JPH07318489A - Differential refractometer device for liquid chromatography - Google Patents

Differential refractometer device for liquid chromatography

Info

Publication number
JPH07318489A
JPH07318489A JP13128294A JP13128294A JPH07318489A JP H07318489 A JPH07318489 A JP H07318489A JP 13128294 A JP13128294 A JP 13128294A JP 13128294 A JP13128294 A JP 13128294A JP H07318489 A JPH07318489 A JP H07318489A
Authority
JP
Japan
Prior art keywords
circuit
refractive index
light
optical system
differential refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13128294A
Other languages
Japanese (ja)
Other versions
JP2791970B2 (en
Inventor
Tomokichi Onoda
友吉 小野田
Hiroshi Yamamoto
博 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMAMURA KEIKI SEISAKUSHO KK
Original Assignee
SHIMAMURA KEIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMAMURA KEIKI SEISAKUSHO KK filed Critical SHIMAMURA KEIKI SEISAKUSHO KK
Priority to JP6131282A priority Critical patent/JP2791970B2/en
Publication of JPH07318489A publication Critical patent/JPH07318489A/en
Application granted granted Critical
Publication of JP2791970B2 publication Critical patent/JP2791970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a light and small differential refractometer device for a liquid chromatography suitable for capture of sampling. CONSTITUTION:At least an optical system 13, a passage system 41, a differential refractometer circuit system and an electric power supply part are provided, and in the optical system 13, a part between a light source 16 and a light receiving part 30 is formed as the nonreflective optical axis, and the electric power supply part is composed of a switching regulator and a filter circuit, and an electric power is supplied to the above circuit system by restraining a noise. The circuit system is provided with at least a variable constant current circuit to adjust brightness of the light source 16, a constant voltage circuit to supply electric power to a necessary circuit, an initial stage electric current amplifying circuit composed of a pair of operation amplifiers to amplify electric signals on which photoelectric transfer is respectively and separately performed by the light receiving part 30 and a subtracting circuit to detect a difference between the respective mutual electric signals by the next stage, and it is desirable that in the optical system 13, the optical axis from the light source 16 side is made freely adjustable, and that the upper side of a measuring cell 26 is arranged on a base stand 39 as a light untransmissive area and is arranged in a casing through a shock absorbing member on the stand center reverse side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体クロマトグラフィー
用示差屈折率検出装置に係り、さらに詳しくは、サンプ
リングのための分取用として好適に使用することがで
き、かつ、装置全体の軽量小型化をも同時に達成するこ
とができる液体クロマトグラフィー用示差屈折率検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential refractive index detection device for liquid chromatography, and more particularly, it can be suitably used as a preparative separation for sampling, and the overall size and weight of the device can be reduced. The present invention also relates to a differential refractive index detection device for liquid chromatography capable of simultaneously achieving the above.

【0002】[0002]

【従来の技術】液体クロマトグラフを構成する検出手段
については、示差屈折率検出装置などのような溶液物性
型の汎用検出手段と、紫外吸収検出装置などのような溶
質物性型の特異型検出手段とに大別することができる。
2. Description of the Related Art As a detecting means constituting a liquid chromatograph, a general-purpose detecting means of a solution physical type such as a differential refractive index detecting device and a specific detecting means of a solute physical type such as an ultraviolet absorption detecting device. Can be roughly divided into

【0003】このうち、特異型検出手段のひとつである
紫外吸収検出装置は、一般に移動相溶媒の温度変化や流
量の脈動などの外部要因の変動を受け難いので容易に高
感度化できる特長があるものの、物質に紫外線吸収性が
ない場合や特定波長に依存しない場合などには適用でき
ない難点があった。
Among them, the ultraviolet absorption detection device, which is one of the specific type detection means, is generally less susceptible to external factors such as temperature change of the mobile phase solvent and pulsation of the flow rate, so that it has a feature that the sensitivity can be easily increased. However, there is a problem that it cannot be applied when the substance does not have ultraviolet absorption or does not depend on a specific wavelength.

【0004】一方、汎用検出手段のひとつであるである
示差屈折率検出装置は、紫外吸収検出装置を用いること
ができない上記場合においても利用できる点で優れてい
るものの、分析精度を高感度化するためには微小な溶媒
の温度変化や流量(圧力)変化などの外的要因を少なく
する必要があった。
On the other hand, the differential refractive index detection device, which is one of the general-purpose detection means, is excellent in that it can be used even in the above-mentioned case where the ultraviolet absorption detection device cannot be used, but it improves the analysis accuracy. Therefore, it is necessary to reduce external factors such as minute temperature changes and flow rate (pressure) changes of the solvent.

【0005】ところで、このような特性を有する示差屈
折率検出装置中、特に図4に示すような偏光型の従来タ
イプの示差屈折率検出装置においては、フィラメント型
ランプにより形成される光源2から出て形成される光路
Rがスリット3を経てレンズ4で集光された後、測定セ
ル5を通過して反射ミラー6へと至り、その反射光が再
度測定セル5を通過し、二分割された受光素子からなる
受光部7へと到達し、この受光部7により電気信号に変
換され、所定の処理を行なうことで屈折率を検出するこ
とができるようにした光学系1を配置することで形成さ
れている。
By the way, among the differential refractive index detection devices having such characteristics, particularly in the polarization type conventional differential refractive index detection device as shown in FIG. 4, the light source 2 formed by a filament lamp emits light. The optical path R formed by the light passes through the slit 3 and is condensed by the lens 4, then passes through the measurement cell 5 and reaches the reflection mirror 6, and the reflected light passes through the measurement cell 5 again and is divided into two. It is formed by arranging an optical system 1 that reaches a light receiving section 7 formed of a light receiving element, is converted into an electric signal by the light receiving section 7, and is capable of detecting a refractive index by performing a predetermined process. Has been done.

【0006】上記液体クロマトグラフィー用示差屈折率
検出装置の場合には、検出される屈折率に温度依存性が
あることから、光学系1の全体を温度調節して恒温状態
を保持させておかなければならず、したがって、熱容量
の大きなアルミブロック8内に収容し、しかも、このア
ルミブロック8を10〜20mm程度の厚さのスポンジ
材9を用いて外被することで外部周辺温度の影響を受け
ないように配慮しておく必要があった。
In the case of the above-mentioned differential refractive index detection device for liquid chromatography, since the refractive index to be detected has temperature dependency, the temperature of the entire optical system 1 should be adjusted to maintain a constant temperature. Therefore, since the aluminum block 8 is housed in the aluminum block 8 having a large heat capacity, and the aluminum block 8 is covered with the sponge material 9 having a thickness of about 10 to 20 mm, it is affected by the external ambient temperature. It was necessary to take care not to do so.

【0007】[0007]

【発明が解決しようとする課題】ところで、従来からあ
る上記示差屈折率検出装置によっても精度よく屈折率を
検出することはできる。
By the way, the refractive index can be accurately detected even by the above-mentioned conventional differential refractive index detecting device.

