JPH07321374A - Growth method for thin film of compound semiconductor - Google Patents

Growth method for thin film of compound semiconductor

Info

Publication number
JPH07321374A
JPH07321374A JP13626994A JP13626994A JPH07321374A JP H07321374 A JPH07321374 A JP H07321374A JP 13626994 A JP13626994 A JP 13626994A JP 13626994 A JP13626994 A JP 13626994A JP H07321374 A JPH07321374 A JP H07321374A
Authority
JP
Japan
Prior art keywords
growth
compound semiconductor
substrate
thin film
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13626994A
Other languages
Japanese (ja)
Inventor
Masakiyo Ikeda
正清 池田
Akinobu Nakai
昭暢 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13626994A priority Critical patent/JPH07321374A/en
Publication of JPH07321374A publication Critical patent/JPH07321374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To form a thin film of a compound semiconductor having a mirror surface by holding a sapphire substrate in a specific temperature range and by growing a compound semiconductor at a speed higher than a growing speed without causing the growth of a three-dimensional island-shape for constituent components of the compound semiconductor on the substrate. CONSTITUTION:Sapphire is used as a substrate and H3 as a carrier gas, the substrate temperature is fixed to 1000 deg.C (900 to 1100 deg.C) and the discharge of NH3 to 3SLM, and the correlation between the growth speed of GaN crystal and the surface conditions of of crystal was checked using TMGa discharge as a parameter. As a result, the surface becomes a mirror surface when TMGa discharge exceeds 150 and the growth speed exceeds 0.26mum/min. The growth speed of crystal is increased by increasing the introducing amount of a raw material gas with the substrate temperature held at 900 to 1100 deg.C, the distribution density of growing core can be increased by setting a larger amount of absorption atoms supplied without causing the growth of a three-dimensional island shape, and a thin film of the compound semiconductor having a mirror surface can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は青色発光ダイオード等に
用いるAlx 1-x N(0≦x≦1)、Inx Ga1-x
N(0≦x≦1)の化合物半導体薄膜の成長方法に関す
る。
The present invention relates to Al x G 1-x N (0≤x≤1), In x Ga 1-x used for blue light emitting diodes and the like.
The present invention relates to a method for growing a N (0 ≦ x ≦ 1) compound semiconductor thin film.

【0002】[0002]

【従来の技術】従来より化合物半導体であるAlx Ga
1-x N、Inx Ga1-x Nは青色発光ダイオードの材料
として注目されている。そしてこれら化合物半導体薄膜
を得るには通常サファイヤを基板として用い、そのC面
の表面に有機金属気相エピタキシー法(MOVPE法)
や分子線エピタキシー法(MBE法)等の気相エピタキ
シャル成長法を用いている。なお基板にサファイヤを用
いるのはこれら化合物半導体と格子整合する材料が他に
存在しないためである。
2. Description of the Related Art Al x Ga, which has been a compound semiconductor in the past,
1-x N, In x Ga 1-x N has attracted attention as a material for a blue light emitting diode. In order to obtain these compound semiconductor thin films, sapphire is usually used as a substrate, and a metal-organic vapor phase epitaxy method (MOVPE method) is applied to the C surface
A vapor phase epitaxial growth method such as a molecular beam epitaxy method (MBE method) is used. Sapphire is used for the substrate because there is no other material that lattice-matches with these compound semiconductors.

【0003】GaNやAlNとの格子不整合率はそれぞ
れ16.1%及び13.2%とかなり大きい。このためサファイ
ヤ基板上に基板温度1000℃で、Ga源としてトリメチル
ガリウム(TMGa;Ga(CH3 3 )、N源として
アンモニア(NH3 )を用いて通常の有機金属化学蒸着
法(MOCVD法)でGaNを成長させると六角形のフ
ァセットを有する凹凸が形成された欠陥の多い薄膜しか
得られない。
The lattice mismatch rates with GaN and AlN are as large as 16.1% and 13.2%, respectively. Thus at a substrate temperature of 1000 ° C. on a sapphire substrate, trimethyl gallium as a Ga source (TMGa; Ga (CH 3) 3), conventional metal organic chemical vapor deposition using ammonia (NH 3) as the N source (MOCVD method) When GaN is grown, a thin film with many defects in which irregularities having hexagonal facets are formed can be obtained.

