JPH07323289A - Superoxidized water and method therefor - Google Patents

Superoxidized water and method therefor

Info

Publication number
JPH07323289A
JPH07323289A JP13955594A JP13955594A JPH07323289A JP H07323289 A JPH07323289 A JP H07323289A JP 13955594 A JP13955594 A JP 13955594A JP 13955594 A JP13955594 A JP 13955594A JP H07323289 A JPH07323289 A JP H07323289A
Authority
JP
Japan
Prior art keywords
water
supplied
salt
oxidized
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13955594A
Other languages
Japanese (ja)
Inventor
Yoshio Yamaguchi
義夫 山口
Shigeru Ozaki
滋 尾崎
Miki Miyamoto
幹 宮本
Shinichi Fukada
伸一 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janome Corp
Original Assignee
Janome Sewing Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janome Sewing Machine Co Ltd filed Critical Janome Sewing Machine Co Ltd
Priority to JP13955594A priority Critical patent/JPH07323289A/en
Publication of JPH07323289A publication Critical patent/JPH07323289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To produce a safe superoxidized water without producing free chlorine gas and capable of being preserved for a long period by measuring the conductivity of water supplied from city water with a sensor, supplying an appropriate amt. of salt wanted by the user based on the data and electrolyzing the water by an electrolytic cell. CONSTITUTION:The impurities and chlorine in the city water supplied from a city water feed part 2 are removed in a filter part 3, and the calcium concn. and sodium concn. in the supplied water are measured by a conductivity measuring sensor 4. The measured result is compared with the data on the desired conductivity stored in a conductivity storing means, and the supply of salt is calculated by a supply control means and controlled. A water-soluble sodium salt or a water-soluble potassium salt is supplied in water from a feed part 5 based on the calculated result. The water supplied with the salt is electrolyzed in an electrolytic cell 6 to produce superoxidized water and alkaline water which are discharged respectively from a superoxidized water outlet 7 and an alkaline water outlet 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化水生成装置に係
り、食品用、衛生用等に用いられる洗浄水、殺菌水とし
ての超(強)酸化水の生成装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing oxidizing water, and more particularly to an apparatus for producing super (strong) oxidizing water as washing water and sterilizing water used for foods, hygiene and the like.

【0002】[0002]

【従来技術】従来、殺菌、無菌水を生成するために、工
場生産された次亜塩素酸ナトリウム水溶液を別容器に移
し替え、これを水道水等で所定の濃度に希釈し、使用す
る方法がとられていた。
2. Description of the Related Art Conventionally, in order to sterilize and generate aseptic water, a method of transferring a sodium hypochlorite aqueous solution produced in a factory to another container, diluting it with tap water or the like to a predetermined concentration, and using it have been known. It was taken.

【0003】しかしながら、次亜塩素酸ナトリウム水溶
液は不安定なために長期保存することが困難であった。
また、水道水等により希釈する場合も、所望の濃度にす
るための作業が難しく、適切な濃度の酸化水を得ること
ができなかった。
However, since the sodium hypochlorite aqueous solution is unstable, it has been difficult to store it for a long time.
Further, even in the case of diluting with tap water or the like, it was difficult to obtain the desired concentration, and it was not possible to obtain oxidized water with an appropriate concentration.

【0004】別のものでは、水道水等により水溶液を希
釈しないで殺菌、無菌水を生成するために陽極と陰極を
備えた電解槽に食塩水を供給し、両電極に直流電源を印
加して遊離塩素水を製造する装置も提供されている。
In another type, saline is supplied to an electrolytic cell equipped with an anode and a cathode to sterilize and produce sterile water without diluting the aqueous solution with tap water or the like, and a DC power source is applied to both electrodes. An apparatus for producing free chlorine water is also provided.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の装置では、食塩水を電気分解するために水中に多量の
残留塩素が含まれ、これが塩素臭となり作業者への不快
感や塩素ガスを吸うため安全衛生上問題となっていた。
また、残留塩素が含まれた水は、金属部品への腐蝕性も
高く、ことにステンレス等に使用した場合、6価クロム
が溶出することから医療用器具等への使用ができなかっ
た。
However, in these devices, a large amount of residual chlorine is contained in the water in order to electrolyze the saline solution, which becomes a chlorine odor and causes operator discomfort and chlorine gas inhalation. It was a safety and health problem.
Further, water containing residual chlorine is highly corrosive to metal parts, and when used in stainless steel or the like, hexavalent chromium elutes, so that it cannot be used in medical instruments or the like.

【0006】本発明は、前記したような従来技術の欠点
を解消して、効率のよい安全な超酸化水を生成する装置
を提供することを目的とする。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide an apparatus for producing efficient and safe super-oxidized water.

