熱交換量
は、オフセットの無い温度センサによる測定データから
計算した熱交換量と一致することになる。
In the first abnormality detecting method for the absorption chiller-heater, first, in a preliminary step, the temperature and flow rate at the inlet and outlet of the heat exchanger are measured while the refrigerating load is changed to perform heat exchange. Calculate the amount. Then, from the change in the heat exchange amount with respect to the refrigeration load, the heat exchange amount when the refrigeration load is zero, that is, the offset amount included in the heat exchange amount is estimated. Then, in the main step, the heat exchange amount is calculated from these measurement data while measuring the temperature and the flow rate at the heat exchanger inlet and outlet. Then, the heat exchange amount is corrected by the offset amount obtained in the preliminary step. The heat exchange amount thus obtained matches the heat exchange amount calculated from the measurement data obtained by the temperature sensor having no offset.

【0019】前記予備ステップの具体的構成において
は、冷凍負荷を第1軸(横軸)、熱交換量を第2軸(縦軸)
にとって、熱交換量をプロットすると、2つのデータ間
には直線関係が成立する。仮に全ての温度センサーにオ
フセットがなければ、その直線は座標原点を通過する
が、オフセットが存在する場合は、前記直線は第2軸を
横切ることになる。この第2軸の切片d′が熱交換量に
ついてのオフセット量となる(図6参照)。
In the specific structure of the preliminary step, the refrigeration load is the first axis (horizontal axis) and the heat exchange amount is the second axis (vertical axis).
Therefore, when the amount of heat exchange is plotted, a linear relationship is established between the two data. If all the temperature sensors had no offset, the straight line would pass the coordinate origin, but if there was an offset, the straight line would cross the second axis. This second axis intercept d'is the offset amount for the heat exchange amount (see FIG. 6).

【0020】上記吸収式冷温水機の第2の異常検出方法
は、上記第1の異常検出方法の如く冷凍負荷と熱交換量
の関係で熱交換量に含まれるオフセット量を算出すると
共に、上記熱交換器の異常検出方法の如く熱交換量と温
度差データの関係で温度差データに含まれるオフセット
量を算出し、両オフセット量を合成するものである。該
合成オフセット量は、冷凍負荷との関係で温度差データ
に含まれるオフセット量となり、該合成オフセット量に
よる補正を施した温度差データは、オフセットの無い温
度センサによる測定データから計算した温度差データと
一致することになる。
The second abnormality detecting method for the absorption chiller-heater is to calculate the offset amount contained in the heat exchange amount based on the relationship between the refrigerating load and the heat exchange amount, as in the first abnormality detecting method. The offset amount included in the temperature difference data is calculated based on the relationship between the heat exchange amount and the temperature difference data as in the abnormality detecting method of the heat exchanger, and both offset amounts are combined. The combined offset amount becomes an offset amount included in the temperature difference data in relation to the refrigeration load, and the temperature difference data corrected by the combined offset amount is the temperature difference data calculated from the measurement data obtained by the temperature sensor having no offset. Will match.

【0021】[0021]

【発明の効果】本発明に係る熱交換器及び吸収式冷温水
機の異常検出方法によれば、各温度センサーについての
個別のオフセット調整を行なうことなく、1つの熱交換
器についての温度差データ或いは熱交換量に含まれるオ
フセット量を算出して、熱交換器毎に一括してオフセッ
ト調整を行なうことが出来る。従って、従来に比べてオ
フセット調整が簡易となる。又、異常判断の直接の指標
となる温度差データや熱交換量に対してオフセット調整
を施すから、個々の温度センサーにオフセット調整を施
す場合に比べて、精度の高い指標を得ることが出来、正
確な異常判断が可能となる。
According to the heat exchanger and the abnormality detecting method for the absorption chiller-heater according to the present invention, the temperature difference data for one heat exchanger can be obtained without adjusting the offset individually for each temperature sensor. Alternatively, the offset amount included in the heat exchange amount can be calculated, and the offset adjustment can be collectively performed for each heat exchanger. Therefore, the offset adjustment becomes easier than in the conventional case. Further, since the offset adjustment is performed on the temperature difference data and the heat exchange amount, which are direct indicators of abnormality determination, it is possible to obtain a highly accurate indicator as compared with the case where the offset adjustment is performed on each temperature sensor. Accurate abnormality determination is possible.

【0022】[0022]

【実施例】以下、本発明を吸収式冷温水機に実施した例
につき、図面に沿って詳述する。 第1実施例 図1の如く、冷温水機本体(10)には、各部の温度や圧力
を測定するためのセンサー群(7)が配備されている。セ
ンサー群(7)の測定データは制御装置(8)へ送出され
て、冷温水機本体(10)の制御に供される。
EXAMPLE An example in which the present invention is applied to an absorption chiller / heater
This will be described in detail with reference to the drawings. First embodiment As shown in Fig. 1, the chiller / heater body (10) has a temperature and pressure of each part.
A sensor group (7) for measuring is provided. SE
The measurement data of the sensor group (7) is sent to the control device (8).
And is used for controlling the main body (10) of the chiller / heater.