【0004】これを解決する手段として、従来2段階成
長法が提案されている(例えば公知例としてI. Akasa
ki et al., J. Crystal Growth 98(1989) 209 、また公
知例としてS. Nakamura et al., Jpn. J. Appl. Phy
s. 32(1993) L8)。図2にこの2段階成長法のシーケン
スを示し、以下にMOVPE法を上記公知例に適用した
場合を説明する。なおこの場合Ga源としてはTMGa
を、Al源としてはトリメチルアルミニウム(TMA
l;Al(CH3 3 )を、N源としてはNH3 用い
る。
As a means for solving this, a two-step growth method has been conventionally proposed (for example, as a known example, I. Akasa).
ki et al., J. Crystal Growth 98 (1989) 209, and S. Nakamura et al., Jpn. J. Appl. Phy as a known example.
32 (1993) L8). FIG. 2 shows the sequence of this two-step growth method, and the case where the MOVPE method is applied to the above-mentioned known example will be described below. In this case, TMGa is used as the Ga source.
As the Al source, trimethyl aluminum (TMA
l; Al a (CH 3) 3), as the N source NH 3 is used.

【0005】(I)公知例について (a) T1 =1150℃で10分間、H2 中にて基板を熱処理し
て基板のクリーニングを行う。 (b) T2 = 600℃でTMAlとNH3 を反応炉に導入
し、基板上にAlNを500 オングストローム成長させ
る。 (c) T3 =1000℃でTMGaとNH3 を反応炉に導入し
てAlNの上にGaNを成長させる。
(I) Known example (a) The substrate is cleaned by heat treating the substrate in H 2 at T 1 = 1150 ° C. for 10 minutes. (b) TMAl and NH 3 are introduced into a reaction furnace at T 2 = 600 ° C., and AlN is grown to 500 Å on the substrate. (c) TM 3 and NH 3 are introduced into a reaction furnace at T 3 = 1000 ° C. to grow GaN on AlN.

【0006】(II)公知例について (a) T1 =1050℃でH2 中にて基板を熱処理する。 (b) T2 = 510℃でTMGaとNH3 を反応炉に導入
し、基板上にGaNを250 オングストローム成長させ
る。 (c) T3 =1020℃でTMGaとNH3 を反応炉に導入
し、さらにGaNを成長させる。
(II) Regarding the known example (a) The substrate is heat-treated in H 2 at T 1 = 1050 ° C. (b) TMGa and NH 3 are introduced into a reaction furnace at T 2 = 510 ° C., and GaN is grown to 250 Å on the substrate. (c) At T 3 = 1020 ° C., TMGa and NH 3 are introduced into the reaction furnace to further grow GaN.

【0007】これら(I)(II)のいずれの方法によっ
ても欠陥の少ない表面が鏡面の薄膜が得られる。
By any of these methods (I) and (II), a thin film having a mirror-finished surface with few defects can be obtained.

【0008】[0008]

【発明が解決しようとする課題】上記2段階成長法の場
合、いずれの方法でもT1 →T2 →T3 と基板温度を大
きく変化させなければならず、通常の化合物半導体薄膜
の成長に比べて作業工程が長く、従って成長に費す時間
が長くなってしまうという問題があった。
In the case of the above-described two-step growth method, it is necessary to greatly change the substrate temperature as T 1 → T 2 → T 3 in any of the methods, and compared with the usual growth of a compound semiconductor thin film. Therefore, there is a problem that the working process is long and therefore the time spent for growth becomes long.

