JPH0732239B2 - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH0732239B2
JPH0732239B2 JP61067102A JP6710286A JPH0732239B2 JP H0732239 B2 JPH0732239 B2 JP H0732239B2 JP 61067102 A JP61067102 A JP 61067102A JP 6710286 A JP6710286 A JP 6710286A JP H0732239 B2 JPH0732239 B2 JP H0732239B2
Authority
JP
Japan
Prior art keywords
metal
voltage
memory device
semiconductor memory
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61067102A
Other languages
Japanese (ja)
Other versions
JPS62224961A (en
Inventor
寧 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61067102A priority Critical patent/JPH0732239B2/en
Publication of JPS62224961A publication Critical patent/JPS62224961A/en
Publication of JPH0732239B2 publication Critical patent/JPH0732239B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Static Random-Access Memory (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、半導体記憶素子に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor memory device.

[発明の技術的背景とその問題点 金属原子の配位したフタロシアン(以下Pcと略す)は有
機半導体として電子写真感光体、太陽電池等への応用が
検討されている。半導体としての利用範囲をより拡大す
る為には、Si等の無機半導体の如く、P−n接合を形成
してトランジスタ構造を作成し、増幅、スイッチ機能を
持った素子を形成しなければならない。
[Technical background of the invention and its problems] The application of phthalocyanines (hereinafter abbreviated as Pc) coordinated with metal atoms to an electrophotographic photoreceptor, a solar cell, etc. as an organic semiconductor is being studied. In order to further expand the range of use as a semiconductor, it is necessary to form a transistor structure by forming a P-n junction like an inorganic semiconductor such as Si, and to form an element having amplification and switching functions.

しかし、現在までのところ、有機半導体として知られて
いる多くの物質は殆どすべてP−型であり、従ってP−
n接合を形成することは困難であった。その結果有機半
導体の応用範囲は限られていた。
However, to date, many materials known as organic semiconductors are almost all P-type, and thus P-type.
It was difficult to form an n-junction. As a result, the application range of organic semiconductors has been limited.

[本発明の目的] 本発明は上記の問題を解決すべくなされたものであり、
有機半導体用いた記憶素子を実現することを目的とする
ものである。
[Object of the Invention] The present invention has been made to solve the above problems,
The purpose is to realize a memory element using an organic semiconductor.

[発明の概要] 本発明は、有機半導体である金属原子の配位したフタロ
シアニンの薄膜を仕事関数の異なる2種の金属電極で挟
持した、金属/フタロシアニン/金属構造の素子を構成
することにより、電気抵抗の2つの安定な状態を2値記
憶状態に対応させることのできる記憶素子を得ることを
特徴とするものである。
SUMMARY OF THE INVENTION The present invention provides a metal / phthalocyanine / metal structure element in which a thin film of phthalocyanine having an organic semiconductor metal atom coordinated is sandwiched between two types of metal electrodes having different work functions. A feature of the present invention is to obtain a storage element capable of making two stable states of electric resistance correspond to a binary storage state.

有機半導体である金属フタロシアニンの中心金属として
は、Cu、Al、Co、Zn、Li、Fe、Ni、V、Mn、Ruなどの中
から選択される。金属フタロシアニン層は既に形成され
ている金属層の上に、蒸着あるいはクラスターイオンビ
ーム蒸着などの公知の薄膜形成技術によって形成するこ
とができる。その膜厚は10〜500nmの範囲が望ましい。
この膜厚が10nmに満たないと均一な膜として得ることが
困難であり、また500nmを越えると、膜抵抗が大きくな
り素子を構成したとしても所要の機能を発現しない。
The central metal of the metal phthalocyanine which is an organic semiconductor is selected from Cu, Al, Co, Zn, Li, Fe, Ni, V, Mn and Ru. The metal phthalocyanine layer can be formed on the already formed metal layer by a known thin film forming technique such as vapor deposition or cluster ion beam vapor deposition. The film thickness is preferably in the range of 10 to 500 nm.
If this film thickness is less than 10 nm, it is difficult to obtain a uniform film, and if it exceeds 500 nm, the film resistance becomes large and the desired function is not exhibited even if the device is constructed.

また、電極として用いる金属は、例えば、金、銀、アル
ミニウム、チタン、インジウム等の中から仕事関数の異
なる2つを選べばよい。金属層としては、スパッタ、蒸
着等の薄膜形成技術、あるいは金属薄板で構成すること
ができる。
As the metal used as the electrode, for example, two metals having different work functions may be selected from gold, silver, aluminum, titanium, indium and the like. The metal layer can be formed by a thin film forming technique such as sputtering or vapor deposition, or a metal thin plate.