【0023】制御装置(8)には、センサー群(7)の測定
データに基づいて各種の異常や故障を判定する故障判定
回路(81)が設けられており、判定結果はディスプレイ、
警報器、プリンタ等の報知装置(9)へ出力される。
The controller (8) is provided with a failure judgment circuit (81) for judging various abnormalities and failures based on the measurement data of the sensor group (7).
It is output to a notification device (9) such as an alarm device and a printer.

【0024】又、制御装置(8)には、オフセット算出回
路(83)及びスタートボタン(82)が接続されおり、スター
トボタン(82)が操作されると、オフセット算出回路(83)
が起動されて、後述の如く対数平均温度差や熱交換量に
含まれるオフセット量が算出される。算出されたオフセ
ット量は制御装置(8)の故障判定回路(81)へ送出され
て、故障判定のための演算処理に供される。
An offset calculation circuit (83) and a start button (82) are connected to the control device (8), and when the start button (82) is operated, the offset calculation circuit (83).
Is started, and the offset amount included in the logarithmic average temperature difference and the heat exchange amount is calculated as described later. The calculated offset amount is sent to the failure determination circuit (81) of the control device (8) and is used for the arithmetic processing for failure determination.

【0025】例えば図8に示す高温熱交換器(4)、低温
熱交換器(5)、凝縮器(11)、或いは吸収器(22)等の各種
熱交換器を対象として、これらの熱交換器の異常を検出
する場合、熱交換量Qと対数平均温度差ΔTの関係を調
べる。対数平均温度差ΔTは、下記数3の如く、熱抵抗
を表わす比例係数kと熱交換量Qの積で表わすことが出
来、例えば比例係数kが異常に大きくなったときは、伝
熱面の汚れ等、異常の発生を判定することが出来る。
For example, various heat exchangers such as the high temperature heat exchanger (4), the low temperature heat exchanger (5), the condenser (11), or the absorber (22) shown in FIG. When detecting the abnormality of the vessel, the relationship between the heat exchange amount Q and the logarithmic average temperature difference ΔT is examined. The logarithmic average temperature difference ΔT can be expressed by the product of the proportional coefficient k representing the thermal resistance and the heat exchange amount Q, as shown in the following Expression 3. For example, when the proportional coefficient k becomes abnormally large, It is possible to determine the occurrence of abnormalities such as dirt.

【数3】ΔT=k×Q[Formula 3] ΔT = k × Q

【0026】しかし、対数平均温度差に温度センサーの
オフセットに起因する誤差が含まれる場合は、上記数3
は成立せず、この関係に基づいて異常診断を行なうとす
ると、その信頼性は低いものとなる。
However, when the error due to the offset of the temperature sensor is included in the logarithmic average temperature difference, the above equation 3 is used.
Is not established, and if abnormality diagnosis is performed based on this relationship, its reliability will be low.

【0027】例えば図3(a)の如く横軸に熱交換量、縦
軸に対数平均温度差をとって、対数平均温度差をプロッ
トすると、図3(b)の如く熱交換量と対数平均温度差の
間には直線関係が得られるが、その直線は原点を通過し
ない。この場合、対数平均温度差ΔT′は、オフセット
量をdとして、下記数4で表わすことが出来る。
For example, when the heat exchange amount is plotted on the horizontal axis and the logarithmic average temperature difference is plotted on the vertical axis as shown in FIG. 3 (a) and the logarithmic average temperature difference is plotted, the heat exchange amount and the logarithmic average are plotted as shown in FIG. A linear relationship is obtained between the temperature differences, but the straight line does not pass through the origin. In this case, the logarithmic average temperature difference ΔT ′ can be expressed by the following expression 4 with the offset amount being d.