【0009】[0009]

【課題を解決するための手段】本発明はこのような問題
に鑑み検討の結果、通常と同様の短い工程でサファイヤ
基板上に化合物半導体薄膜を成長させる方法を開発した
もので、サファイヤ基板を熱処理した後、該基板上にA
x Ga1-x N(0≦x≦1)からなる化合物半導体薄
膜を成長させるに際して、該基板温度を 900〜1100℃と
して該化合物半導体の構成成分が該基板上で三次元的な
島状の成長を起さない成長速度以上で該化合物半導体を
成長させることを特徴とするもので、この際Alx Ga
1-x N(0≦x≦1)からなる化合物半導体薄膜の成長
速度を0.25μm/min以上とし、且つ該薄膜を厚さ 0.5μ
m以上成長させるのが特に有効である。
As a result of studies in view of such problems, the present invention has developed a method for growing a compound semiconductor thin film on a sapphire substrate by a short process as usual, and heat-treats the sapphire substrate. And then A on the substrate
When growing a compound semiconductor thin film made of l x Ga 1-x N (0 ≦ x ≦ 1), the substrate temperature is set to 900 to 1100 ° C. and the constituent components of the compound semiconductor are three-dimensional island-shaped on the substrate. Is characterized in that the compound semiconductor is grown at a growth rate not higher than the growth rate of Al x Ga.
The growth rate of the compound semiconductor thin film made of 1-xN (0 ≦ x ≦ 1) is 0.25 μm / min or more, and the thin film has a thickness of 0.5 μm.
It is particularly effective to grow m or more.

【0010】[0010]

【作用】図1によりサファイヤ基板(1)及びGaN基
板(2)上にそれぞれGaNを結晶成長させる場合の初
期状態について考察する。一般的に導入された原料ガス
により、図1(イ)(ロ)に示すように基板上に成長核
(3)が形成される。
The initial state of crystal growth of GaN on the sapphire substrate (1) and the GaN substrate (2) will be considered with reference to FIG. Generally, the introduced source gas forms growth nuclei (3) on the substrate as shown in FIGS.

【0011】このように一度成長核が形成されると吸着
原子にとって次の各サイトはエネルギー的に異なったサ
イトとなる。(図1(イ)(ロ)) ・成長核上のサイト………………A,D ・成長核のステップのサイト……B,E ・基板上のサイト…………………C,F
Once the growth nuclei are thus formed, the following sites become energetically different sites for the adsorbed atom. (Fig. 1 (a) (b)) ・ Site on growth nucleus ……………… A, D ・ Step of growth nucleus …… B, E ・ Site on substrate ……………… C , F

【0012】そして各サイトのエネルギー的に安定な順
は、Bが最も安定で、次にEが安定であり、続いてA,
C,D次いでFの順に不安定性が増す。即ちBとEのサ
イトは吸着原子にとって成長核と基板の2方向から結合
できるのでより安定なサイトと推定される。また吸着原
子はGaNの構成原子であるのでサファイヤよりGaN
と接する方がより安定である。以上の観点から上記従来
の技術について考察する。
In the order of energy stability of each site, B is the most stable, E is the next most stable, then A,
Instability increases in the order of C, D and F. That is, the B and E sites are presumed to be more stable sites for the adsorbed atoms because they can be bonded from the growth nucleus and the substrate in two directions. In addition, since the adsorbed atoms are constituent atoms of GaN, sapphire produces GaN
It is more stable to contact with. From the above viewpoint, the above conventional technique will be considered.