有機化合物の電子的機能の応用は、従来電子写真感光
体、センサ、液晶等に限定され、電子機器の中核を形成
する記憶あるいは演算素子への有機化合物の適用は、こ
れまで例が少ない。しかし、本発明により電気抵抗の2
つの安定状態が印加電圧によって制御できる素子が実現
されたことにより、電子機器の中核的要素部品である記
憶素子へ有機化合物を用いることが可能となった。この
ことは、本来物質の種類が豊富であり、又、人為的に物
質を設計、合成が可能であるという有機化合物の特徴を
生かした電子素子の可能性を示すものである。
The application of electronic functions of organic compounds has been limited to electrophotographic photoreceptors, sensors, liquid crystals, and the like, and there are few examples of application of organic compounds to memory or arithmetic elements forming the core of electronic devices. However, according to the present invention, the electric resistance of 2
The realization of an element in which three stable states can be controlled by an applied voltage has made it possible to use an organic compound for a memory element, which is a core element part of an electronic device. This indicates the possibility of an electronic device that makes use of the characteristics of organic compounds that are originally rich in types of substances and that substances can be artificially designed and synthesized.

[発明の効果] 本発明の素子は簡単な構成で有機半導体を用いた記憶素
子を形成することができ、しかもその効果も安定してい
る。
[Advantages of the Invention] The element of the present invention can form a memory element using an organic semiconductor with a simple structure, and the effect is stable.

[発明の実施例] 実施例1 20mm角、厚さ2mmのスライドガラス上に第1図に示した
サンドイッチ構造の素子を形成した。スライドガラス1
は所定の大きさに切断した後、トリクレン、アセトン、
順で脱脂洗浄を行った後、乾燥させた。
[Examples of the Invention] Example 1 An element having a sandwich structure shown in FIG. 1 was formed on a 20 mm square and 2 mm thick slide glass. Glass slide 1
Is cut into a predetermined size, and then trichlene, acetone,
After degreasing and washing in order, it was dried.

金の薄膜2ををマスクを用いてスライドガラス1の一部
に厚さ200nmになるように電子ビーム蒸着(加速電圧4k
v、フィラメント電流30mA、蒸着時間5分)により形成
した。次に同フタロシアニン薄膜3を上記の金およびガ
ラス基板上に厚さ200nmになるようにマスクを用いて抵
抗加熱蒸着(ボード温度400℃、蒸着時間6分)により
形成した。更に表面電極としてのチタン薄膜4を電子ビ
ーム蒸着(加速電圧4kv、フィラメント電流15mA、蒸着
時間10分により形成した。上記の3段階の蒸着はすべて
圧力1.0×10-6Torrの高真空下で行なった。
Electron beam evaporation (accelerating voltage 4k
v, filament current 30 mA, deposition time 5 minutes). Next, the phthalocyanine thin film 3 was formed on the above-mentioned gold and glass substrate by resistance heating vapor deposition (board temperature 400 ° C., vapor deposition time 6 minutes) using a mask so as to have a thickness of 200 nm. Further, a titanium thin film 4 as a surface electrode was formed by electron beam vapor deposition (accelerating voltage 4 kv, filament current 15 mA, vapor deposition time 10 minutes. The above three stages of vapor deposition were all performed under a high vacuum of pressure 1.0 × 10 -6 Torr. It was

第2図に上記の素子についてのOVを中心として±5Vの三
角波状の電圧を印加した際の電圧−電流特性の一例を示
す。電圧軸は、右側が金電極の側を正になるように符号
を定めた。同図に示すように、正電圧領域に於て、電流
は2つの値をとり、この現象は可逆的に生じる。尚、第
2図の三角波電圧の周波数は0.1Hzである。
FIG. 2 shows an example of voltage-current characteristics when a triangular wave voltage of ± 5 V centering on OV is applied to the above element. The voltage axis is defined so that the right side is positive on the gold electrode side. As shown in the figure, the current takes two values in the positive voltage region, and this phenomenon occurs reversibly. The frequency of the triangular wave voltage in FIG. 2 is 0.1 Hz.