【0007】[0007]

【課題を解決するための手段】即ち本発明は、陽極と陰
極を有した電解槽内に水を供給し、両電極に直流電源を
印加して電気分解し、超酸化水を生成する装置におい
て、超酸化水を生成するための原水である水道水を供給
部する水道水供給部と、供給された水道水の不純物なら
びに塩素を除去するためのフィルター部と、超酸化水を
得るための始動指令手段と、供給された水に含まれるカ
ルシウム濃度およびナトリウム濃度を測定するための電
気伝導率測定手段と、所望の電気伝導率のデータを記憶
している伝導率データ記憶手段と、前記電気伝導率測定
手段により測定された結果と前記伝導率データ記憶手段
に記憶されている伝導率データとを比較し、塩類の供給
量を演算し、制御する供給量制御手段と、該供給量制御
手段により演算された結果に基づき、供給された水に水
溶性ナトリウム塩または水溶性カリウム塩を供給するた
めの塩類の供給手段と、塩類が供給された後の水を電気
分解し酸化水およびアルカリ水を得るための電解槽と、
該電解槽により電気分解された酸化水およびアルカリ水
を出水するための出水口を設けたことを特徴とする超酸
化水生成装置である。
That is, the present invention provides an apparatus for producing super-oxidized water by supplying water into an electrolytic cell having an anode and a cathode and applying a DC power supply to both electrodes to electrolyze to produce super-oxidized water. , A tap water supply unit that supplies tap water that is raw water for generating super-oxidized water, a filter unit that removes impurities and chlorine of the supplied tap water, and a start-up to obtain super-oxidized water Commanding means, electrical conductivity measuring means for measuring calcium concentration and sodium concentration contained in the supplied water, electrical conductivity data storing means for storing desired electrical conductivity data, and the electrical conductivity The supply amount control means for comparing the result measured by the rate measuring means with the conductivity data stored in the conductivity data storage means to calculate and control the supply amount of salts, and the supply amount control means. Is calculated Based on the results, a salt supply means for supplying water-soluble sodium salt or water-soluble potassium salt to the supplied water, and electrolysis of the water after the salt is supplied to obtain oxidized water and alkaline water. An electrolytic cell,
It is a super-oxidized water generation device characterized in that a water outlet for discharging the oxidized water and the alkaline water electrolyzed by the electrolytic cell is provided.

【0008】[0008]

【発明の作用】本発明は、以上のように構成され、食塩
を使用しないことから、作業者が不快になる塩素臭が発
生しないため、より安全に快適に作業を行う事ができ
る。
Since the present invention is constructed as described above and does not use salt, it does not generate a chlorine odor which makes a worker uncomfortable, so that the worker can work more safely and comfortably.

【0009】従来の食塩水を使用した遊離塩素水製造法
による超酸化水は、塩素が遊離しやすく、長期保存に対
し安定性が極めて低いものでであった。
The super-oxidized water produced by the conventional method of producing free chlorine water using a saline solution is apt to release chlorine and has extremely low stability for long-term storage.

【0010】本発明で用いられるボウ硝の場合、遊離ガ
スとして発生するものがないため、保存が可能であり、
その安定性は極めて優れている。
In the case of Glauber's salt used in the present invention, since it does not generate free gas, it can be stored.
Its stability is extremely good.

【0011】また、ステンレス等から製造されている医
療用器具や食器から6価クロムの溶出がない殺菌性の高
い超酸化水を生成することができることから、食堂や病
院等での機械器具に使用することが可能である。
Also, since it is possible to generate highly sterilized super-oxidized water without elution of hexavalent chromium from medical instruments and tableware manufactured from stainless steel or the like, it is used for mechanical instruments in dining rooms, hospitals, etc. It is possible to

【0012】[0012]

【実施例】本発明の基本構成を図1により説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic structure of the present invention will be described with reference to FIG.

【0013】図1における1は、超酸化水生成装置の始
動指令手段(スイッチ)である。超酸化水を生成するた
めの切換えを行い、スイッチをONすると超酸化水が供
給始動状態になる。
Reference numeral 1 in FIG. 1 is a start command means (switch) of the super-oxidized water generator. Switching is performed to generate super-oxidized water, and when the switch is turned on, the supply of super-oxidized water is started.