【0013】(i)通常の気相エピタキー法により、10
00℃で直接GaNを成長させる場合 結晶成長の初期状態は図1(ロ)に示してある。サファ
イヤ基板に到達した吸着原子は安定な吸着サイトを求め
て移動するが、DとEのサイトでのエネルギー差は、E
サイトでの下地がサファイヤであることから小さいこと
が予想されるので、成長核(3)の近くに到達した吸着
原子はD、Eのどちらのサイトにも吸着することにな
る。従って成長核(3)の上方への成長速度と横方向へ
の成長速度はほぼ同じになり三次元的な結晶の成長が起
る。また成長核(3)の遠くに到達した吸着原子はFサ
イトに吸着して新たな成長核を形成し、その後上記のよ
うに三次元的な成長が起る。このようにしてサファイヤ
基板(1)の各所から三次元的な島状の成長が起るため
に表面凹凸のある化合物半導体薄膜となる。
(I) 10 by the usual vapor phase epitaxy method
When GaN is directly grown at 00 ° C. The initial state of crystal growth is shown in FIG. The adsorbed atoms that have reached the sapphire substrate move in search of stable adsorption sites, but the energy difference between the D and E sites is E
Since the base at the site is sapphire, it is expected to be small, so the adsorbed atoms that have reached near the growth nucleus (3) will be adsorbed at both the D and E sites. Therefore, the upward growth rate and the lateral growth rate of the growth nuclei (3) are almost the same, and three-dimensional crystal growth occurs. Also, the adsorbed atoms that have reached far away from the growth nucleus (3) are adsorbed to the F site to form new growth nuclei, and then three-dimensional growth occurs as described above. In this way, three-dimensional island-shaped growth occurs from various parts of the sapphire substrate (1), so that the compound semiconductor thin film has surface irregularities.

【0014】(ii)2段階成長法でGaNを成長させる
場合 上記公知例、のように図2においてT2 = 500〜60
0 ℃として低温でGaNを成長させると熱的なエネルギ
ーが十分でないので多結晶のGaNの成長核が形成し、
しかも低温であるため吸着原子の基板到達後の移動距離
は短い。この結果サファイヤ基板は一様な多結晶で覆わ
れる。その後T3 を約1000℃に昇温するがその過程で多
結晶は溶けて島状の単結晶を形成すると考えられてい
る。この状態でGaNの成長を行うと上記(i)と同様
な成長が起るが、島状の単結晶即ち成長核の分布密度が
高いために凹凸の差が小さい状態で隣接し合う成長核が
くっつき合って図1(イ)の状態へと移行する。そして
この場合はBサイトが圧倒的にエネルギー的に安定であ
るので、上方への成長速度よりも横方向への成長速度が
格段に大きくなって二次元的な成長が起り、成長が進行
するに伴って結晶表面の平坦性が回復して鏡面の化合物
半導体薄膜が得られる。
(Ii) When GaN is grown by the two-step growth method T 2 = 500-60 in FIG. 2 as in the above-mentioned known example.
When GaN is grown at a low temperature of 0 ° C., the thermal energy is insufficient, so that a growth nucleus of polycrystalline GaN is formed,
Moreover, since the temperature is low, the moving distance of adsorbed atoms after reaching the substrate is short. As a result, the sapphire substrate is covered with a uniform polycrystal. After that, T 3 is heated to about 1000 ° C., but it is considered that the polycrystal melts in the process to form an island-shaped single crystal. If GaN is grown in this state, the same growth as in (i) above occurs, but since the island-shaped single crystal, that is, the distribution density of the growth nuclei is high, the growth nuclei that are adjacent to each other with a small unevenness difference They stick to each other and shift to the state shown in FIG. In this case, since the B site is overwhelmingly stable in terms of energy, the growth rate in the lateral direction is much larger than the growth rate in the upward direction, and two-dimensional growth occurs, so that the growth proceeds. Accordingly, the flatness of the crystal surface is restored and a compound semiconductor thin film having a mirror surface is obtained.