【0008】しかし、従来装置の光源2は、フィラメン
ト型ランプであることから発熱量が多く、装置を構成し
ている各種金属部材が熱膨張と冷却収縮とを繰り返し、
このことが温度依存性のある屈折率にドリフトを発生さ
せる大きな原因となっていた。
However, since the light source 2 of the conventional device is a filament type lamp, it generates a large amount of heat and various metal members constituting the device repeatedly undergo thermal expansion and cooling contraction,
This has been a major cause of drift in the temperature-dependent refractive index.

【0009】また、光学系1が収容されるアルミブロッ
ク8内の温度変化は、光源2から受光部7へと至る光路
Rのずれの変化率を大きくすることから、アルミブロッ
ク8自体の熱容量を大きくすることでドリフトの発生を
抑制する策を講じていたほか、10〜20mm程度の厚
さのスポンジ材9を外被する必要もあったため、結果的
にその全体が大型化してしまう不都合があった。
The temperature change in the aluminum block 8 in which the optical system 1 is housed increases the rate of change in the deviation of the optical path R from the light source 2 to the light receiving section 7, so that the heat capacity of the aluminum block 8 itself is increased. In addition to taking measures to suppress the occurrence of drift by increasing the size, it was also necessary to coat the sponge material 9 having a thickness of about 10 to 20 mm, resulting in an inconvenience that the entire size was increased. It was

【0010】一方、ドリフトの発生を防止するために
は、光学系1が収容されるアルミブロック8内を温度調
節する必要があり、そのために重量のあるトランスなど
を備えた電源部が必要になり、この電源部が発熱の原因
となる問題もあった。
On the other hand, in order to prevent the occurrence of drift, it is necessary to adjust the temperature inside the aluminum block 8 in which the optical system 1 is accommodated, and for this reason, a power source section equipped with a heavy transformer is required. There was also a problem that this power supply unit causes heat generation.

【0011】しかも、このような電源部の発熱防止を講
じるためには、そのための各種機器も必要になり、結果
的に装置全体の重量化と大型化とを招き、製品コストを
高いものにする不都合があった。
Moreover, in order to prevent the heat generation of the power source section, various equipments are necessary for that purpose, resulting in weight increase and size increase of the entire apparatus, which results in high product cost. There was an inconvenience.

【0012】さらに、従来タイプの示差屈折率検出装置
にあっては、ミラー6を用いた光軸反射タイプの光学系
1を採用することで、光路Rの長さを長くして測定感度
を引き上げており、それだけ温度依存性が高くなる問題
もあった。
Further, in the conventional type of differential refractive index detection device, by adopting the optical system 1 of the optical axis reflection type using the mirror 6, the length of the optical path R is increased and the measurement sensitivity is increased. Therefore, there is a problem that the temperature dependency becomes higher.

【0013】[0013]

【課題を解決するための手段】本発明は従来装置にみら
れた上記課題に鑑みてなされたものであり、そのうち、
請求項1記載の発明の構成上の特徴は、発光ダイオード
により形成される光源と二分割光電変換素子により形成
される受光部との間に介在させた測定セル内の溶媒と試
料液との屈折率の差を検出すべく隔室内に配設される光
学系と、前記測定セルに対し溶媒と試料液とを各別に供
給・排出する流路系と、前記測定セル内の溶媒と試料液
との屈折率の差を電気信号として検出する示差屈折率検
出回路系と、この示差屈折率検出回路系に対し電力を供
給する電源部とを少なくともケーシング内に備えてなる
液体クロマトグラフィー用示差屈折率検出装置におい
て、前記光学系は、光源と受光部との間を無反射光軸の
もとで形成するとともに、前記隔室外に配設される電源
部は、直流安定化電源であるスイッチングレギュレータ
と、次段に配設されるフィルタ回路とで構成し、前記示
差屈折率検出回路系にノイズを抑制して給電するように
したことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems found in conventional devices.
The structural feature of the invention according to claim 1 is that refraction of a solvent and a sample liquid in a measurement cell interposed between a light source formed by a light emitting diode and a light receiving portion formed by a two-division photoelectric conversion element. An optical system arranged in a compartment to detect a difference in the ratio, a flow path system for separately supplying and discharging a solvent and a sample solution to and from the measurement cell, and a solvent and a sample solution in the measurement cell. Differential refractive index detection circuit system for detecting the difference in refractive index as an electric signal, and a differential refractive index for liquid chromatography comprising at least a casing with a power supply section for supplying power to the differential refractive index detection circuit system. In the detection device, the optical system forms a light source and a light receiving unit under a non-reflective optical axis, and a power supply unit disposed outside the compartment is a switching regulator that is a DC stabilized power supply. , Arranged in the next stage Constituted by a filter circuit, to suppress the noise in the differential refractive index detector system lies in that so as to feed.

【0014】また、請求項2記載の発明の構成上の特徴
は、請求項1における前記示差屈折率検出回路系が光源
の発光輝度を調節する可変定電流回路と、この可変定電
流回路を含む電源電圧の変動を受けやすい回路に給電す
る定電圧回路と、前記二分割光電変換素子にて各別に光
電変換された電気信号を増幅するワンチップ化された一
対のオペアンプからなる初段電流増幅回路と、この初段
電流増幅回路を経て増幅された各電気信号相互間の差を
検出する減算回路とを少なくとも備え、かつ、これらの
回路を前記隔室を除くケーシング内に配設したことにあ
る。
A second aspect of the invention is characterized in that the differential refractive index detection circuit system according to the first aspect includes a variable constant current circuit for adjusting the emission brightness of a light source, and the variable constant current circuit. A constant voltage circuit that supplies power to a circuit that is susceptible to fluctuations in the power supply voltage, and a first-stage current amplifier circuit that includes a pair of operational amplifiers that are integrated into one chip and that amplifies electric signals that are photoelectrically converted by the two-division photoelectric conversion element. And a subtracting circuit for detecting a difference between the electric signals amplified by the first-stage current amplifying circuit, and these circuits are arranged in the casing excluding the compartment.

【0015】さらに、請求項3記載の発明の構成上の特
徴は、請求項1又は請求項2における前記光学系を光源
の側からの光軸調整を自在にし、かつ、測定セルの上部
側を非透光領域として難可撓性の基台上にその全体を配
置し、この基台の台央裏面側に配設される緩衝部材を介
して断熱性に富む前記隔室を画成している底板上に設置
したことにある。
Further, the constitutional feature of the invention described in claim 3 is that the optical system in claim 1 or 2 can freely adjust the optical axis from the light source side, and the upper side of the measuring cell can be adjusted. As a non-light-transmitting region, the whole is arranged on a base that is difficult to flex, and the partition with high heat insulation is defined by a buffer member arranged on the back side of the center of the base. It has been installed on the bottom plate.