【0014】図1における2は、水道水を供給するため
に設けられた水道水供給部である。超酸化水を生成する
ための原水として水道の蛇口に取付て使用するためのも
のである。この中に電磁弁を取付けることにより、装置
が転倒した際、転倒検知センサーにより内蔵された弁を
遮断し、水の流出を防止することができる。
Reference numeral 2 in FIG. 1 denotes a tap water supply unit provided for supplying tap water. It is intended to be used by being attached to the tap of a tap as raw water for producing super-oxidized water. By mounting the solenoid valve in this, when the device falls, the valve incorporated by the fall detection sensor can be shut off to prevent the outflow of water.

【0015】3は、供給された水道水を一旦瀘過するた
めに、活性炭、活性炭繊維や亜硫酸カルシウムを内蔵さ
せ、水の中に含まれている不純物や残留塩素を除去する
ために用いる浄化フィルターであり、交換可能に取付ら
れている。
Reference numeral 3 is a purification filter for incorporating therein activated carbon, activated carbon fiber and calcium sulfite for temporarily filtering the supplied tap water and used for removing impurities and residual chlorine contained in the water. And is replaceably attached.

【0016】4は、浄化された水のナトリウムイオン濃
度やカルシウムイオン濃度を検出し、測定するための電
気伝導率測定手段としてのセンサーである。水道水は、
地域によりそのカルシウムイオン濃度や含有される物質
等が一定ではなく、ばらつきがあることから、一定量の
塩類を添加した場合、作業者が所望する濃度の超酸化水
が得られないことになる。
Reference numeral 4 is a sensor as electric conductivity measuring means for detecting and measuring sodium ion concentration and calcium ion concentration of purified water. Tap water is
Since the calcium ion concentration and the substances contained therein are not constant and vary depending on the region, when a fixed amount of salt is added, it is not possible to obtain superoxidized water at the concentration desired by the operator.

【0017】そのため成分未調整の水に対し、後述する
塩類の供給部5からの適切な量を算出する基準のために
設けられている。このセンサーは、コンピューター9に
よりその測定を行う。
Therefore, it is provided as a reference for calculating an appropriate amount of salt from the supply section 5 which will be described later, with respect to unadjusted components of water. This sensor performs its measurement by the computer 9.

【0018】5は、塩類の供給部である。ここで供給さ
れる塩の種類には、水溶性ナトリウム塩と水溶性カリウ
ム塩とに大別され、それぞれ水溶性ナトリウム塩には、
ボウ硝、グルコン酸ナトリウム、酒石酸ナトリウム、乳
酸ナトリウム、クエン酸ナトリウムなどがあり、また水
溶性カリウム塩には、グリセロリン酸カリウム、乳酸カ
リウム、クエン酸カリウム、酒石酸カリウムなどがあ
る。
Reference numeral 5 is a salt supply section. The types of salts supplied here are roughly classified into water-soluble sodium salts and water-soluble potassium salts.
There are Glauber's salt, sodium gluconate, sodium tartrate, sodium lactate, sodium citrate, etc., and the water-soluble potassium salts include potassium glycerophosphate, potassium lactate, potassium citrate, potassium tartrate, etc.

【0019】これらをコンピューター9により制御し、
作業者が希望する酸性度の水を得るために、上記塩類の
供給量を適宜添加する。添加する塩類の状態は、水溶液
等の液体もしくは顆粒、粒状のものが適しており、コン
ピューターにより供給部に内蔵された電磁弁10aが開
放され適量を添加する。
These are controlled by the computer 9,
In order to obtain water having an acidity desired by the operator, the amount of the above-mentioned supplied salt is appropriately added. The state of the salt to be added is suitably a liquid such as an aqueous solution, granules or granular ones, and the solenoid valve 10a incorporated in the supply unit is opened by the computer to add an appropriate amount.

【0020】塩類が添加された水は、6の電解槽へ行
き、そこで電気分解され超酸化水とアルカリ水とに分離
される。電解槽は、外面に隔膜を張った2枚の陽極ケー
スを陽極板を挟んで接合し、形成した陽極室の外側を陰
極板を保持した2枚の陰極ケースで接合した陰極室で覆
い、二重の密閉電極室構造となっている。
The salt-added water goes to the electrolytic cell 6 where it is electrolyzed and separated into super-oxidized water and alkaline water. In the electrolytic cell, two anode cases with a diaphragm on the outer surface are joined by sandwiching an anode plate, and the outside of the formed anode chamber is covered with a cathode chamber joined by two cathode cases holding a cathode plate. It has a heavy sealed electrode chamber structure.

【0021】また、通常電解を続けると陰極の表面に不
溶解物が付着し、電解効率が低下するため電極を取り外
して洗浄を行うか逆電解をして陰極表面の汚れを取り除
く構造になっている。
Further, when electrolysis is continued, insoluble matter adheres to the surface of the cathode, and the efficiency of electrolysis decreases. Therefore, the electrode is removed for cleaning or reverse electrolysis to remove stains on the surface of the cathode. There is.