【数4】ΔT′=k×Q+d## EQU4 ## ΔT '= k × Q + d

【0028】このオフセット量dは、複数の温度センサ
ーが有する個々のオフセットを1つの熱交換器について
合成したものと考えることが出来る。そこで本発明にお
いては、オフセット量dを算出するべく、先ず、熱交換
量が変化する過程で対数平均温度差を算出して、図3
(a)の如く対数平均温度差をプロットする。次に、図3
(b)の如く、予め判明している比例係数kの傾きを有す
る直線を用いて、対数平均温度差の変化を近似する。比
例係数kは、例えば熱交換器の設計仕様から決定するこ
とが可能である。又、直線の高さ位置は、最小自乗法等
を用いて決定することが出来る。尚、データ数が充分に
多い場合には、直線の傾きkも含めて最小自乗法で決定
することも可能である。
The offset amount d can be considered to be a combination of individual offsets of a plurality of temperature sensors for one heat exchanger. Therefore, in the present invention, in order to calculate the offset amount d, first, the logarithmic average temperature difference is calculated in the process of changing the heat exchange amount,
Plot the logarithmic mean temperature difference as in (a). Next, FIG.
As shown in (b), the straight line having the slope of the proportional coefficient k which is known in advance is used to approximate the change in the logarithmic average temperature difference. The proportionality coefficient k can be determined from the design specifications of the heat exchanger, for example. Further, the height position of the straight line can be determined by using the least square method or the like. When the number of data is sufficiently large, it is possible to determine the slope k of the straight line by the least square method.

【0029】続いて、図3(c)の如く前記直線(鎖線で
示す)が縦軸を横切る切片を求め、これをオフセット量
dとする。該オフセット量だけ直線をスライドさせれ
ば、実線で示す如く原点を通る直線が得られ、該直線
は、上記数3の関係式で表わされるものとなる。そこ
で、異常検出の際には、各温度センサーについては個別
のオフセット調整を省略し、各温度センサーからの測定
データに基づいて対数平均温度差を算出した後、該対数
平均温度差に対して、前記オフセット量dによる補正を
施すのである。
Subsequently, as shown in FIG. 3C, an intercept where the straight line (shown by a chain line) crosses the vertical axis is obtained, and this is taken as an offset amount d. If the straight line is slid by the offset amount, a straight line passing through the origin is obtained as shown by the solid line, and the straight line is expressed by the relational expression of the above mathematical expression 3. Therefore, when detecting an abnormality, individual offset adjustment is omitted for each temperature sensor, and after calculating the logarithmic average temperature difference based on the measurement data from each temperature sensor, with respect to the logarithmic average temperature difference, The correction is performed by the offset amount d.

【0030】図4は、凝縮器(11)を対象として異常検出
を行なう場合のオフセット調整方法を示している。尚、
凝縮器に流入する冷却水の流量は一定とする。この場
合、凝縮器に流入する冷却水の出入口の温度差と対数平
均温度差の間には、比例関係が成立する。そこで冷却水
温度差を測定しつつ、温度センサーから得られる温度デ
ータに基づいて対数平均温度差を算出し、図示の如く対
数平均温度差をプロットする。
FIG. 4 shows an offset adjusting method in the case of performing abnormality detection for the condenser (11). still,
The flow rate of cooling water flowing into the condenser is constant. In this case, a proportional relationship is established between the temperature difference between the inlet and outlet of the cooling water flowing into the condenser and the logarithmic average temperature difference. Therefore, while measuring the cooling water temperature difference, the logarithmic average temperature difference is calculated based on the temperature data obtained from the temperature sensor, and the logarithmic average temperature difference is plotted as illustrated.

【0031】次に、鎖線で示す様に対数平均温度差の変
化を直線近似し、該直線が縦軸を横切る切片を求め、該
切片をオフセット量dとする。そして、異常検出の際に
は、前記同様に対数平均温度差を前記オフセット量dだ
け補正するのである。
Next, as shown by the chain line, the change in the logarithmic mean temperature difference is linearly approximated, the intercept where the straight line crosses the vertical axis is obtained, and the intercept is taken as the offset amount d. Then, when an abnormality is detected, the logarithmic average temperature difference is corrected by the offset amount d as in the above.

【0032】図5は、冷却水温度差及び対数平均温度差
のサンプリング方法に工夫を施したものであって、予め
冷却水温度差を複数の領域L1〜L5に区分して、各領
域についてのデータ数が均一となる様、データ採取を行
なう。これによって、対数平均温度差の直線近似がより
正確となり、オフセット量dの計算精度が向上する。
FIG. 5 shows a device in which the sampling method of the cooling water temperature difference and the logarithmic average temperature difference is devised, and the cooling water temperature difference is divided into a plurality of regions L1 to L5 in advance, and Collect data so that the number of data is uniform. As a result, the linear approximation of the logarithmic average temperature difference becomes more accurate, and the calculation accuracy of the offset amount d improves.