【0016】[0016]

【作用】このため、請求項1記載の発明によれば、前記
光学系を無反射光軸のもとで全体の光路長を短くして形
成することができるので、温度依存性を低下させること
ができ、しかも、前記電源部を比較的大きな容積を占
め、かつ、発熱源ともなっていた電源トランスに代えス
イッチングレギュレータとフィルタ回路とで構成してあ
るので、光学系が配置される隔室内を温度調節する必要
をなくしてコンパクト化することで、ケーシングを含む
装置本体のより一層の軽量小型化を実現することができ
る。
Therefore, according to the first aspect of the invention, the optical system can be formed by shortening the entire optical path length under the non-reflecting optical axis, so that the temperature dependence is reduced. In addition, since the power supply unit occupies a relatively large volume and is composed of a switching regulator and a filter circuit in place of the power supply transformer that also served as a heat source, the temperature inside the compartment where the optical system is arranged can be improved. By making it compact by eliminating the need for adjustment, it is possible to realize a further reduction in weight and size of the apparatus main body including the casing.

【0017】また、請求項2記載の発明によれば、前記
可変定電流回路により光源の発光輝度を安定的に制御す
ることができるほか、定電圧回路により電源電圧の変動
を受けにくくすることができ、さらには、前記初段電流
増幅回路を同一の温度条件のもとにおかれる一対のオペ
アンプにより形成することで出力特性を一致させてある
ので、各オペアンプから出力される電気信号相互間の差
を次段の減算回路にて正しく検出することができるな
ど、全体の消費電力を少なくすることで前記示差屈折率
検出回路系からの出力を安定化させることができる。
According to the second aspect of the invention, the variable constant current circuit can stably control the light emission luminance of the light source, and the constant voltage circuit can reduce the fluctuation of the power supply voltage. Further, since the output characteristics are matched by forming the first-stage current amplifier circuit by a pair of operational amplifiers that are placed under the same temperature condition, the difference between the electric signals output from each operational amplifier is The output from the differential refractive index detection circuit system can be stabilized by reducing the total power consumption, such as correct detection by the subtraction circuit in the next stage.

【0018】しかも、示差屈折率検出回路系と電源部と
は、前記隔室を除くケーシング内にコンパクト化して配
設されているので、隔室内の温度変化を少なくして光学
系に発生する温度ドリフトを少なくすることができる。
Moreover, since the differential refractive index detection circuit system and the power source are compactly arranged in the casing excluding the compartment, the temperature change in the compartment is reduced and the temperature generated in the optical system is reduced. Drift can be reduced.

【0019】一方、請求項3記載の発明によれば、請求
項1又は請求項2に記載の前記光学系は、光源の側から
の光軸調整が自在となっているほか、測定セルの上部側
が非透光領域となっており、かつ、その全体が難可撓性
の基台上に配設されており、しかも、この基台は、台央
裏面側に配設された緩衝部材を介して断熱性に富む前記
隔室を画成している底板部上に設置されることになるの
で、ヌルグラスが不要になるばかりでなく、測定セル内
に流入する気泡が生起させるベースラインの乱れをなく
すことができ、さらには、光学系に影響を及ぼす機械的
なヒズミの発生を抑制することもできる。
On the other hand, according to the third aspect of the invention, in the optical system according to the first or second aspect, the optical axis can be freely adjusted from the side of the light source, and the upper part of the measuring cell is also provided. The side is a non-light-transmitting area, and the whole is arranged on a difficult-to-flex base, and this base is provided with a cushioning member arranged on the back side of the center of the base. Since it will be installed on the bottom plate part that defines the compartment that is rich in heat insulation, not only null glass is not necessary, but also the turbulence of the baseline caused by bubbles flowing into the measurement cell It can be eliminated, and furthermore, generation of mechanical flaws affecting the optical system can be suppressed.

【0020】[0020]

【実施例】図1は、本発明の一実施例の概略構成を平面
側から見た場合についての構造(部分的な断面構造を含
む)を示す説明図であり、測定セル26内の溶媒と試料
液との屈折率の差を検出すべく断熱性の隔室38内に配
設される光学系13と、前記測定セル26に対し溶媒と
試料液とを各別に供給・排出する流路系41と、図2に
示すように前記測定セル26内の溶媒と試料液との屈折
率の差を電気信号として検出する示差屈折率検出回路系
56と、この示差屈折率検出回路系56に対し電力を供
給する電源部51とを少なくとも図3に示すケーシング
12内に配設することでその全体が構成されている。
FIG. 1 is an explanatory view showing a structure (including a partial cross-sectional structure) of a schematic structure of one embodiment of the present invention when viewed from a plane side, and shows a solvent in a measuring cell 26. An optical system 13 arranged in a heat-insulating compartment 38 for detecting a difference in refractive index from the sample liquid, and a flow path system for separately supplying / discharging the solvent and the sample liquid to / from the measurement cell 26. 41, a differential refractive index detection circuit system 56 for detecting a difference in refractive index between the solvent and the sample solution in the measurement cell 26 as an electric signal as shown in FIG. 2, and the differential refractive index detection circuit system 56. The entire power source unit 51 for supplying electric power is arranged at least in the casing 12 shown in FIG.

【0021】このうち、前記光学系13は、照射光量を
均一化して送出可能とした発光部14と、この発光部1
3からの照射光R1 を散乱光を除去した平行光束として
前記測定セル26を透過させ、この透過光R2 を集光し
て送出可能としたレファレンス部22と、このレファレ
ンス部22を経た入射光R3 の光量比較を可能に設けら
れた受光部30とを難可撓性の金属板からなる基台39
上に配置してなる光軸無反射構造のもとで形成されてい
る。
Of these, the optical system 13 includes a light emitting section 14 capable of uniformizing and irradiating the irradiation light amount, and the light emitting section 1.
A reference portion 22 that allows the irradiation light R 1 from the light source 3 to be a parallel light flux from which scattered light has been removed and is transmitted through the measurement cell 26, and that the transmitted light R 2 can be collected and sent out, and the incident light that has passed through the reference portion 22. The light receiving unit 30 provided so that the light amount of the light R 3 can be compared with the base 39 made of an inflexible metal plate.
It is formed under the optical axis non-reflective structure arranged above.

【0022】この場合、光学系13が配置される前記基
台39は、図3に示すように基台39の台央裏面側に配
設される例えばゴム材やスポンジ材などで形成された緩
衝部材40を介することで前記隔室38を画成している
ハウジング部34の底板部34a上に設置されている。
In this case, the base 39 on which the optical system 13 is arranged is a buffer formed of, for example, a rubber material or a sponge material arranged on the back surface of the base 39 as shown in FIG. It is installed on the bottom plate portion 34a of the housing portion 34 that defines the compartment 38 by means of the member 40.

【0023】また、発光部13は、後述する可変定電流
回路58により設定される安定した発光輝度のもとで点
光源と同等な発光面から発光させることができる発光ダ
イオード(LED)により形成される光源16と、スリ
ット18を有して照射光量を均一化して送出するための
第1スリット部17とを備える発光本体部15と、この
発光本体部15を背後側から支持する支持部材19とで
形成されている。
The light emitting section 13 is formed by a light emitting diode (LED) capable of emitting light from a light emitting surface equivalent to a point light source under a stable light emitting brightness set by a variable constant current circuit 58 described later. A light source 16 including a light source 16 and a first slit portion 17 having a slit 18 for uniformizing and emitting the irradiation light amount, and a support member 19 for supporting the light emitting main body 15 from the rear side. Is formed by.