【0022】電解槽によって生成分離された超酸化水
は、7の出水口を通って排水される。アルカリ水は、出
水口8より排出される。
The super-oxidized water produced and separated by the electrolytic cell is discharged through the water outlet of 7. The alkaline water is discharged from the water outlet 8.

【0023】本発明の請求項2を図5のフローチャート
図により説明すると、作業者は、T1により通常の整水
器としての使用をするか、または超酸化水の使用を選択
する。これにより、通常の整水器としての使用をする場
合は、P0へ行き、水をアルカリイオン水と酸化水に分
離し、アルカリ水を飲用水として供給する。
When claim 2 of the present invention is described with reference to the flow chart of FIG. 5, the operator uses T1 as a normal water conditioner or selects the use of super-oxidized water. Thereby, when using as a normal water conditioner, it goes to P0, separates water into alkaline ionized water and oxidizing water, and supplies alkaline water as drinking water.

【0024】次に作業者が超酸化水を選択すると、プロ
グラムはP1へ移行し、電気伝導率の測定を開始する。
これにより、水に含まれるカルシウムイオン濃度やナト
リウムイオン濃度を計測し、その電気伝導率をP2でコ
ンピューターにより計算し、添加する塩類の量を演算す
る。
Next, when the operator selects super-oxidized water, the program shifts to P1 to start measuring the electric conductivity.
Thereby, the concentration of calcium ion or the concentration of sodium ion contained in water is measured, the electric conductivity thereof is calculated by P2 by the computer, and the amount of salt to be added is calculated.

【0025】演算された値は、P3で塩類の供給部は、
その電磁弁を開放し、P4でコンピューターから送られ
たデータに適合する量の塩類を添加する。
The calculated value is P3, and the salt supply portion is
Open the solenoid valve and add an amount of salt matching the data sent from the computer at P4.

【0026】塩類が添加された水は、P5で再び電気伝
導率の測定を行う。T2でこの塩類の添加後の酸性度の
測定値と希望値とを比較し、塩の添加が不足している場
合は、P3へ戻り、再び塩類を添加する。
The electrical conductivity of the salt-added water is measured again at P5. At T2, the measured value of the acidity after addition of the salt is compared with the desired value, and if the salt addition is insufficient, the process returns to P3 and the salt is added again.

【0027】T3で塩の添加量が希望値に比べて多過ぎ
る場合は、この水はP10で外側へ排出される。塩の添
加量が適正の場合は、そのままP6行き、電解槽で電気
分解開始指令を待つ。
If the amount of salt added at T3 is too large compared to the desired value, this water is discharged to the outside at P10. If the amount of salt added is appropriate, go to P6 and wait for the electrolysis start command in the electrolytic cell.

【0028】ここで、電解槽の水は、P6のコンピュー
ターの電解開始指令により、P7で通電され電気分解さ
れる。この電気分解により、超酸化水が生成される。
Here, the water in the electrolytic cell is energized and electrolyzed at P7 in response to the electrolysis start command from the computer at P6. This electrolysis produces superoxidized water.

【0029】T4にて電解を続行させるもしくは、終了
させることとなり、終了させる場合は、T4で電解終了
を指示する。電解終了命令を受けるとプログラムは、P
8で塩類の供給部の電磁弁を閉鎖させる。つぎに、P9
で電解槽への通電を停止し、プログラムは終了する。
At T4, the electrolysis is continued or terminated, and when the electrolysis is terminated, the termination of electrolysis is instructed at T4. When the electrolysis end command is received, the program
At 8, the solenoid valve of the salt supply section is closed. Next, P9
Stops energizing the electrolyzer and the program ends.

【0030】電解を続行する場合は、そのままP6へ行
き、電解開始指令に基づいて電解を行い、電解終了の指
示があるまで超酸化水の生成を行う。
To continue the electrolysis, the process goes to P6 as it is, electrolysis is performed based on the electrolysis start command, and super-oxidized water is generated until the electrolysis end command is given.

【0031】本装置には、安全対策として図2および図
6に示すように、漏電検知手段等を内蔵させ、装置に漏
電箇所または故障箇所等が発見されたばあいには、通電
を漏電遮断機により遮断させる。
As shown in FIG. 2 and FIG. 6, as a safety measure, this apparatus has a built-in leakage detecting means, etc., and when a leakage point or a failure point is found in the apparatus, the current is cut off. Shut off by machine.