【0015】このような従来の技術と比較して、以下に
本発明の作用を説明する。本発明ではサファイヤ基板の
温度を 900〜1100℃として原料ガスの導入量を大きくし
て結晶の成長速度を大きくするが、この場合もやはり上
記(i)と同様の成長が起る。但しこの場合は供給され
る吸着原子の量を多く設定したので成長核の分布密度が
大きくなって上記(i)のように三次元的な島状の成長
を起さない状況となり、上記(ii)における昇温後と同
じ状況となるので鏡面を有する化合物半導体薄膜が形成
されることになる。
The operation of the present invention will be described below in comparison with such a conventional technique. In the present invention, the temperature of the sapphire substrate is set to 900 to 1100 ° C. to increase the amount of raw material gas introduced to increase the crystal growth rate. In this case as well, the same growth as in (i) above occurs. However, in this case, since the amount of the adsorbed atoms supplied is set to be large, the distribution density of the growth nuclei becomes large, so that the situation in which the three-dimensional island-shaped growth does not occur as in (i) above occurs. Since the situation is the same as that after the temperature rise in (), a compound semiconductor thin film having a mirror surface is formed.

【0016】[0016]

【実施例】次に本発明を実施例によりさらに説明する。
なお以下の実施例では基板としてサファイヤを、キャリ
アガスとしてH2 を用い、MOCVD法により化合物半
導体薄膜を成長させた。
EXAMPLES The present invention will be further described with reference to examples.
In the following examples, sapphire was used as the substrate and H 2 was used as the carrier gas to grow the compound semiconductor thin film by the MOCVD method.

【0017】(実施例1)原料ガスとしてTMGaとN
3 を用い、基板温度を1000℃、NH3 流量を3SLM
(Standard liter/ minute)と固定し、表1に示すよう
にTMGa流量をパラメータとしてGaN結晶の成長速
度と該結晶の表面状態との相関を調べ、その結果を表1
に併記した。
Example 1 TMGa and N as source gases
Using H 3 , the substrate temperature is 1000 ° C and the NH 3 flow rate is 3 SLM.
It is fixed as (Standard liter / minute), and as shown in Table 1, the correlation between the growth rate of the GaN crystal and the surface state of the GaN crystal is investigated using the TMGa flow rate as a parameter, and the results are shown in Table 1.
Also described in.

【0018】[0018]

【表1】 No.1及び2のサンプルでは表面に六角形の形状が見ら
れた。即ち島状の成長が見られた。No.3のサンプルは
ほぼ鏡面であるがやや白濁している。No.4及び5のサ
ンプルは完全な鏡面である。
[Table 1] In the samples No. 1 and 2, a hexagonal shape was observed on the surface. That is, island-like growth was observed. The sample of No. 3 is almost a mirror surface, but it is slightly cloudy. The samples No. 4 and 5 are perfectly specular.

【0019】この結果から、最も良好な鏡面の薄膜を得
るには0.25μm/min以上の成長速度が必要であることが
判る。
From this result, it is understood that the growth rate of 0.25 μm / min or more is required to obtain the best thin film having a mirror surface.

【0020】(実施例2)原料ガスとしてTMGaとN
3 を用い、基板温度を1000℃、NH3 流量を3SL
M、TMGa流量を 180μmol/min (成長速度0.31μm
/min)として表2のようにGaN結晶薄膜の膜厚と該結
晶の表面状態の相関を調べ、その結果を表2に併記し
た。
(Example 2) TMGa and N as source gases
Using H 3 , substrate temperature 1000 ℃, NH 3 flow rate 3 SL
M, TMGa flow rate 180μmol / min (growth rate 0.31μm
/ min), as shown in Table 2, the correlation between the film thickness of the GaN crystal thin film and the surface state of the crystal was investigated, and the results are also shown in Table 2.

【0021】[0021]

【表2】 No.7のサンプルは若干白濁がみられた。[Table 2] The sample No. 7 was slightly cloudy.

【0022】この結果からGaN結晶の膜厚は 0.5μm
以上成長させることにより一層良好な鏡面の薄膜が得ら
れることが判る。
From this result, the thickness of the GaN crystal is 0.5 μm.
It can be seen that a better mirror surface thin film can be obtained by the above growth.