【0024】しかも、支持部材19は、基台39上に固
定された支持本体部20と、前記発光本体部15を背後
方向から支持するために支持本体部20に対し水平方向
への進退を自在にして配設されている複数本の螺杆材2
1とで形成されている。
In addition, the support member 19 can be moved back and forth in a horizontal direction with respect to the support body 20 for supporting the support body 20 fixed on the base 39 and the light emitting body 15 from the rear direction. A plurality of screw rods 2 arranged as
It is formed with 1.

【0025】この場合における支持部材19による発光
本体部15の支持構造は、支持本体部20の側に計4本
の螺杆材21を例えば図1に示すように支持本体部20
の左右中央部に各1本の押圧用螺杆材21aを、また、
図3に示すように支持本体部20の上下中央部に各1本
の支持用螺杆材21bをそれぞれ配設し、各支持用螺杆
材21bは発光本体部15の側に螺合させ、各押圧用螺
杆材21aは発光本体部15の背面に当接させ、発光本
体部15の上下方向への角度調整はいずれかの支持用螺
杆材21bを進退させることで、左右方向への角度調整
はいずれかの押圧用螺杆材21aを進退させることで光
源14からの照射光R1 の光軸調整を自在にして形成さ
れている。
In this case, the support structure of the light emitting main body portion 15 by the support member 19 has a total of four screw rods 21 on the support main body portion 20 side, for example, as shown in FIG.
One pressing screw member 21a is provided at each of the left and right central portions of
As shown in FIG. 3, one supporting screw member 21b is provided at each of the upper and lower central portions of the supporting main body unit 20, and each supporting screw member 21b is screwed to the light emitting main body unit 15 side and pressed. The screw rod 21a for contact is brought into contact with the back surface of the light emitting main body 15, and the vertical angle of the light emitting main body 15 is adjusted by advancing and retracting any one of the supporting screw rods 21b, thereby adjusting the angle in the left and right direction. It is formed so that the optical axis of the irradiation light R 1 from the light source 14 can be freely adjusted by advancing and retracting the pressing screw member 21a.

【0026】また、前記レファレンス部22は、発光部
14の側からの照射光R1 のうちから不必要な散乱光を
除去してこれを導入するためのスリット24を有する第
2スリット部23と、この第2スリット部24を経た照
射光R1 を平行光束とするための第1コリメーターレン
ズ25と、前記流路系41に接続されている測定セル2
6と、この測定セル26を透過した平行光束としての透
過光R2 を集光するための第2コリメーターレンズ29
とを備えて形成されている。なお、測定セル26の上部
側は、例えば第2スリット部23におけるスリット24
の位置や幅を調節したり、測定セル26の上部側自体に
図示しない遮光部を予め形成しておくなどして照射光R
1 の透過を許さない非透光領域としておくのが望まし
い。
The reference portion 22 has a second slit portion 23 having a slit 24 for removing unnecessary scattered light from the irradiation light R 1 from the light emitting portion 14 side and introducing the scattered light. The first collimator lens 25 for making the irradiation light R 1 that has passed through the second slit portion 24 into a parallel light flux, and the measurement cell 2 connected to the flow path system 41.
6 and a second collimator lens 29 for condensing the transmitted light R 2 as a parallel light flux transmitted through the measurement cell 26.
And are formed. The upper side of the measurement cell 26 is, for example, the slit 24 in the second slit portion 23.
Of the irradiation light R by adjusting the position or width of the
It is desirable to set it as a non-translucent area that does not allow the transmission of 1 .

【0027】さらに、前記受光部30は、第2コリメー
タレンズ29を経て直進してきた入射光R3 を受光する
ための第1光電変換部32と第2光電変換部33とを備
えてなる二分割光電変換素子31を用いて形成されてい
る。
Further, the light receiving section 30 is divided into two parts, which are provided with a first photoelectric conversion section 32 and a second photoelectric conversion section 33 for receiving the incident light R 3 which has traveled straight through the second collimator lens 29. It is formed using the photoelectric conversion element 31.

【0028】また、光学系13が収容される前記隔室3
8は、金属薄板材により形成されたハウジング本体部3
5と、このハウジング本体部35の表面を覆う肉厚が1
mm前後のスポンジ材などからなる断熱部材36と、こ
の断熱部材36に被着されているアルミ箔材37とで形
成されるハウジング部34により画成されるものであ
り、このハウジング部34により隔室38内は外部と熱
的に隔絶された暗室状態が維持されることになる。
The compartment 3 in which the optical system 13 is housed
8 is a housing main body 3 formed of a thin metal plate material
5 and the wall thickness covering the surface of the housing body 35 is 1
The heat insulating member 36 is made of a sponge material having a size of about 1 mm, and the aluminum foil member 37 is attached to the heat insulating member 36. The inside of the chamber 38 is maintained in a dark room state that is thermally isolated from the outside.

【0029】一方、前記流路系41は、45°のセル角度
で仕切られた試料側セル27と対照側セル28とを有し
てなる測定セル26における対照側セル28に溶媒を供
給するための給液路42と、これを排出するための排液
路43のほか、試料側セル27に試料液を供給するため
の給液路44と、これを排出するための排液路45とを
有して形成されている。なお、流路系41を構成してい
る対照側セル28の給排液路42,43と、試料側セル
27の給排液路44,45とは、耐酸性や耐アルカリ性
に富むフッ素樹脂からなるチューブ材を用いて形成され
ている。
On the other hand, the flow path system 41 supplies the solvent to the control side cell 28 in the measurement cell 26 having the sample side cell 27 and the control side cell 28 which are partitioned by the cell angle of 45 °. In addition to the liquid supply path 42 and the liquid discharge path 43 for discharging the same, a liquid supply path 44 for supplying the sample liquid to the sample-side cell 27 and a liquid discharge path 45 for discharging the liquid. Has been formed. The supply / drainage passages 42, 43 of the control side cell 28 and the supply / drainage passages 44, 45 of the sample side cell 27, which constitute the flow passage system 41, are made of a fluororesin rich in acid resistance and alkali resistance. It is formed by using a tube material.

【0030】さらに、試料側セル27の給液路44の側
には、例えば捲回するなどして曲折されたステンレスチ
ューブ材47を包み込むようにしてはんだ材48に抱持
させてなる熱容量の大きな温度調整部材46が介在配置
されているので、前記ステンレスチューブ材47を通過
させた後に給液路44側に試料液を供給することで、液
温の経時的な変化を少なくして、測定感度をより高く
し、測定精度を安定化させることができる。
Further, on the side of the liquid supply path 44 of the sample side cell 27, for example, a stainless tube material 47 bent by being wound is wrapped and wrapped around a solder material 48, which has a large heat capacity. Since the temperature adjusting member 46 is interposed, the sample liquid is supplied to the liquid supply path 44 side after passing through the stainless steel tube material 47 to reduce the change in the liquid temperature with time and to improve the measurement sensitivity. Can be made higher and the measurement accuracy can be stabilized.