【0033】第2実施例 ところで、図3に示すグラフの横軸となる熱交換量は、
流体の流量と温度差の積によって算出することが出来
る。この場合、温度差は温度センサーによって測定する
必要があるので、熱交換量にも、温度センサーの誤差に
起因するオフセットが含まれることになる。吸収式冷温
水機においては、吸収器や凝縮器における熱交換量と、
蒸発器の冷水出入口温度差及び冷水流量から計算される
冷凍負荷の間には、図6の如く比例関係が成立する。そ
こで、図6に示す実施例においては、吸収式冷温水機の
冷凍負荷との関係で、熱交換器(吸収器或いは凝縮器)の
熱交換量に含まれるオフセット量を算出し、熱交換量を
補正する。
Second Embodiment By the way, the heat exchange amount on the horizontal axis of the graph shown in FIG.
It can be calculated by the product of the fluid flow rate and the temperature difference. In this case, since the temperature difference needs to be measured by the temperature sensor, the heat exchange amount also includes the offset due to the error of the temperature sensor. In the absorption chiller-heater, the amount of heat exchange in the absorber and condenser,
A proportional relationship is established between the cold water inlet / outlet temperature difference of the evaporator and the refrigeration load calculated from the cold water flow rate as shown in FIG. Therefore, in the embodiment shown in FIG. 6, the offset amount included in the heat exchange amount of the heat exchanger (absorber or condenser) is calculated in relation to the refrigeration load of the absorption chiller-heater, and the heat exchange amount is calculated. To correct.

【0034】先ず、図6に示す様に、冷凍負荷が変化す
る過程で熱交換器出入口の流体温度と流量を測定して、
熱交換量を算出し、熱交換量の変化をプロットする。次
に、鎖線で示す様に熱交換量の変化を直線近似し、該直
線が縦軸を横切る切片を求め、これをオフセット量d′
とする。該オフセット量だけ直線をスライドさせれば、
実線で示す如く原点を通る直線が得られる。異常検出の
際には、各温度センサーについては個別のオフセット調
整を省略し、各温度センサーからの測定データに基づい
て熱交換量を算出した後、該熱交換量に対して、前記オ
フセット量d′による補正を施すのである
First, as shown in FIG. 6, the fluid temperature and flow rate at the inlet and outlet of the heat exchanger are measured in the process of changing the refrigeration load,
The heat exchange amount is calculated and the change in the heat exchange amount is plotted. Next, as shown by the chain line, the change in the heat exchange amount is approximated to a straight line, and the intercept where the straight line crosses the vertical axis is obtained.
And If you slide the straight line by the offset amount,
A straight line passing through the origin is obtained as shown by the solid line. When detecting an abnormality, the offset adjustment for each temperature sensor is omitted, the heat exchange amount is calculated based on the measurement data from each temperature sensor, and then the offset amount d is calculated with respect to the heat exchange amount. It is corrected by '

【0035】図7は、冷凍負荷及び熱交換量のサンプリ
ング方法に工夫を施したものであって、予め冷凍負荷を
複数の領域L1〜L5に区分して、各領域についてのデ
ータ数が均一となる様、データ採取を行なう。これによ
って、熱交換量の直線近似がより正確となり、オフセッ
ト量d′の計算精度が向上する。
FIG. 7 shows a refrigeration load and a heat exchange amount sampling method devised. The refrigeration load is divided into a plurality of regions L1 to L5 in advance so that the number of data in each region is uniform. Data collection will be done. As a result, the linear approximation of the heat exchange amount becomes more accurate, and the calculation accuracy of the offset amount d'is improved.

【0036】尚、冷凍負荷の算出においては、冷水の出
入口温度差の測定データが必要となるが、一般に吸収式
冷温水機においては、凝縮器や吸収器に比べて、蒸発器
の出入口には高精度の温度センサーが配備されるから、
冷凍負荷に含まれるオフセット量は無視し得る。
In the calculation of the refrigeration load, measurement data of the temperature difference between the inlet and outlet of cold water is required. Generally, however, in the absorption chiller-heater, the inlet and outlet of the evaporator are different from those of the condenser and the absorber. Since a highly accurate temperature sensor is deployed,
The offset amount included in the refrigeration load can be ignored.

【0037】第3実施例 本実施例は、上記第2実施例における熱交換量について
のオフセット量を用いて熱交換量を補正すると共に、こ
の補正された熱交換量を用いて、上記第1実施例におけ
る対数平均温度差のオフセット量を算出し、より精度の
高い対数平均温度差を得るものである。
Third Embodiment In this embodiment, the heat exchange amount is corrected by using the offset amount for the heat exchange amount in the second embodiment, and the corrected heat exchange amount is used to perform the first operation. The offset amount of the logarithmic average temperature difference in the example is calculated to obtain a more accurate logarithmic average temperature difference.

【0038】即ち、熱交換量Qにはオフセット量d′が
含まれているから、上記数4から下記数5が得られる。
ここで、Lcは冷凍負荷、k′は比例定数である。
That is, since the heat exchange amount Q includes the offset amount d ', the following equation 5 is obtained from the above equation 4.
Here, Lc is a refrigerating load, and k'is a proportional constant.