【0023】(実施例3)原料ガスとしてTMGaとN
3 を用い、基板温度を1000℃、NH3 流量を3SLM
として、TMGa流量を 180μmol/min (成長速度0.31
μm/min)としてGaN結晶の薄膜を4分間成長させた
後、TMGa流量を70μmol/min (成長速度0.11μm/m
in)と下げ、引き続いてGaN結晶薄膜を5分間成長さ
せた。このサンプルの薄膜表面は鏡面であった。このこ
とから鏡面となるバッファ層を成長させた後であれば、
成長速度を小さくして結晶薄膜を成長させても得られる
結晶薄膜の表面状態は良好であることが判る。
(Example 3) TMGa and N as source gases
Using H 3 , the substrate temperature is 1000 ° C and the NH 3 flow rate is 3 SLM.
Flow rate of 180 μmol / min (growth rate 0.31
After growing a GaN crystal thin film for 4 minutes, the TMGa flow rate is 70 μmol / min (growth rate 0.11 μm / m).
in), and then a GaN crystal thin film was grown for 5 minutes. The thin film surface of this sample was a mirror surface. From this, if after growing the buffer layer to be a mirror surface,
It can be seen that the surface condition of the crystal thin film obtained is good even when the crystal thin film is grown at a low growth rate.

【0024】(実施例4)次に原料ガスとしてTMG
a、TMAl、NH3 を用いて本発明法により以下の通
りAlGaNの成長を行った。基板温度を1000℃、NH
3 流量を3SLM、TMGa流量を 180μmol/min (成
長速度0.31μm/min)としてTMAl流量をパラメータ
として5分間AlGaN薄膜の成長を行い、その時の結
晶表面の表面状態を調べてその結果を表3に示した。
(Embodiment 4) Next, TMG is used as a source gas.
AlGaN was grown as follows by the method of the present invention using a, TMAl and NH 3 . Substrate temperature 1000 ℃, NH
3 flow rate was 3 SLM, TMGa flow rate was 180 μmol / min (growth rate 0.31 μm / min), and AlGaN thin film was grown for 5 minutes with TMAl flow rate as a parameter. Indicated.

【0025】[0025]

【表3】 以上の様に化合物半導体AlGaNについても本発明が
効果のあることが判る。
[Table 3] As described above, it is understood that the present invention is also effective for the compound semiconductor AlGaN.

【0026】[0026]

【発明の効果】本発明によればサファイヤ基板上にAl
x Ga1-x N(0≦x≦1)の結晶薄膜を成長させる際
に従来の2段階成長法のように低温で成長させる工程が
ないので反応炉の降温、昇温の為の時間が短縮でき品質
を劣化させることなく生産効率を向上させることができ
る等の効果を有する。
According to the present invention, Al is formed on the sapphire substrate.
When growing a crystalline thin film of x Ga 1-x N (0 ≦ x ≦ 1), there is no step of growing at a low temperature unlike the conventional two-step growth method, so the time for lowering and raising the temperature of the reactor is It has the effect of being able to shorten the production efficiency and improving the production efficiency without deteriorating the quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】基板上での結晶成長を説明するもので、(イ)
(ロ)共にその説明図である。
FIG. 1 is a diagram for explaining crystal growth on a substrate.
(B) Both are explanatory views.

【図2】従来の2段階成長法を示すシーケンス線図であ
る。
FIG. 2 is a sequence diagram showing a conventional two-step growth method.

【符号の説明】[Explanation of symbols]