【0031】一方、図2は、前記測定セル26内の溶媒
と試料液との屈折率の差を電気信号として検出する示差
屈折率検出回路系56と、この示差屈折率検出回路系5
6に対し電力を供給する電源部51との回路構成の一例
を示すものである。
On the other hand, FIG. 2 shows a differential refractive index detection circuit system 56 for detecting the difference in refractive index between the solvent and the sample solution in the measuring cell 26 as an electric signal, and the differential refractive index detection circuit system 5
6 shows an example of a circuit configuration with a power supply unit 51 that supplies electric power to 6.

【0032】このうち、電源部51は、接続端子53,
54を介して印加されるAC100〜240Vの交流電
源電圧を安定化させた直流電源電圧に変換するスイッチ
ングレギュレータ52と、このスイッチングレギュレー
タ52からの整流出力に入るリップルやスパイク成分な
どのノイズを消去して示差屈折率検出回路系56の側に
給電することを目的に一次ローパスフィルタにより形成
されるフィルタ回路55とで構成されている。
Of these, the power source section 51 includes a connection terminal 53,
A switching regulator 52 that converts an AC power supply voltage of AC100 to 240V applied via a switch 54 into a stabilized DC power supply voltage, and noise such as ripples and spike components that enter the rectified output from the switching regulator 52 is erased. And a filter circuit 55 formed by a primary low-pass filter for the purpose of supplying power to the differential refractive index detection circuit system 56 side.

【0033】また、前記示差屈折率検出回路系56は、
光源16の発光輝度を調節する可変定電流回路58と、
この可変定電流回路58を含む電源電圧の変動を受けや
すい回路に給電する定電圧回路57と、前記二分割光電
変換素子31にて各別に光電変換された電気信号を増幅
するワンチップ化された一対のオペアンプからなる初段
電流増幅回路59と、この初段電流増幅回路59を経て
増幅された各電気信号相互間の差を検出する減算回路6
0とを少なくとも備え、出力端子65,66を介してレ
コーダの側に出力できるようになっている。この場合、
初段電流増幅回路59を構成している各オペアンプは、
入力インピーダンスの高いFET(電界効果トランジス
タ)を用いるのが望ましい。
Further, the differential refractive index detection circuit system 56 is
A variable constant current circuit 58 for adjusting the emission brightness of the light source 16,
A constant voltage circuit 57 for feeding a circuit including the variable constant current circuit 58, which is susceptible to fluctuations in power supply voltage, and a one-chip for amplifying electric signals photoelectrically converted by the two-division photoelectric conversion element 31 separately. A first stage current amplifier circuit 59 composed of a pair of operational amplifiers, and a subtraction circuit 6 for detecting a difference between electric signals amplified by the first stage current amplifier circuit 59.
At least 0 and 0 can be output to the recorder side via the output terminals 65 and 66. in this case,
Each operational amplifier forming the first stage current amplifier circuit 59 is
It is desirable to use a FET (field effect transistor) having a high input impedance.

【0034】なお、上記示差屈折率検出回路系56は、
上記回路構成に加え、図2に示すようにクロマトグラム
のベースラインの設定変更を行う加算回路61と、この
加算回路61の次段にて電気信号からノイズを消去する
ローパスフィルタ62と、このローパスフィルタ62に
よりノイズが消去された電気信号をレコーダ出力との関
係で感度調整を行うアッティネータ63と、アッティネ
ータ63にて感度調整された電気信号を増幅する例えば
バイポーラタイプのオペアンプなどからなるバッファ回
路64とを備えるものであってもよい。
The differential refractive index detection circuit system 56 is
In addition to the above circuit configuration, as shown in FIG. 2, an adder circuit 61 for changing the setting of the baseline of the chromatogram, a low-pass filter 62 for eliminating noise from the electric signal in the next stage of the adder circuit 61, and this low-pass filter An attenuator 63 that adjusts the sensitivity of the electric signal from which noise has been eliminated by the filter 62 in relation to the recorder output, and a buffer circuit 64 that amplifies the electric signal whose sensitivity has been adjusted by the attenuator 63 and that includes, for example, a bipolar type operational amplifier. May be provided.

【0035】次に、このようにして構成されている本発
明につき、その作用を説明する。
Next, the operation of the present invention thus constructed will be described.

【0036】まず、本発明のうち、請求項1記載の発明
によれば、前記光学系13を無反射光軸のもとで全体の
光路長を短くして形成することができるので、温度依存
性を低下させることができ、しかも、前記電源部51を
比較的大きな容積を占め、かつ、発熱源ともなっていた
電源トランスに代えスイッチングレギュレータ52とフ
ィルタ回路55とで構成してあるので、光学系13が配
置される隔室38内を温度調節する必要をなくしてコン
パクト化することで、ケーシング12を含む装置本体1
1のより一層の軽量小型化を実現することができる。
According to the first aspect of the present invention, the optical system 13 can be formed by shortening the entire optical path length under the non-reflecting optical axis. Since the power supply section 51 occupies a relatively large volume and is composed of a switching regulator 52 and a filter circuit 55 instead of the power supply transformer which also served as a heat source, the optical system The apparatus main body 1 including the casing 12 can be made compact by eliminating the need to control the temperature in the compartment 38 in which the 13 is arranged.
It is possible to realize further weight reduction and size reduction of item 1.

【0037】しかも、電源部51は、光学系13が収容
されている隔室38を除くケーシング12内に配設さ
れ、かつ、電力の損失を少なくして発熱を抑制している
ので、隔室38内の光学系13において温度依存性のあ
る屈折率にドリフトを発生させる要因を少なくするなか
で、装置本体11の小型化を実現することができる。
Moreover, since the power source section 51 is disposed inside the casing 12 excluding the compartment 38 in which the optical system 13 is housed and the power loss is reduced to suppress heat generation, the compartment 51 While reducing the factors that cause the drift of the temperature-dependent refractive index in the optical system 13 in the device 38, the device body 11 can be downsized.

【0038】また、請求項2記載の発明によれば、示差
屈折率検出回路系56を構成している前記可変定電流回
路58により光源16の発光輝度を安定的に制御して、
測定精度を高めることができるほか、定電圧回路57に
より電源部51から得られる電源電圧の変動を受けにく
くすることができる。
According to the second aspect of the present invention, the light emission brightness of the light source 16 is stably controlled by the variable constant current circuit 58 constituting the differential refractive index detection circuit system 56,
The measurement accuracy can be improved, and the constant voltage circuit 57 can reduce the fluctuation of the power supply voltage obtained from the power supply unit 51.