【0032】また、地震などの災害時や作業者が誤って
装置を倒した場合には、転倒検知手段等の転倒検知セン
サーや傾斜センサーにより、通電を遮断させるだけでな
く、水道水供給部の電磁弁10bを閉鎖し、給水を停止
させる。
In addition, in the event of a disaster such as an earthquake or when a worker accidentally knocks over the device, not only the fall detection sensor such as a fall detection means or the tilt sensor cuts off the power supply, but also the tap water supply unit operates. The electromagnetic valve 10b is closed to stop the water supply.

【0033】[0033]

【発明の効果】本発明は、以上の様な構成および作用の
ものであり、安全で簡単に超酸化水が生成できる。従来
では、悪臭である塩素臭が大量に発生し作業者に不快感
を与えるだけでなく、生成された超酸化水の保管におい
ても難しく、安定した状態に保つことができなかった。
EFFECTS OF THE INVENTION The present invention has the above-described structure and operation, and can safely and easily generate superoxidized water. In the past, a large amount of chlorine odor, which is an offensive odor, was generated to make the operator uncomfortable, and it was difficult to store the generated super-oxidized water, and it was not possible to maintain a stable state.

【0034】本発明で生成する超酸化水は、悪臭の基で
ある塩素ガスを全く発生させず、また生成した超酸性水
の保管も遊離塩素水を使用しないために長期にわたっ
て、安定的に保管が可能となり、非常に経済的である。
The super-oxidized water produced by the present invention does not generate chlorine gas, which is a malodorous group, at all, and the produced super-acidic water does not use free chlorine water. It is possible and very economical.

【0035】また、装置の取扱も簡単であり、誰でも安
全に作業ができる構造となっている。酸性度に関して
も、塩類の添加量をコンピューターで制御するために、
機械を取り扱う作業者によるばらつきが発生しないた
め、いつでも一定の値の超酸化水が提供できるものであ
る。
Further, the apparatus is easy to handle, and has a structure in which anyone can work safely. Regarding acidity as well, in order to control the addition amount of salts with a computer,
Since there is no variation depending on the operator who handles the machine, a constant value of super-oxidized water can be provided at any time.

【0036】[0036]

【図面の簡単な説明】[Brief description of drawings]

【図1】 基本構成を示す機能ブロック図FIG. 1 is a functional block diagram showing a basic configuration.

【図2】 基本構成のフローチャート図[Fig. 2] Flowchart diagram of basic configuration

【図3】 基本構成の制御ブロック図[Fig. 3] Control block diagram of basic configuration

【図4】 機能ブロック図[Fig. 4] Functional block diagram

【図5】 フローチャート図[Fig. 5] Flow chart diagram

【図6】 制御ブロック図FIG. 6 is a control block diagram.

【符号の簡単な説明】[Simple explanation of symbols]