【数5】ΔT′=k・Q+d=k・(k′・Lc+d′)+
d=k・k′・Lc+k・d′+d
## EQU5 ## ΔT '= k.Q + d = k. (K'.Lc + d') +
d = k · k ′ · Lc + k · d ′ + d

【0039】ここで、合成オフセット量d″、合成比例
係数k″を下記数6の如く定義すると、数5は下記数7
の如く表わすことが出来る。
Here, when the combined offset amount d ″ and the combined proportional coefficient k ″ are defined as shown in the following equation 6, the following equation 5 is obtained.
Can be expressed as

【数6】d″=k・d′+d k″=k・k′[Equation 6] d ″ = k · d ′ + d k ″ = k · k ′

【数7】ΔT′=k″・Lc+d″[Equation 7] ΔT ′ = k ″ · Lc + d ″

【0040】従って、予め対数平均温度及び熱交換量の
オフセット量を測定データから算出し、その後の故障診
断においては、合成オフセット量d″を用いて対数平均
温度差を補正すれば、より正確な診断が可能となる。
Therefore, if the logarithmic average temperature and the offset amount of the heat exchange amount are calculated in advance from the measured data and the logarithmic average temperature difference is corrected by using the combined offset amount d ″ in the subsequent failure diagnosis, a more accurate result can be obtained. Diagnosis is possible.

【0041】図2は、上記の合成オフセット量に基づく
オフセット調整手続き(予備ステップS1〜S5)と、そ
の後の故障診断手続き(主ステップS6〜S10)を表わ
している。図1に示すスタートボタン(82)がオン操作さ
れると、先ず図2のステップS1にて、冷温水機本体各
部の温度、流量、圧力等の所定の測定値が計測される。
FIG. 2 shows the offset adjustment procedure (preliminary steps S1 to S5) based on the above-mentioned combined offset amount and the subsequent failure diagnosis procedure (main steps S6 to S10). When the start button (82) shown in FIG. 1 is turned on, first, in step S1 of FIG. 2, predetermined measured values such as temperature, flow rate, and pressure of each part of the chiller / hot water main unit are measured.

【0042】次にステップS2にて、オフセットが既に
算定されているかどうかを判断し、NOの場合はステッ
プS3へ移行する。ステップS3では、ステップS1で
得られた測定値から対数平均温度差ΔT、熱交換量Q、
及び冷凍負荷Lcを導出する。
Next, in step S2, it is determined whether or not the offset has already been calculated, and if NO, the process proceeds to step S3. In step S3, the logarithmic average temperature difference ΔT, the heat exchange amount Q, and the measured value obtained in step S1
And the refrigeration load Lc are derived.

【0043】次にステップS4にて、図3の如く対数平
均温度差と熱交換量の関係を導出すると共に、図6に示
す如く熱交換量と冷凍負荷の関係を導出する。そして、
ステップS5にて、対数平均温度差と熱交換量の関係、
及び熱交換量と冷凍負荷の関係から夫々、対数平均温度
差のオフセット量d、及び熱交換量のオフセット量d′
を導出する。その後、次の測定サンプリング周期に移行
して、冷温水機本体各部の温度、流量、圧力等の所定の
測定値を計測し、ステップS2の判断に戻る。
Next, in step S4, the relationship between the logarithmic average temperature difference and the heat exchange amount is derived as shown in FIG. 3, and the relationship between the heat exchange amount and the refrigeration load is derived as shown in FIG. And
In step S5, the relationship between the logarithmic mean temperature difference and the heat exchange amount,
And the offset amount d of the logarithmic mean temperature difference and the offset amount d'of the heat exchange amount, respectively, from the relationship between the heat exchange amount and the refrigeration load.
Derive. After that, the process shifts to the next measurement sampling period, and predetermined measurement values such as the temperature, the flow rate, and the pressure of each part of the chiller heater are measured, and the process returns to the determination of step S2.

【0044】ステップS2にてYESと判断されると、
ステップS7へ移行し、ステップS5で得られた対数平
均温度差のオフセットと熱交換量のオフセットを用い
て、合成オフセット量d″を算出し、該合成オフセット
量d″によって対数平均温度差を補正する。
If YES is determined in step S2,
The process proceeds to step S7, the combined offset amount d ″ is calculated using the offset of the logarithmic average temperature difference and the offset of the heat exchange amount obtained in step S5, and the logarithmic average temperature difference is corrected by the combined offset amount d ″. To do.