【0039】しかも、前記初段電流増幅回路59では、
数pA程度の電流変化を検出しなければならないため、
従来は高性能な高インピーダンス入力の低ノイズ型のオ
ペアンプを使用し、温度ドリフトを防ぐ目的で恒温槽ブ
ロック内に収容しておく必要があったが、本発明におけ
る初段電流増幅回路59は、同一の温度条件のもとにお
かれる一対のオペアンプにより形成されており、温度変
動が仮にあってもそれぞれの出力特性を一致させて等し
い出力変化を引き出すことができる。
Moreover, in the first stage current amplifier circuit 59,
Since it is necessary to detect a current change of about several pA,
Conventionally, it was necessary to use a high-performance, high-impedance input, low-noise type operational amplifier and store it in a constant temperature oven block in order to prevent temperature drift. However, the first-stage current amplifier circuit 59 of the present invention is the same. It is formed by a pair of operational amplifiers which are placed under the temperature condition of (3), and even if there is a temperature change, it is possible to bring out the same output change by matching the respective output characteristics.

【0040】このため、従来のような恒温槽ブロックを
不要にするなかで、初段電流増幅回路59を構成してい
る各オペアンプから出力される電気信号相互間の差は、
次段の減算回路60にて正しく検出することができるこ
とになり、併せて、それだけ装置本体11を小型化し、
かつ、消費電力を少なくして前記示差屈折率検出回路系
56からの出力を安定化させることができる。
Therefore, while eliminating the conventional constant temperature oven block, the difference between the electric signals output from each operational amplifier forming the first stage current amplifier circuit 59 is as follows.
The subtraction circuit 60 at the next stage can correctly detect it. At the same time, the apparatus body 11 can be downsized accordingly.
In addition, the power consumption can be reduced and the output from the differential refractive index detection circuit system 56 can be stabilized.

【0041】しかも、示差屈折率検出回路系56と電源
部51とは、前記隔室38を除くケーシング12内にコ
ンパクト化して配設されているので、隔室38内の温度
変化を少なくして光学系13に発生する温度ドリフトを
少なくすることができる。
Moreover, since the differential refractive index detection circuit system 56 and the power source unit 51 are compactly arranged in the casing 12 excluding the compartment 38, the temperature change in the compartment 38 is reduced. The temperature drift that occurs in the optical system 13 can be reduced.

【0042】一方、請求項3記載の発明によれば、請求
項1又は請求項2に記載の前記光学系13を構成してい
る発光部13は、発光ダイオード(LED)により形成
される光源16からの照射光R1 を第1スリット部17
にて照射光量を均一化して送出する発光本体部15と、
この発光本体部15を背後側から支持する支持部材19
とで形成されているので、支持部材19を構成してる押
圧用螺杆材21aと支持用螺杆材21bとを操作するこ
とで、光源14からの照射光R1 の光軸調整を自在に行
うことができ、したがって、従来は必要であったヌルグ
ラスを不要にして装置本体11を小型化する上での一助
とすることができる。
On the other hand, according to the third aspect of the present invention, the light emitting section 13 constituting the optical system 13 according to the first or second aspect has the light source 16 formed by a light emitting diode (LED). The irradiation light R 1 from the first slit portion 17
And a light emitting main body 15 for uniformizing and radiating the irradiation light amount,
A support member 19 for supporting the light emitting main body 15 from the rear side.
Therefore, the optical axis of the irradiation light R 1 from the light source 14 can be freely adjusted by operating the pressing screw member 21a and the supporting screw member 21b that form the supporting member 19. Therefore, it is possible to eliminate the need for the null glass, which has been necessary in the past, and to help reduce the size of the apparatus body 11.

【0043】また、測定セル26の上部側は、例えば第
2スリット部23におけるスリット24の位置や幅を調
節したり、測定セル26自体の上部側に適宜の手段によ
り遮光部を予め形成するなどして照射光R1 の透過を許
さない非透光領域としてあるので、測定セル26内に流
入して滞留する上昇気泡により生起されるクロマトグラ
ムのベースラインの乱れをなくすことができる。
Further, on the upper side of the measuring cell 26, for example, the position and width of the slit 24 in the second slit portion 23 are adjusted, or the light shielding portion is previously formed on the upper side of the measuring cell 26 itself by an appropriate means. Since it is a non-light-transmitting region that does not allow the irradiation light R 1 to pass therethrough, it is possible to eliminate the disturbance of the baseline of the chromatogram caused by the rising bubbles that flow into the measuring cell 26 and stay there.

【0044】しかも、光学系13が配置されている基台
39は、台央裏面側に配設された緩衝部材40を介し、
かつ、断熱部材36とアルミ箔37とを備えて断熱性に
富む前記隔室38を画成しているハウジング部34の底
板部34a上に設置されているので、光学系13に影響
を及ぼす機械的もしくは熱的なヒズミを緩衝部材40に
て吸収させ、その発生を抑制して測定精度向上に寄与さ
せることができる。
Moreover, the base 39 on which the optical system 13 is arranged is provided with a cushioning member 40 arranged on the back side of the center of the base.
Further, since the heat insulating member 36 and the aluminum foil 37 are provided on the bottom plate portion 34a of the housing portion 34 which defines the compartment 38 having a high heat insulating property, a machine that affects the optical system 13 is provided. The buffer member 40 can absorb a physical or thermal strain, suppress the generation of the strain, and contribute to the improvement of the measurement accuracy.

【0045】なお、測定セル26としてセル角度が45°
に仕切られたものを用いる場合には、混合溶媒によるド
リフトの発生を非常に少なくして分取用に好適に用いる
ことができる。
The measuring cell 26 has a cell angle of 45 °.
In the case of using the one divided into two, the occurrence of drift due to the mixed solvent can be extremely reduced, and it can be suitably used for preparative separation.

【0046】[0046]

【発明の効果】以上述べたように本発明のうち、請求項
1記載の発明によれば、前記光学系を無反射光軸のもと
で全体の光路長を短くして形成することができるので、
温度依存性を低下させることができ、しかも、前記電源
部を比較的大きな容積を占め、かつ、発熱源ともなって
いた電源トランスに代えスイッチングレギュレータとフ
ィルタ回路とで構成してあるので、光学系が配置される
隔室内を温度調節する必要をなくしてコンパクト化する
ことで、ケーシングを含む装置本体のより一層の軽量小
型化を実現することができる。
As described above, according to the first aspect of the present invention, the optical system can be formed by shortening the entire optical path length under the non-reflecting optical axis. So
Since the temperature dependence can be reduced, and the power supply section occupies a relatively large volume and is composed of a switching regulator and a filter circuit instead of the power supply transformer that also served as a heat source, the optical system Since it is not necessary to control the temperature of the compartment in which the compartment is arranged and the compartment is made compact, the apparatus main body including the casing can be further reduced in weight and size.