1 水道水供給部 2 フィルター部 3 電気伝導率測定センサー 4 塩類の供給部 5 電解槽 9 電気伝導率測定センサー 1 Tap Water Supply Section 2 Filter Section 3 Electrical Conductivity Measurement Sensor 4 Salt Supply Section 5 Electrolyzer 9 Electrical Conductivity Measurement Sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 深田 伸一 東京都中央区京橋3丁目1番1号 蛇の目 ミシン工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Fukada 3-1-1 Kyobashi, Chuo-ku, Tokyo Janome Sewing Machine Industry Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】陽極と陰極を有した電解槽内に水を供給
し、両電極に直流電源を印加して電気分解し、超酸化水
を生成する装置において、超酸化水を生成するための原
水である水道水を供給する水道水供給部と、供給された
水道水の不純物ならびに塩素を除去するためのフィルタ
ー部と、超酸化水を得るための始動指令手段と供給され
た水に含まれるカルシウム濃度およびナトリウム濃度を
測定するための電気伝導率測定手段と、所望の電気伝導
率のデータを記憶している伝導率データ記憶手段と、前
記電気伝導率測定手段により測定された結果と前記伝導
率データ記憶手段に記憶されている伝導率データとを比
較し、塩類の供給量を演算し、制御する供給量制御手段
と、該供給量制御手段により演算された結果に基づき、
供給された水に水溶性ナトリウム塩または水溶性カリウ
ム塩を供給するための塩類の供給手段と、塩類が供給さ
れた後の水を電気分解し酸化水およびアルカリ水を得る
ための電解槽と、該電解槽により電気分解された酸化水
およびアルカリ水を出水するための出水口を設けたこと
を特徴とする超酸化水生成装置。
1. A device for producing super-oxidized water in a device for producing super-oxidized water by supplying water into an electrolytic cell having an anode and a cathode and applying a DC power supply to both electrodes to electrolyze it. Included in the tap water supply unit that supplies tap water that is raw water, a filter unit that removes impurities and chlorine in the tap water that has been supplied, start command means for obtaining super-oxidized water, and the supplied water Electrical conductivity measuring means for measuring calcium concentration and sodium concentration, conductivity data storage means for storing desired electrical conductivity data, results measured by the electrical conductivity measuring means and the conductivity. The conductivity data stored in the rate data storage means is compared, the supply amount of the salt is calculated, and the supply amount control means for controlling the supply amount and the result calculated by the supply amount control means are used,
Supply means of salts for supplying water-soluble sodium salt or water-soluble potassium salt to the supplied water, and an electrolytic cell for electrolyzing the water after the salts are supplied to obtain oxidized water and alkaline water, An apparatus for producing super-oxidized water, characterized in that a water outlet for discharging the oxidizing water and the alkaline water electrolyzed by the electrolytic cell is provided.
【請求項2】陽極と陰極を有した電解槽内に水を供給
し、両電極に直流電源を印加して電気分解し、超酸化水
を生成する装置において、超酸化水を生成するための原
水である水道水を供給する水道水供給部と、供給された
水道水の不純物ならびに塩素を除去するためのフィルタ
ー部と、超酸化水を得るための始動指令手段と、供給さ
れた水の電気伝導率を測定するための第1の電気伝導率
測定手段と、所望の電気伝導率のデータを記憶している
伝導率データ記憶手段と、前記第1の電気伝導率測定手
段により測定された結果と前記伝導率データ記憶手段に
記憶されている伝導率データとを比較し、塩類の供給量
を演算し、制御する供給量制御手段と、該供給量制御手
段により演算された結果に基づき、供給された水に水溶
性ナトリウム塩または水溶性カリウム塩を供給するため
の塩類の供給手段と、該塩類の供給手段により塩類が供
給された後の水の電気伝導率を測定するための第2の電
気伝導率測定手段と、該第2の電気伝導測定手段により
得られた結果と前記伝導率データ記憶手段に記憶されて
いる伝導率データとを比較し、前記供給量制御手段によ
り前記供給手段を制御し、適切な塩類が供給された後の
水を電気分解し酸化水およびアルカリ水を得るための電
解槽と、該電解槽により電気分解された酸化水およびア
ルカリ水を出水するための出水口を設けたことを特徴と
する超酸化水生成装置。
2. A device for producing super-oxidized water in a device for producing super-oxidized water by supplying water into an electrolytic cell having an anode and a cathode and applying a DC power supply to both electrodes to electrolyze it. A tap water supply unit that supplies tap water that is raw water, a filter unit that removes impurities and chlorine in the supplied tap water, a start command means for obtaining super-oxidized water, and an electric power supply for the supplied water. First electrical conductivity measuring means for measuring electrical conductivity, electrical conductivity data storage means for storing desired electrical conductivity data, and results measured by the first electrical conductivity measuring means. And the conductivity data stored in the conductivity data storage unit are compared to calculate and control the supply amount of salts, and the supply amount control unit controls the supply amount based on the result calculated by the supply amount control unit. Soluble sodium salt in water A salt supplying means for supplying a water-soluble potassium salt, a second electric conductivity measuring means for measuring an electric conductivity of water after the salts are supplied by the salt supplying means, and 2 compares the result obtained by the electric conductivity measuring means with the conductivity data stored in the conductivity data storage means, controls the supply means by the supply amount control means, and supplies an appropriate salt. Characterized in that an electrolyzer for electrolyzing the water after being obtained to obtain oxidized water and alkaline water and a water outlet for discharging the oxidized water and alkaline water electrolyzed by the electrolytic cell are provided. Oxidized water generator.
【請求項3】陽極と陰極を有した電解槽内に水を供給
し、両電極に直流電源を印加して電気分解し、超酸化水
を生成する装置において、超酸化水を生成するための原
水である水道水を供給する水道水供給部と、供給された
水道水の不純物ならびに塩素を除去するためのフィルタ
ー部と、超酸化水を得るための始動指令手段と、供給さ
れた水に含まれるカルシウム濃度およびナトリウム濃度
を測定するための電気伝導率測定手段と、所望の電気伝
導率のデータを記憶している伝導率データ記憶手段と、
前記電気伝導率測定手段により測定された結果と前記伝
導率データ記憶手段に記憶されている伝導率データとを
比較し、塩類の供給量を演算し、制御する供給量制御手
段と、該供給量制御手段により演算された結果に基づ
き、供給された水に水溶性ナトリウム塩または水溶性カ
リウム塩を供給するための塩類の供給手段と、塩類が供
給された後の水を電気分解し酸化水およびアルカリ水を
得るための電解槽と、該電解槽により電気分解された酸
化水およびアルカリ水を出水するための出水口と、漏電
検知手段により装置内の漏電を検知し、該検知手段によ
り漏電遮断器により通電を停止することを特徴とする超
酸化水生成装置。
3. An apparatus for producing superoxidized water in a device for producing superoxidized water by supplying water into an electrolytic cell having an anode and a cathode and applying a direct current power supply to both electrodes to electrolyze it. Included in the supplied water is a tap water supply unit that supplies the tap water that is the raw water, a filter unit that removes impurities and chlorine in the supplied tap water, a start command means for obtaining super-oxidized water, and Electrical conductivity measuring means for measuring calcium concentration and sodium concentration, and conductivity data storing means for storing desired electrical conductivity data,
A supply amount control unit that compares the result measured by the electric conductivity measuring unit with the conductivity data stored in the conductivity data storage unit to calculate and control the salt supply amount, and the supply amount. Based on the result calculated by the control means, a salt supply means for supplying a water-soluble sodium salt or a water-soluble potassium salt to the supplied water, and the water after the salt is supplied is electrolyzed to oxidize water and An electrolytic cell for obtaining alkaline water, a water outlet for discharging the oxidized water and alkaline water electrolyzed by the electrolytic cell, and a leakage detecting means for detecting a leakage in the device, and the detecting means for interrupting the leakage. An apparatus for producing super-oxidized water, characterized in that energization is stopped by a vessel.
【請求項4】陽極と陰極を有した電解槽内に水を供給
し、両電極に直流電源を印加して電気分解し、超酸化水
を生成する装置において、超酸化水を生成するための原
水である水道水を供給する水道水供給部と、供給された
水道水の不純物ならびに塩素を除去するためのフィルタ
ー部と、超酸化水を得るための始動指令手段と、供給さ
れた水に含まれるカルシウム濃度およびナトリウム濃度
を測定するための電気伝導率測定手段と、所望の電気伝
導率のデータを記憶している伝導率データ記憶手段と、
前記電気伝導率測定手段により測定された結果と前記伝
導率データ記憶手段に記憶されている伝導率データとを
比較し、塩類の供給量を演算し、制御する供給量制御手
段と、該供給量制御手段により演算された結果に基づ
き、供給された水に水溶性ナトリウム塩または水溶性カ
リウム塩を供給するための塩類の供給手段と、塩類が供
給された後の水を電気分解し酸化水およびアルカリ水を
得るための電解槽と、該電解槽により電気分解された酸
化水およびアルカリ水を出水するための出水口を設け、
装置内に傾斜検知手段または転倒検手段である安全検知
手段を備え、該安全検知手段により傾斜または転倒が確
認された場合に通電を遮断する通電遮断装置および水道
水供給部からの水漏れを防止するための給水停止手段と
を備えたことを特徴とする超酸化水生成装置。
4. An apparatus for producing super-oxidized water in a device for producing super-oxidized water by supplying water into an electrolytic cell having an anode and a cathode and applying a DC power source to both electrodes to electrolyze it. Included in the supplied water is a tap water supply unit that supplies the tap water that is the raw water, a filter unit that removes impurities and chlorine in the supplied tap water, a start command means for obtaining super-oxidized water, and Electrical conductivity measuring means for measuring calcium concentration and sodium concentration, and conductivity data storing means for storing desired electrical conductivity data,
A supply amount control unit that compares the result measured by the electric conductivity measuring unit with the conductivity data stored in the conductivity data storage unit to calculate and control the salt supply amount, and the supply amount. Based on the result calculated by the control means, a salt supply means for supplying a water-soluble sodium salt or a water-soluble potassium salt to the supplied water, and the water after the salt is supplied is electrolyzed to oxidize water and An electrolytic cell for obtaining alkaline water, and a water outlet for discharging oxidized water and alkaline water electrolyzed by the electrolytic cell are provided.
Prevents water leakage from the tap water supply unit and an energization interruption device that is equipped with a safety detection unit that is a tilt detection unit or a fall detection unit, and that shuts off power when tilt or fall is confirmed by the safety detection unit. A super-oxidized water generator, which is provided with a water supply stopping means.
【請求項5】陽極と陰極を有した電解槽内に水を供給
し、両電極に直流電源を印加して電気分解し、超酸化水
を生成する方法において、超酸化水を生成するための原
水である水道水を供給し、、供給された水道水の不純物
ならびに塩素をフィルターにより除去し、供給された水
に含まれるカルシウム濃度およびナトリウム濃度を電気
伝導率測定手段により測定し、所望の電気伝導率のデー
タを記憶している伝導率データ記憶手段と、前記電気伝
導率測定手段により測定された結果と前記伝導率データ
記憶手段に記憶されている伝導率データとを比較し、塩
類の供給量を演算し、制御する供給量制御手段により、
供給された水に水溶性ナトリウム塩または水溶性カリウ
ム塩を供給手段により供給し、塩類が供給された後の水
を電解槽により電気分解し、超酸化水およびアルカリ水
を得ることを特徴とする超酸化水生成方法。
5. A method for producing super-oxidized water in a method of producing super-oxidized water by supplying water into an electrolytic cell having an anode and a cathode and applying a DC power supply to both electrodes to electrolyze it. Tap water, which is raw water, is supplied, impurities and chlorine in the supplied tap water are removed by a filter, and the calcium concentration and sodium concentration contained in the supplied water are measured by an electric conductivity measuring means to obtain the desired electricity. Supply of salts by comparing the conductivity data stored in the conductivity data storage means, which stores conductivity data, with the results measured by the conductivity measurement means and the conductivity data stored in the conductivity data storage means. By the supply amount control means for calculating and controlling the amount,
A water-soluble sodium salt or a water-soluble potassium salt is supplied to the supplied water by a supply means, and the water after the salts are supplied is electrolyzed by an electrolytic cell to obtain superoxidized water and alkaline water. Super-oxidized water generation method.
JP13955594A 1994-05-30 1994-05-30 Superoxidized water and method therefor Pending JPH07323289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13955594A JPH07323289A (en) 1994-05-30 1994-05-30 Superoxidized water and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13955594A JPH07323289A (en) 1994-05-30 1994-05-30 Superoxidized water and method therefor

Publications (1)

Publication Number Publication Date
JPH07323289A true JPH07323289A (en) 1995-12-12

Family

ID=15247996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13955594A Pending JPH07323289A (en) 1994-05-30 1994-05-30 Superoxidized water and method therefor

Country Status (1)

Country Link
JP (1) JPH07323289A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011762A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Plasma generating apparatus, and cleaning/purifying apparatus using same
US8834445B2 (en) 2006-01-20 2014-09-16 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US9642876B2 (en) 2003-12-30 2017-05-09 Sonoma Pharmaceuticals, Inc. Method of preventing or treating sinusitis with oxidative reductive potential water solution
US10016455B2 (en) 2003-12-30 2018-07-10 Sonoma Pharmaceuticals, Inc. Method of preventing or treating influenza with oxidative reductive potential water solution
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9498548B2 (en) 2005-05-02 2016-11-22 Oculus Innovative Sciences, Inc. Method of using oxidative reductive potential water solution in dental applications
US8834445B2 (en) 2006-01-20 2014-09-16 Oculus Innovative Sciences, Inc. Methods of treating or preventing peritonitis with oxidative reductive potential water solution
US9072726B2 (en) 2006-01-20 2015-07-07 Oculus Innovative Sciences, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US9782434B2 (en) 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same
WO2013011762A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Plasma generating apparatus, and cleaning/purifying apparatus using same
CN103648986A (en) * 2011-07-15 2014-03-19 松下电器产业株式会社 Plasma generating apparatus, and cleaning/purifying apparatus using same

Similar Documents

Publication Publication Date Title
US5853562A (en) Method and apparatus for electrolyzing water
JP3728018B2 (en) Weakly acidic chlorinated water, method and apparatus for producing the same
JP4463927B2 (en) Water treatment equipment
JPH11192247A (en) Dental therapy device
JPH07323289A (en) Superoxidized water and method therefor
JP4730258B2 (en) Electrolyzed water generator and sink equipped with the same
JP4463928B2 (en) Water treatment equipment
KR20070078823A (en) Apparatus for producing electrolyzed water
JP2001062453A (en) Electrolytic water production device
JPS62273096A (en) Continuous type electrolytic ion water maker
JPH0852476A (en) Superoxidized water forming device
JP2003047962A (en) Electrolyte and electrolyzed water formed therefrom
JP3860248B2 (en) Method and apparatus for producing sterilizing water
JPH10192855A (en) Electrolytic water making apparatus
JPH09210950A (en) Electrolyzed water producing device
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
JP2904009B2 (en) Water treatment method and water treatment device
JPH11239791A (en) Electrolytic water supply apparatus
JP4572901B2 (en) Electrolyzed water generator
JPH0716570A (en) Ionic water preparation instrument
JP3890440B2 (en) Electrolyzed water generator
JP3624602B2 (en) Electrolyzed water generator
JP2000051328A (en) Hand-washing method and hand-washing device
JP2528154Y2 (en) Water purification equipment
JP2972054B2 (en) Ion water generator