【0045】次にステップS8にて、補正された対数平
均温度差を用いて、例えば熱交換量を対数平均温度差で
除して得られる熱抵抗値等、個々の熱交換器及び冷温水
機本体についての種々の故障判定指標を計算する。そし
て、ステップS9にて、ステップS8で計算された判定
指標を評価し、その結果に基づいて、必要な故障診断判
定処理を行なう。その後、ステップS10にて、判定結
果を図1の報知装置(9)へ出力する。
Next, in step S8, using the corrected logarithmic mean temperature difference, for example, a heat resistance value obtained by dividing the amount of heat exchange by the logarithmic mean temperature difference, the individual heat exchangers and the cold / hot water machines. Calculate various failure indicators for the body. Then, in step S9, the determination index calculated in step S8 is evaluated, and necessary failure diagnosis determination processing is performed based on the result. Then, in step S10, the determination result is output to the notification device (9) in FIG.

【0046】図1の異常検出装置によれば、運転監視員
が必要に応じてスタートボタン(82)を操作するだけで、
熱交換器の対数平均温度差に対して自動的にオフセット
調整が施され、正確な故障判定結果が出力されるから、
故障発生時には、適確且つ迅速な対処が可能となる。
According to the abnormality detecting device of FIG. 1, the operation supervisor simply operates the start button (82) as necessary,
Offset adjustment is automatically applied to the logarithmic mean temperature difference of the heat exchanger, and accurate failure determination results are output,
When a failure occurs, it is possible to take appropriate and prompt measures.

【0047】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。例えば、熱交換器の異常判定を行なう際の
指標となる温度差データとしては、対数平均温度差の
他、単なる温度差や、必要に応じて任意に定義した温度
差等も採用可能である。
The above description of the embodiments is for explaining the present invention and should not be construed as limiting the invention described in the claims or reducing the scope. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims. For example, as the temperature difference data serving as an index when determining the abnormality of the heat exchanger, not only the logarithmic average temperature difference but also a simple temperature difference, a temperature difference arbitrarily defined as necessary, and the like can be adopted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した吸収式冷温水機の異常検出装
置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an abnormality detection device for an absorption chiller-heater embodying the present invention.

【図2】上記異常検出装置の動作を表わすフローチャー
トである。
FIG. 2 is a flowchart showing an operation of the abnormality detection device.

【図3】熱交換量との関係で対数平均温度差のオフセッ
ト量を求める手順を示す一連のグラフである。
FIG. 3 is a series of graphs showing the procedure for obtaining the offset amount of the logarithmic average temperature difference in relation to the heat exchange amount.

【図4】冷却水温度差との関係で対数平均温度差のオフ
セット量を求める方法を示すグラフである。
FIG. 4 is a graph showing a method of obtaining an offset amount of a logarithmic average temperature difference in relation to a cooling water temperature difference.

【図5】冷却水温度差との関係で対数平均温度差のオフ
セット量を求める他の方法を示すグラフである。
FIG. 5 is a graph showing another method for obtaining the offset amount of the logarithmic average temperature difference in relation to the cooling water temperature difference.

【図6】冷凍負荷との関係で熱交換量のオフセット量を
求める方法を示すグラフである。
FIG. 6 is a graph showing a method for obtaining an offset amount of a heat exchange amount in relation to a refrigeration load.

【図7】冷凍負荷との関係で熱交換量のオフセット量を
求める他の方法を示すグラフである。
FIG. 7 is a graph showing another method for obtaining the offset amount of the heat exchange amount in relation to the refrigeration load.

【図8】本発明を実施すべき吸収式冷温水機の構成を示
す図である。
FIG. 8 is a diagram showing a configuration of an absorption chiller-heater to which the present invention is applied.

【符号の説明】[Explanation of symbols]