1 サファイヤ基板 2 GaN基板 3 成長核 1 Sapphire substrate 2 GaN substrate 3 Growth nucleus

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 サファイヤ基板を熱処理した後、該基板
上にAlx Ga1-xN(0≦x≦1)からなる化合物半
導体薄膜を成長させるに際して、該基板温度を 900〜11
00℃として該化合物半導体の構成成分が該基板上で三次
元的な島状の成長を起さない成長速度以上で該化合物半
導体を成長させることを特徴とする化合物半導体薄膜の
成長方法。
1. When a sapphire substrate is heat-treated and a compound semiconductor thin film made of Al x Ga 1-x N (0 ≦ x ≦ 1) is grown on the substrate, the substrate temperature is set to 900 to 11
A method for growing a compound semiconductor thin film, which comprises growing the compound semiconductor at a growth rate not exceeding three-dimensional island-shaped growth on the substrate at 00 ° C.
【請求項2】 Alx Ga1-x N(0≦x≦1)からな
る化合物半導体薄膜の成長速度を0.25μm/min以上と
し、且つ該薄膜を厚さ 0.5μm以上成長させる請求項1
記載の化合物半導体薄膜の成長方法。
2. The growth rate of the compound semiconductor thin film made of Al x Ga 1-x N (0 ≦ x ≦ 1) is set to 0.25 μm / min or more, and the thin film is grown to a thickness of 0.5 μm or more.
A method for growing a compound semiconductor thin film according to claim 1.
JP13626994A 1994-05-26 1994-05-26 Growth method for thin film of compound semiconductor Pending JPH07321374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13626994A JPH07321374A (en) 1994-05-26 1994-05-26 Growth method for thin film of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13626994A JPH07321374A (en) 1994-05-26 1994-05-26 Growth method for thin film of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH07321374A true JPH07321374A (en) 1995-12-08

Family

ID=15171248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13626994A Pending JPH07321374A (en) 1994-05-26 1994-05-26 Growth method for thin film of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH07321374A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593016B1 (en) 1999-06-30 2003-07-15 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and producing method thereof
JP2004193617A (en) * 2002-12-11 2004-07-08 Lumileds Lighting Us Llc Growth of iii-group nitride film on mismatched substrate without usual nuclear layer formed at low temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593016B1 (en) 1999-06-30 2003-07-15 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and producing method thereof
US6918961B2 (en) 1999-06-30 2005-07-19 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor device and producing method therefor
JP2004193617A (en) * 2002-12-11 2004-07-08 Lumileds Lighting Us Llc Growth of iii-group nitride film on mismatched substrate without usual nuclear layer formed at low temperature

Similar Documents

Publication Publication Date Title
US8728938B2 (en) Method for substrate pretreatment to achieve high-quality III-nitride epitaxy
JP5099763B2 (en) Substrate manufacturing method and group III nitride semiconductor crystal
US8030101B2 (en) Process for producing an epitaxial layer of galium nitride
JP5367376B2 (en) Process for growth of low dislocation density GaN
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
US6852161B2 (en) Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JPH10173288A (en) Method for growing nitride-based iii-v compound semiconductor layer, and manufacture if nitride-based iii-v compound semiconductor substrate
US20070215901A1 (en) Group III-V nitride-based semiconductor substrate and method of fabricating the same
US20060175681A1 (en) Method to grow III-nitride materials using no buffer layer
JP3940673B2 (en) Method for producing group III nitride semiconductor crystal and method for producing gallium nitride compound semiconductor
JP5093740B2 (en) Semiconductor crystal film growth method
KR20020065892A (en) Method of fabricating group-ⅲ nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
JPH1179897A (en) Crystal growth for gallium nitride thick film
US7468103B2 (en) Method of manufacturing gallium nitride-based single crystal substrate
JP2011216549A (en) METHOD OF MANUFACTURING GaN-BASED SEMICONDUCTOR EPITAXIAL SUBSTRATE
US20050132950A1 (en) Method of growing aluminum-containing nitride semiconductor single crystal
JP4600146B2 (en) Manufacturing method of nitride semiconductor substrate
KR101335937B1 (en) Method for fabricating gan wafer using llo(laser lift-off) process
JPH088185A (en) Multilayer structure and growth method of gan-based compound semiconductor thin film
US20050066885A1 (en) Group III-nitride semiconductor substrate and its manufacturing method
JP2005203418A (en) Nitride compound semiconductor substrate and its manufacturing method
JPH07321374A (en) Growth method for thin film of compound semiconductor
JPH08264455A (en) Semiconductor device and manufacture thereof
CN112760611A (en) Optimized growth method for improving quality of MOCVD epitaxial film
JP2677221B2 (en) Method for growing nitride-based III-V compound semiconductor crystal