第2図の電圧−電流特性を利用することにより正電圧印
加時の抵抗値の違い、即ち高抵抗状態と低抵抗状態の2
つの状態を2値とした記憶素子を形成し得る。表1に正
および負の短形波パルス電圧を印加した後、1Vの正電圧
に対する電流値を示す。表1に示すように、±5Vのパル
ス電圧印加により書き込み及び消去を行い、+1V電圧印
加時の電流値測定により読み出しを行うことができる。
By utilizing the voltage-current characteristics of FIG. 2, the difference in resistance value when a positive voltage is applied, that is, the difference between the high resistance state and the low resistance state
A memory element in which two states are binary can be formed. Table 1 shows the current values for a positive voltage of 1 V after applying positive and negative rectangular wave pulse voltages. As shown in Table 1, writing and erasing can be performed by applying a pulse voltage of ± 5 V, and reading can be performed by measuring a current value when a +1 V voltage is applied.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の素子の概略図、第2図は本発明の一
実施例の素子の特性図である。 1……基板、2,4……金属層、3……金属フタロシアニ
ン層
FIG. 1 is a schematic view of the element of the present invention, and FIG. 2 is a characteristic diagram of the element of one embodiment of the present invention. 1 ... Substrate, 2, 4 ... Metal layer, 3 ... Metal phthalocyanine layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属原子が配位したフタロシアニン薄膜有
機半導体を、仕事関数の異なる金属により挟持した構造
を有することを特徴とする半導体記憶素子。
1. A semiconductor memory device having a structure in which a phthalocyanine thin film organic semiconductor in which metal atoms are coordinated is sandwiched between metals having different work functions.
JP61067102A 1986-03-27 1986-03-27 Semiconductor memory device Expired - Lifetime JPH0732239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067102A JPH0732239B2 (en) 1986-03-27 1986-03-27 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067102A JPH0732239B2 (en) 1986-03-27 1986-03-27 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS62224961A JPS62224961A (en) 1987-10-02
JPH0732239B2 true JPH0732239B2 (en) 1995-04-10

Family

ID=13335187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067102A Expired - Lifetime JPH0732239B2 (en) 1986-03-27 1986-03-27 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0732239B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256183A (en) * 1988-04-06 1989-10-12 Agency Of Ind Science & Technol Switching element
JPH0682828B2 (en) * 1989-01-19 1994-10-19 工業技術院長 Plastic element
JPH03137894A (en) * 1989-10-23 1991-06-12 Matsushita Giken Kk Element array with combined switching and memory functions
JP4585209B2 (en) * 2003-03-19 2010-11-24 大日本印刷株式会社 Organic bistable memory device

Also Published As

Publication number Publication date
JPS62224961A (en) 1987-10-02

Similar Documents

Publication Publication Date Title
Bahl et al. Amorphous versus crystalline GeTe films. III. Electrical properties and band structure
US4371883A (en) Current controlled bistable electrical organic thin film switching device
US4652894A (en) Electrical organic thin film switching device switching between detectably different oxidation states
Potember et al. A current-controlled electrically switched memory state in silver and copper-TCNQF4 radical-ion salts
US3728694A (en) Thin film ferroelectric device
US4507672A (en) Method of fabricating a current controlled bistable electrical organic thin film switching device
JPS6295882A (en) Electrical memory equipment
JPS59104184A (en) Solar battery
US3617975A (en) Two-layer magnetoresistors
Jones et al. Electrical conductivity in Langmuir-Blodgett films of porphyrins: in-plane and through-the-film studies
Jonscher Electronic conduction in dielectric films
JPH0732239B2 (en) Semiconductor memory device
Ota et al. Non-polarized memory-switching characteristics of ZnTe thin films
Guttler et al. Fatigue mechanisms in thin film PZT memory materials
US3419760A (en) Ionic solid state electrochemical capacitor
JPH02239664A (en) Electric memory
US3710205A (en) Electronic components having improved ionic stability
GB1593898A (en) Photovoltaic device
US3432729A (en) Terminal connections for amorphous solid-state switching devices
Hanafi et al. Flicker noise due to grain boundaries in n-type Hg1− xCdxTe
US3852796A (en) GaN SWITCHING AND MEMORY DEVICES AND METHODS THEREFOR
US3660155A (en) Method for preparing solid films
Fischer MOS capacitors for surface barrier electroreflectance measurements
Bunton et al. The preparation and electrical properties of thin chalcogenide semiconductor films
Potember et al. Electrical switching and memory phenomena in semiconducting organic charge-transfer complexes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term