(10) 冷温水機本体 (7) センサー群 (8) 制御装置 (81) 故障判定回路 (9) 報知装置 (82) スタートボタン (83) オフセット算出回路 (10) Water-cooling machine body (7) Sensor group (8) Control device (81) Failure determination circuit (9) Notification device (82) Start button (83) Offset calculation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 昌司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Yasuda 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の流体が流入して相互の熱交換を行
なう熱交換器を対象として、熱交換量或いは熱交換量を
一義的に表わす他の物理量(熱量データQ)と、前記複数
の流体の熱交換器出入口での温度によって定義される温
度差データΔTとを測定し、熱量データQと温度差デー
タΔTの相互関係に基づいて、熱交換器の異常を検出す
る方法において、異常検出に先立って、温度差データの
オフセット量を算出する予備ステップと、これによって
算出されたオフセット量だけ温度差データを補正し、補
正された温度差データに基づいて熱交換器の異常を検出
する主ステップとからなる熱交換器の異常検出方法。
1. For a heat exchanger in which a plurality of fluids flow into each other to exchange heat with each other, a heat exchange amount or another physical amount (heat amount data Q) uniquely representing the heat exchange amount and the plurality of the plurality of fluids. In the method of measuring the temperature difference data ΔT defined by the temperature of the fluid at the inlet and outlet of the heat exchanger, and detecting the abnormality of the heat exchanger based on the mutual relationship between the heat quantity data Q and the temperature difference data ΔT. Prior to this, a preliminary step of calculating the offset amount of the temperature difference data, correcting the temperature difference data by the offset amount calculated thereby, and detecting the abnormality of the heat exchanger based on the corrected temperature difference data A heat exchanger abnormality detection method comprising steps.
【請求項2】 前記予備ステップは、 前記複数の流体の熱交換器出入口での温度を異なる熱量
データにて測定し、これらの測定データから熱量データ
毎の温度差データを算出して、熱量データを第1軸、温
度差データを第2軸とする直交座標系にて、温度差デー
タの変化を座標上に表わす第1ステップと、 前記座標上に表わされた温度差データの変化を直線で近
似して、該直線が第2軸を横切る切片dを求め、これを
オフセット量として主ステップの処理へ引き渡す第2ス
テップとを有している請求項1に記載の異常検出方法。
2. The preliminary step measures the temperatures of the plurality of fluids at the inlet and outlet of the heat exchanger with different calorific value data, calculates temperature difference data for each calorific value data from the measured data, and calculates the calorific value data. In the Cartesian coordinate system with the first axis as the first axis and the temperature difference data as the second axis, the first step of expressing the change of the temperature difference data on the coordinates and the change of the temperature difference data expressed on the coordinates by a straight line. And the second step of passing the intercept d as an offset amount to the main step processing.
【請求項3】 複数の熱交換器を相互に配管接続してな
る吸収式冷温水機を対象として、冷凍負荷と特定の熱交
換器における熱交換量とを測定し、冷凍負荷と熱交換量
の相互関係に基づいて、吸収式冷温水機の異常を検出す
る方法において、異常検出に先立って、熱交換量のオフ
セット量を算出する予備ステップと、これによって算出
されたオフセット量だけ熱交換量を補正し、補正された
熱交換量に基づいて吸収式冷温水機の異常を検出する主
ステップとからなる吸収式冷温水機の異常検出方法。
3. A refrigeration load and a heat exchange amount in a specific heat exchanger are measured for an absorption chiller / hot water machine in which a plurality of heat exchangers are connected to each other by piping, and the refrigeration load and the heat exchange amount are measured. In the method of detecting an abnormality of the absorption chiller-heater based on the mutual relationship of, the preliminary step of calculating the offset amount of the heat exchange amount before the abnormality detection, and the heat exchange amount by the offset amount calculated by this And a main step of detecting an abnormality of the absorption chiller-heater based on the corrected heat exchange amount.
【請求項4】 前記予備ステップは、 特定の熱交換器についての熱交換量を異なる冷凍負荷に
て測定し、冷凍負荷を第1軸、熱交換量を第2軸とする
直交座標系にて、熱交換量の変化を座標上に表わす第1
ステップと、 前記座標上に表わされた熱交換量の変化を直線で近似し
て、該直線が第2軸を横切る切片dを求め、これをオフ
セット量として主ステップの処理へ引き渡す第2ステッ
プとを有している請求項3に記載の異常検出方法。
4. The preliminary step measures the heat exchange amount of a specific heat exchanger under different refrigerating loads, and uses a rectangular coordinate system with the refrigerating load as the first axis and the heat exchange amount as the second axis. , Showing the change in heat exchange on the coordinates
Step, and a change in the amount of heat exchange represented on the coordinates is approximated by a straight line to obtain an intercept d at which the straight line crosses the second axis, and this is passed as an offset amount to the main step processing. The abnormality detection method according to claim 3, further comprising:
【請求項5】 複数の熱交換器を相互に配管接続してな
る吸収式冷温水機を対象として、特定の熱交換器におけ
る熱交換量と、熱交換器出入口における流体の温度によ
って定義される温度差データと、吸収式冷温水機の冷凍
負荷とを測定し、これらの測定データに基づいて、吸収
式冷温水機の異常を検出する方法において、異常検出に
先立って、冷凍負荷との関係で熱交換量に含まれるオフ
セット量を算出する第1予備ステップと、熱交換量との
関係で温度差データに含まれるオフセット量を算出する
第2予備ステップと、前記第1及び第2予備ステップに
て算出された2つのオフセット量を温度差データについ
て合成し、合成オフセット量を算出する第3予備ステッ
プと、異常検出に際して、合成オフセット量だけ温度差
データを補正し、補正された温度差データに基づいて吸
収式冷温水機の異常を検出する主ステップとからなる吸
収式冷温水機の異常検出方法。
5. An absorption chiller-heater having a plurality of heat exchangers connected to each other by pipes is defined by a heat exchange amount in a specific heat exchanger and a fluid temperature at a heat exchanger inlet / outlet port. In the method of measuring the temperature difference data and the refrigerating load of the absorption chiller-heater, and detecting the abnormality of the absorption chiller-heater based on these measurement data, prior to the abnormality detection, the relationship with the refrigerating load A first preliminary step for calculating the offset amount included in the heat exchange amount, a second preliminary step for calculating the offset amount included in the temperature difference data in relation to the heat exchange amount, and the first and second preliminary steps In the third preliminary step of synthesizing the two offset amounts calculated in step 3 with respect to the temperature difference data and calculating the synthetic offset amount, and when detecting an abnormality, the temperature difference data is corrected by the combined offset amount and corrected. An abnormality detection method for an absorption chiller-heater comprising the main steps of detecting an abnormality of the absorption chiller-heater based on corrected temperature difference data.
JP6140856A 1994-02-23 1994-05-30 Malfunction detecting method for heat exchanger and absorption type hot and chilled water generator Pending JPH07324851A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6140856A JPH07324851A (en) 1994-05-30 1994-05-30 Malfunction detecting method for heat exchanger and absorption type hot and chilled water generator
US08/392,332 US5623426A (en) 1994-02-23 1995-02-22 Failure diagnosing system for absorption chillers
CNB951006517A CN1154824C (en) 1994-02-23 1995-02-23 Failure diagnosing system for absorption chillers
KR1019950008214A KR100317155B1 (en) 1994-05-19 1995-04-08 Fault diagnosis system of absorption chiller
CNB01117613XA CN1153035C (en) 1994-02-23 2001-05-05 Absorption refrigerating machine fault diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140856A JPH07324851A (en) 1994-05-30 1994-05-30 Malfunction detecting method for heat exchanger and absorption type hot and chilled water generator