【0047】また、請求項2記載の発明によれば、前記
可変定電流回路により光源の発光輝度を安定的に制御す
ることができるほか、定電圧回路により電源電圧の変動
を受けにくくすることができ、さらには、前記初段電流
増幅回路を同一の温度条件のもとにおかれる一対のオペ
アンプにより形成することで出力特性を一致させてある
ので、各オペアンプから出力される電気信号相互間の差
を次段の減算回路にて正しく検出することができるな
ど、全体の消費電力を少なくすることで前記示差屈折率
検出回路系からの出力を安定化させることができる。
According to the second aspect of the present invention, the variable constant current circuit can stably control the light emission luminance of the light source, and the constant voltage circuit can reduce the fluctuation of the power supply voltage. Further, since the output characteristics are matched by forming the first-stage current amplifier circuit by a pair of operational amplifiers that are placed under the same temperature condition, the difference between the electric signals output from each operational amplifier is The output from the differential refractive index detection circuit system can be stabilized by reducing the total power consumption, such as correct detection by the subtraction circuit in the next stage.

【0048】しかも、示差屈折率検出回路系と電源部と
は、前記隔室を除くケーシング内にコンパクト化して配
設されているので、隔室内の温度変化を少なくして光学
系に発生する温度ドリフトを少なくすることができる。
Moreover, since the differential refractive index detection circuit system and the power supply unit are compactly arranged in the casing excluding the compartment, the temperature change in the compartment is reduced and the temperature generated in the optical system is reduced. Drift can be reduced.

【0049】一方、請求項3記載の発明によれば、請求
項1又は請求項2に記載の前記光学系は、光源の側から
の光軸調整が自在となっているほか、測定セルの上部側
が非透光領域となっており、かつ、その全体が難可撓性
の基台上に配設されており、しかも、この基台は、台央
裏面側に配設された緩衝部材を介して断熱性に富む前記
隔室を画成している底板部上に設置されることになるの
で、ヌルグラスが不要になるばかりでなく、測定セル内
に流入する気泡が生起させるベースラインの乱れをなく
すことができ、さらには、光学系に影響を及ぼす機械的
なヒズミの発生を抑制することもできる。
On the other hand, according to the invention of claim 3, in the optical system of claim 1 or 2, the optical axis can be freely adjusted from the side of the light source and the upper part of the measuring cell. The side is a non-light-transmitting area, and the whole is arranged on a difficult-to-flex base, and this base is provided with a cushioning member arranged on the back side of the center of the base. Since it will be installed on the bottom plate part that defines the compartment that is rich in heat insulation, not only null glass is not necessary, but also the turbulence of the baseline caused by bubbles flowing into the measurement cell It can be eliminated, and furthermore, generation of mechanical flaws affecting the optical system can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例についての概略構成を示す説
明図(平面図)である。
FIG. 1 is an explanatory diagram (plan view) showing a schematic configuration of an embodiment of the present invention.

【図2】本発明における電源部と示差屈折率検出回路系
との回路の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a circuit of a power supply unit and a differential refractive index detection circuit system according to the present invention.

【図3】本発明における光学系の概略構成を示す説明図
(側面図)である。
FIG. 3 is an explanatory diagram (side view) showing a schematic configuration of an optical system in the present invention.

【図4】従来装置における光学系の構成例を示す説明図
である。
FIG. 4 is an explanatory diagram showing a configuration example of an optical system in a conventional device.

【符号の説明】[Explanation of symbols]

11 装置本体 12 ケーシング 13 光学系 14 発光部 15 発光本体部 16 光源 17 第1スリット部 18 スリット 19 支持部材 20 支持用本体部 21 螺杆材 21a 押圧用螺杆材 21b 支持用螺杆材 22 レファレンス部 23 第2スリット部 24 スリット 25 第1コリメーターレンズ 26 測定セル 27 試料側セル 28 対照側セル 29 第2コリメーターレンズ 30 受光部 31 二分割光電変換素子 32 第1光電変換部 33 第2光電変換部 34 ハウジング部 34a 底板部 35 ハウジング本体部 36 断熱性部材 37 アルミ箔材 38 隔室 39 基台 40 緩衝部材 41 流路系 42 給液路 43 排液路 44 給液路 45 排液路 46 温度調整部材 47 ステンレスチューブ材 48 はんだ材 51 電源部 52 スイッチングレギュレータ 53,54 端子 55 フィルタ回路 56 示差屈折率検出回路系 57 定電圧回路 58 可変定電流回路 59 初段電流増幅回路 60 減算回路 61 加算回路 62 ローパスフィルタ 63 アッティネータ 64 バッファ回路 65,66 出力端子 R1 照射光 R2 透過光 R3 入射光11 Device Main Body 12 Casing 13 Optical System 14 Light Emitting Part 15 Light Emitting Main Part 16 Light Source 17 First Slit Part 18 Slit 19 Supporting Member 20 Supporting Main Body 21 Screw Rod 21a Pressing Screw Rod 21b Supporting Screw Rod 22 Reference Section 23 2 slit section 24 slit 25 first collimator lens 26 measurement cell 27 sample side cell 28 control side cell 29 second collimator lens 30 light receiving section 31 two-division photoelectric conversion element 32 first photoelectric conversion section 33 second photoelectric conversion section 34 Housing part 34a Bottom plate part 35 Housing body part 36 Insulating member 37 Aluminum foil material 38 Partition 39 Base 40 Buffer member 41 Flow path system 42 Liquid supply path 43 Discharge path 44 Liquid supply path 45 Discharge path 46 Temperature adjusting member 47 Stainless Steel Tube Material 48 Solder Material 51 Power Supply Section 52 Switch Regulator 53, 54 Terminal 55 Filter circuit 56 Differential refractive index detection circuit system 57 Constant voltage circuit 58 Variable constant current circuit 59 First stage current amplification circuit 60 Subtraction circuit 61 Addition circuit 62 Low pass filter 63 Attenuator 64 Buffer circuit 65, 66 Output terminal R 1 Irradiated light R 2 Transmitted light R 3 Incident light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発光ダイオードにより形成される光源と
二分割光電変換素子により形成される受光部との間に介
在させた測定セル内の溶媒と試料液との屈折率の差を検
出すべく隔室内に配設される光学系と、前記測定セルに
対し溶媒と試料液とを各別に供給・排出する流路系と、
前記測定セル内の溶媒と試料液との屈折率の差を電気信
号として検出する示差屈折率検出回路系と、この示差屈
折率検出回路系に対し電力を供給する電源部とを少なく
ともケーシング内に備えてなる液体クロマトグラフィー
用示差屈折率検出装置において、前記光学系は、光源と
受光部との間を無反射光軸のもとで形成するとともに、
前記隔室外に配設される電源部は、直流安定化電源であ
るスイッチングレギュレータと、次段に配設されるフィ
ルタ回路とで構成し、前記示差屈折率検出回路系にノイ
ズを抑制して給電するようにしたことを特徴とする液体
クロマトグラフィー用示差屈折率検出装置。
1. A partition for detecting a difference in refractive index between a solvent and a sample solution in a measurement cell interposed between a light source formed by a light emitting diode and a light receiving section formed by a two-division photoelectric conversion element. An optical system arranged in the room, and a flow path system for separately supplying and discharging a solvent and a sample solution to the measurement cell,
A differential refractive index detection circuit system that detects a difference in refractive index between the solvent and the sample liquid in the measurement cell as an electric signal, and a power supply unit that supplies power to the differential refractive index detection circuit system, at least in a casing. In the differential refractive index detection device for liquid chromatography comprising, the optical system is formed between the light source and the light receiving unit under a non-reflection optical axis,
The power supply unit arranged outside the compartment is composed of a switching regulator, which is a stabilized DC power supply, and a filter circuit arranged in the next stage, and supplies noise to the differential refractive index detection circuit system while suppressing noise. A differential refractive index detection device for liquid chromatography, characterized in that.
【請求項2】 前記示差屈折率検出回路系は、光源の発
光輝度を調節する可変定電流回路と、この可変定電流回
路を含む電源電圧の変動を受けやすい回路に給電する定
電圧回路と、前記二分割光電変換素子にて各別に光電変
換された電気信号を増幅するワンチップ化された一対の
オペアンプからなる初段電流増幅回路と、この初段電流
増幅回路を経て増幅された各電気信号相互間の差を検出
する減算回路とを少なくとも備え、かつ、これらの回路
を前記隔室を除くケーシング内に配設したことを特徴と
する請求項1記載の液体クロマトグラフィー用示差屈折
率検出装置。
2. The differential refractive index detection circuit system includes a variable constant current circuit that adjusts the light emission brightness of a light source, and a constant voltage circuit that supplies power to a circuit including the variable constant current circuit that is susceptible to fluctuations in power supply voltage, Between a first-stage current amplifier circuit composed of a pair of operational amplifiers that are integrated into one chip for amplifying the electric signals photoelectrically converted by the two-division photoelectric conversion element, and between the respective electric signals amplified through the first-stage current amplifier circuit. The differential refractive index detection device for liquid chromatography according to claim 1, further comprising at least a subtraction circuit that detects the difference between the two, and these circuits are arranged in a casing excluding the compartment.
【請求項3】 前記光学系は、光源の側からの光軸調整
を自在にし、かつ、測定セルの上部側を非透光領域とし
て難可撓性の基台上にその全体を配置し、この基台の台
央裏面側に配設される緩衝部材を介して断熱性に富む前
記隔室を画成している底板上に設置したことを特徴とす
る請求項1又は2記載の液体クロマトグラフィー用示差
屈折率検出装置。
3. The optical system allows the optical axis to be freely adjusted from the side of the light source, and the whole of the optical system is arranged on a non-flexible base with the upper side of the measurement cell as a non-light-transmitting region. The liquid chromatograph according to claim 1 or 2, wherein the base is installed on a bottom plate defining the compartment having a high heat insulating property via a cushioning member arranged on the back side of the center of the base. Differential refractive index detector for graphy.
JP6131282A 1994-05-20 1994-05-20 Differential refractive index detector for liquid chromatography Expired - Fee Related JP2791970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6131282A JP2791970B2 (en) 1994-05-20 1994-05-20 Differential refractive index detector for liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6131282A JP2791970B2 (en) 1994-05-20 1994-05-20 Differential refractive index detector for liquid chromatography