Publications (1)

Publication Number Publication Date
JPH07324851A true JPH07324851A (en) 1995-12-12

Family

ID=15278334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140856A Pending JPH07324851A (en) 1994-02-23 1994-05-30 Malfunction detecting method for heat exchanger and absorption type hot and chilled water generator

Country Status (1)

Country Link
JP (1) JPH07324851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506268A (en) * 2006-09-28 2010-02-25 フィッシャー−ローズマウント システムズ, インコーポレイテッド Prevention of abnormal conditions in heat exchangers
JP2012132622A (en) * 2010-12-22 2012-07-12 Jfe Steel Corp Method for diagnosis of furnace air preheater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506268A (en) * 2006-09-28 2010-02-25 フィッシャー−ローズマウント システムズ, インコーポレイテッド Prevention of abnormal conditions in heat exchangers
JP2013008385A (en) * 2006-09-28 2013-01-10 Fisher Rosemount Systems Inc Prevention of abnormal state of heat exchanger
JP2012132622A (en) * 2010-12-22 2012-07-12 Jfe Steel Corp Method for diagnosis of furnace air preheater

Similar Documents

Publication Publication Date Title
JP4301085B2 (en) Deterioration diagnosis system for heat source equipment
JPH07324851A (en) Malfunction detecting method for heat exchanger and absorption type hot and chilled water generator
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JP2902946B2 (en) Abnormality determination device for absorption type water heater
JP4253648B2 (en) Performance evaluation method and diagnostic system of absorption chiller / heater
JP3054554B2 (en) Abnormality detector for absorption type water heater
KR100317155B1 (en) Fault diagnosis system of absorption chiller
JP3579248B2 (en) Diagnosis method of cooling water dirt
JP3083930B2 (en) Failure diagnosis system for absorption refrigerator
JPH0697126B2 (en) Absorption chiller / heater diagnostic device
JP3083929B2 (en) Failure diagnosis system for absorption refrigerator
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
JP7022658B2 (en) Performance diagnosis system for absorption chillers
JPH0625640B2 (en) Absorption chiller / heater diagnostic method
JPH07234048A (en) Trouble diagnostic system for absorption type water cooling and heating machine
JP3083931B2 (en) Failure diagnosis system for absorption refrigerator
JPH0791783A (en) Trouble diagnosing system for absorption chilled and warm water machine
JP2684239B2 (en) Abnormality diagnosis device for steam-using equipment
JP3054552B2 (en) Absorption chiller / heater failure diagnosis device
JPH0233577A (en) Check-up device for contamination of heat transfer tube for evaporator of absorbing water cooler and heater
CN109458753B (en) Online detection density flue gas type lithium bromide absorption type low-temperature water chilling unit
JPH07151416A (en) Cooling water contamination diagnostic system of absorption cold/hot water apparatus
JPH05164438A (en) Abnormal state sensing device of absorption freezer
KR20100007234A (en) Diagnostic equipment of cooling system, cooling system having the same and diagnostic method of cooling system
JP2684235B2 (en) Abnormality diagnosis device for steam-using equipment