Publications (2)

Publication Number Publication Date
JPH07318489A true JPH07318489A (en) 1995-12-08
JP2791970B2 JP2791970B2 (en) 1998-08-27

Family

ID=15054308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6131282A Expired - Fee Related JP2791970B2 (en) 1994-05-20 1994-05-20 Differential refractive index detector for liquid chromatography

Country Status (1)

Country Link
JP (1) JP2791970B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053803A1 (en) * 2000-01-17 2001-07-26 Norihiro Kiuchi Liquid concentration sensing method and device
JP2002538424A (en) * 1999-02-26 2002-11-12 ウォーターズ・インヴェストメンツ・リミテッド High temperature differential refractive index detector
JP2011196911A (en) * 2010-03-23 2011-10-06 Mitsubishi Chemical Engineering Corp Apparatus for measurement of liquid concentration
JP2014048119A (en) * 2012-08-30 2014-03-17 Shimadzu Corp Liquid feed pipe for liquid chromatographic detectors and liquid chromatograph
WO2020039478A1 (en) * 2018-08-20 2020-02-27 株式会社島津製作所 Detector for chromatography

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965883A (en) * 1972-10-24 1974-06-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965883A (en) * 1972-10-24 1974-06-26

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538424A (en) * 1999-02-26 2002-11-12 ウォーターズ・インヴェストメンツ・リミテッド High temperature differential refractive index detector
WO2001053803A1 (en) * 2000-01-17 2001-07-26 Norihiro Kiuchi Liquid concentration sensing method and device
JP2011196911A (en) * 2010-03-23 2011-10-06 Mitsubishi Chemical Engineering Corp Apparatus for measurement of liquid concentration
JP2014048119A (en) * 2012-08-30 2014-03-17 Shimadzu Corp Liquid feed pipe for liquid chromatographic detectors and liquid chromatograph
US9835598B2 (en) 2012-08-30 2017-12-05 Shimadzu Corporation Liquid sending pipe for liquid chromatograph detector and liquid chromatograph
WO2020039478A1 (en) * 2018-08-20 2020-02-27 株式会社島津製作所 Detector for chromatography
JPWO2020039478A1 (en) * 2018-08-20 2021-08-10 株式会社島津製作所 Chromatographic detector

Also Published As

Publication number Publication date
JP2791970B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US6694800B2 (en) Gas analyzer using thermal detectors
US3877817A (en) Temperature stabilized photometer for kinetic analysis
JP7258010B2 (en) System and method for absorbance detector with optical reference
US3941487A (en) Colorimetric fluid analyzer
JP5915470B2 (en) Spectrophotometer
US4006990A (en) Convergent light illuminated flow cell for liquid chromatography
US5238557A (en) Apparatus for controlling the temperature of the mobile phase in a fluid chromatograph
JPH1033512A (en) Non-invasive biochemical measuring instrument
JPH07318489A (en) Differential refractometer device for liquid chromatography
JP2000298094A (en) Photometer and method for measurement of mercury vapor concentration
US7069768B2 (en) Method and apparatus for eliminating and compensating thermal transients in gas analyzer
JPH0617870B2 (en) Differential Refractive Index Detector for Liquid Chromatography
Proctor et al. High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier
US4073182A (en) Temperature compensated optical measuring instruments
CN114235711B (en) Miniaturized portable high-sensitivity gas measurement system
JPH0755782A (en) Temperature control device of moving phase in liquid chromatograph
JP2566124Y2 (en) Differential refractive index detector for liquid chromatography
US4140396A (en) Measuring instrument
JP3183266U (en) Differential refractive index detector for liquid chromatography
JP3236505U (en) General-purpose detection device for liquid chromatogly
JPH04168347A (en) Method and apparatus for detecting parallax refractive index for liquid chromatography
JPH1172416A (en) Apparatus for measuring absorbance of optical part
EP0164080B1 (en) Method for reducing schlieren noise in a liquid chromatograph
Poppe et al. Construction and evaluation of a thermostatted permittivity detector for high-performance column liquid chromatograph
JPH0360386B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees