JPH07318441A - Strain sensor for measuring instrument and load cell type measuring instrument using this - Google Patents

Strain sensor for measuring instrument and load cell type measuring instrument using this

Info

Publication number
JPH07318441A
JPH07318441A JP11007694A JP11007694A JPH07318441A JP H07318441 A JPH07318441 A JP H07318441A JP 11007694 A JP11007694 A JP 11007694A JP 11007694 A JP11007694 A JP 11007694A JP H07318441 A JPH07318441 A JP H07318441A
Authority
JP
Japan
Prior art keywords
measuring instrument
glass layer
weight
strain sensor
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11007694A
Other languages
Japanese (ja)
Inventor
Masamitsu Taura
方三 田浦
Masaki Ikeda
正樹 池田
Haruhiko Handa
晴彦 半田
Yasuo Mizuno
康男 水野
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11007694A priority Critical patent/JPH07318441A/en
Publication of JPH07318441A publication Critical patent/JPH07318441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To enhance quality, and enhance load resistance and durability by arranging an insulating glass layer on a metallic base material, a strain sensing resistance on the insulating glass layer and an electrode body layer which is stuck to the strain sensing resistance and transmits a signal. CONSTITUTION:An insulating glass layer is a crystallized glass layer 2. After pretreatment such as degreasing or washing is performed on a cylindrical metallic body (metallic base material) 1, it is soaked in slurry, and DC voltage is impressed between a counter electrode and the metallic body 1, and a surface of the metallic body 1 is covered with glass particles, and a temperature is raised from a normal temperature, and it is baked at this temperature, and the glass layer 2 is formed. Next, Ag-Pd paste is printed in a pattern on a surface of the glass layer 2 by a screen printing method, and it is baked, and an electrode body 4 is formed. The paste is printed and baked in a prescribed pattern between these electrodes by a dispenser method, and a resistance element 3 is formed, and a strain sensor 5 for measurement is manufactured. This sensor 5 shows a characteristic more excellent in a rate of change of resistance than usual.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被検知物品の荷重を検
知する計測器用センサであり、特に被検知物品の荷重変
化量に対し、ひずみ変化により電気抵抗が変化する抵抗
素子を用いた計測器用歪センサに関する。また、それを
用いたロードセル式計測器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring instrument sensor for detecting a load on an article to be detected, and in particular, a measurement using a resistance element whose electric resistance changes due to strain change with respect to the load change amount of the article to be detected. The present invention relates to a dexterous strain sensor. Further, the present invention relates to a load cell type measuring instrument using the same.

【0002】[0002]

【従来の技術】近年、荷重量を検出する歪センサは、機
械、船舶、自動車等の各部に生じる応力や荷重の大きさ
を検出するために広く用いられている。
2. Description of the Related Art In recent years, strain sensors for detecting the amount of load have been widely used to detect the magnitude of stress and load generated in various parts of machines, ships, automobiles and the like.

【0003】この歪センサは、基材種類、感歪材料の種
類によってさまざまなものが提案されている。
Various types of strain sensors have been proposed depending on the type of base material and strain sensitive material.

【0004】その代表的なものとして、(1)ポリエス
テル、エポキシ、ポリイミド等の樹脂からなるフィルム
上に、Cu-Ni合金、Ni-Cr合金等からなる薄膜状の抵抗素
子を蒸着またはスパッタリングにより形成した構成のも
のが知られている。また、(2)特公平3−20682号公報
に開示されているように、上記の樹脂製フィルムの代り
にガラスプレートを用いた歪センサもある。
As typical examples thereof, (1) a thin film resistance element made of Cu-Ni alloy, Ni-Cr alloy or the like is formed on a film made of resin such as polyester, epoxy or polyimide by vapor deposition or sputtering. Known configurations are known. Further, as disclosed in (2) Japanese Patent Publication No. 3-20682, there is also a strain sensor using a glass plate instead of the above resin film.

【0005】荷重の大きさは、次のようにして測定され
る。すなわち、外部からの荷重により発生した部材の歪
が、樹脂製フィルム、ガラスプレート、金属基材を介し
て抵抗素子に伝わる。この伝達された歪により、抵抗素
子の断面積がわずかに変化し、その抵抗素子の電気抵抗
値が変化する。この電気抵抗値の変化を電気信号として
検出することにより、歪の大きさが測定でき、この歪の
大きさから部材に加わった荷重の大きさが測定できる。
The magnitude of the load is measured as follows. That is, the strain of the member generated by the load from the outside is transmitted to the resistance element via the resin film, the glass plate, and the metal base material. Due to the transmitted strain, the cross-sectional area of the resistance element slightly changes, and the electric resistance value of the resistance element changes. By detecting the change in the electric resistance value as an electric signal, the magnitude of the strain can be measured, and the magnitude of the load applied to the member can be measured from the magnitude of the strain.

【0006】一般的に、被検知物品の荷重を検知するセ
ンサとして、上記歪センサ(1)を接着樹脂等で貼り付
けたロードセルを用いている。
In general, a load cell in which the strain sensor (1) is attached with an adhesive resin or the like is used as a sensor for detecting the load of an article to be detected.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、被検知
物品の荷重量を検知するために(1)のセンサを用いた
場合、温度範囲が−10℃から60℃、最大荷重が100kg、
条件によっては水がかかるといった過酷な環境条件下
で、長期間使用したとき、接着強度が劣下して歪センサ
が部材から剥離する問題がある。また、(2)の歪セン
サでは、ガラスプレートが割れてしまい、計測器のよう
な大きな荷重量がかかる所には使用できないといった課
題を有していた。
However, when the sensor of (1) is used to detect the load amount of the article to be detected, the temperature range is -10 ° C to 60 ° C, the maximum load is 100 kg,
Under severe environmental conditions such as water splashing under some conditions, when used for a long period of time, there is a problem that the adhesive strength deteriorates and the strain sensor peels off from the member. Further, the strain sensor of (2) has a problem that the glass plate is broken and cannot be used in a place where a large load is applied such as a measuring instrument.

【0008】本発明は、従来のこのような技術の課題を
考慮し、従来に比べてより一層高品質で、より一層耐荷
重性及び耐久性に優れた計測器用歪センサを提供するこ
と。及び、この計測器用歪センサを装着し、被検知物品
の荷重量を従来に比べてより一層精度良く検出出来る高
品質のロードセル式計測器を提供することを目的とす
る。
The present invention has been made in consideration of the above-mentioned problems of the prior art, and provides a strain sensor for a measuring instrument, which has higher quality than the conventional one, and is further excellent in load resistance and durability. Another object of the present invention is to provide a high-quality load cell type measuring instrument equipped with the strain sensor for a measuring instrument and capable of detecting the load amount of an article to be detected with higher accuracy than ever before.

【0009】[0009]

【課題を解決するための手段】請求項1の本発明は、金
属基材と、前記金属基材の上の絶縁性ガラス層と、前記
絶縁性ガラス層の上の感歪抵抗体と、その感歪抵抗体に
付着され、信号を伝達する電極体層とを備えた計測器用
歪センサである。
According to the present invention of claim 1, a metal base material, an insulating glass layer on the metal base material, a strain sensitive resistor on the insulating glass layer, and A strain sensor for a measuring instrument, which is attached to a strain sensitive resistor and includes an electrode body layer that transmits a signal.

【0010】請求項2の本発明は、上記絶縁性ガラス層
が結晶化ガラス層である計測器用歪センサである。
A second aspect of the present invention is a strain sensor for a measuring instrument, wherein the insulating glass layer is a crystallized glass layer.

【0011】請求項3の本発明は、上記結晶化ガラスの
組成を、MgOが16〜50重量%、SiO2が7〜30重量
%、B23が5〜34重量%、BaOが0〜50重量%、L
23が0〜40重量%、CaOが0〜20重量%、P25
が0〜5重量%、MO2が0〜5重量%(但し、MはZ
r,Ti,Snのうち少なくとも一種の元素)とした計測
器用歪センサである。
According to a third aspect of the present invention, the composition of the crystallized glass is such that MgO is 16 to 50% by weight, SiO 2 is 7 to 30% by weight, B 2 O 3 is 5 to 34% by weight, and BaO is 0. ~ 50% by weight, L
a 2 O 3 is 0 to 40% by weight, CaO is 0 to 20% by weight, P 2 O 5
Is 0 to 5% by weight, MO 2 is 0 to 5% by weight (where M is Z
It is a strain sensor for measuring instruments in which at least one element of r, Ti, and Sn) is used.

【0012】[0012]

【作用】本発明の計測器用歪センサは、例えば、金属基
材と結晶化ガラス層、結晶化ガラス層と感歪抵抗体およ
び電極体間でそれぞれの成分元素が相互拡散しているた
め密着性が非常に強く、大きな荷重量しかも水がかかる
といった過酷な環境条件で使用するセンサとして適した
ものである。
The strain sensor for a measuring instrument of the present invention, for example, has a metal base and a crystallized glass layer, a crystallized glass layer and a strain sensitive resistor, and the respective element elements are mutually diffused between the electrode body, so that the adhesiveness is improved. Is very strong, and is suitable as a sensor to be used under severe environmental conditions such as a large load and water.

【0013】又、本発明のロードセル式計測器は、上記
計測器用歪センサを装着することにより、例えば、被検
知物品の荷重を精度良く検出することが出来る。
Further, in the load cell type measuring instrument of the present invention, by mounting the strain sensor for measuring instrument, for example, the load of the article to be detected can be accurately detected.

【0014】[0014]

【実施例】以下、本発明の実施例について図面及び表を
参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings and tables.

【0015】まず、本発明の計測器用歪センサについ
て、基本的構成等に関し説明する。 (1)金属基体 本発明の金属基材としての金属基体は、ホーロ用鋼、ス
テンレス鋼、珪素鋼、ニッケル−クロム−鉄、ニッケル
−鉄、コバール、インバーなどの各種合金材やそれらの
クラッド材などが選択される。特に、本発明において使
用される金属材料は、ガラス層との膨張率を整合させる
必要があることから、膨張率100〜140×10-7/℃のステ
ンレス鋼が好ましい。
First, the strain sensor for a measuring instrument of the present invention will be described with respect to its basic configuration and the like. (1) Metal Substrate The metal substrate as the metal substrate of the present invention includes various alloy materials such as holo steel, stainless steel, silicon steel, nickel-chromium-iron, nickel-iron, kovar, invar, and clad materials thereof. Is selected. In particular, the metal material used in the present invention is preferably stainless steel having an expansion coefficient of 100 to 140 × 10 −7 / ° C., because it is necessary to match the expansion coefficient with the glass layer.

【0016】金属基体の材質が決定されれば、所望の形
状加工、穴加工等が通常の機械加工、エッチング加工、
レーザ加工等で施される。その形状は、荷重の大きさや
用途により、円筒形や板状(箔状も含む)等が選択され
る。
Once the material of the metal substrate is determined, the desired shape processing, hole processing, etc. can be carried out by ordinary mechanical processing, etching processing,
It is applied by laser processing or the like. A cylindrical shape, a plate shape (including a foil shape) or the like is selected as the shape depending on the magnitude of the load and the application.

【0017】これら金属基体は、ガラス層の密着性を向
上させる目的で、表面脱脂された後、ニッケル、コバル
トなどの各種メッキを施したり、熱酸化処理によって酸
化被覆層を形成したりする。
For the purpose of improving the adhesion of the glass layer, these metal substrates are degreased on the surface and then plated with various kinds of nickel, cobalt or the like, or an oxide coating layer is formed by thermal oxidation treatment.

【0018】(2)結晶化ガラス層 本発明に用いられる結晶化ガラス層には、電気絶縁性、
耐熱性の観点から、無アルカル結晶化ガラス(焼成によ
って、たとえば、MgO系の結晶相を析出)で構成され
るほうが好ましい。そのガラス組成は、特に、MgOが
16〜50重量%,SiO2が7〜30重量%,B23が5〜34
重量%、BaOが0〜50重量%,La23が0〜40重量
%,CaOが0〜20重量%,P25が0〜5重量%,MO2
が0〜5重量%(但し、MはZr,Ti,Snのうち少な
くとも一種の元素)からなるとき、より好ましい。
(2) Crystallized glass layer The crystallized glass layer used in the present invention has an electrical insulating property,
From the viewpoint of heat resistance, it is preferable to be composed of non-alcal crystallized glass (for example, MgO-based crystal phase is deposited by firing). The glass composition is
16-50 wt%, SiO 2 is from 7 to 30 wt%, B 2 O 3 is 5-34
% By weight, 0-50% by weight of BaO, 0-40% by weight of La 2 O 3 , 0-20% by weight of CaO, 0-5% by weight of P 2 O 5 , MO 2
Is more preferably 0 to 5% by weight (where M is at least one element of Zr, Ti and Sn).

【0019】このように、結晶化ガラス材料が選択され
る理由の1つは、金属基体とガラス層との密着性を強固
にするためである。特に、上記の組成のものは、密着性
が非常に強固である。
As described above, one of the reasons for selecting the crystallized glass material is to strengthen the adhesion between the metal substrate and the glass layer. In particular, the above composition has very strong adhesion.

【0020】上記結晶化ガラス層を金属基体上に被覆す
る方法として、通常のスプレー法、粉末静電塗装法、電
気泳動電着法等がある。被膜のち密性、電気絶縁性等の
観点から、電気泳動電着法が、最も好ましい。
As a method for coating the above-mentioned crystallized glass layer on a metal substrate, there are a usual spray method, a powder electrostatic coating method, an electrophoretic electrodeposition method and the like. The electrophoretic electrodeposition method is the most preferable from the viewpoint of the denseness of the coating film, the electric insulation property, and the like.

【0021】この方法は、ガラスとアルコールおよび少
量の水を入れてボールミル中で約20時間粉砕、混合し、
ガラスの平均粒径を1〜5μm程度にする。得られたス
ラリーを電解槽に入れて、液を循環する。そして、金属
基体を、このスラリー中に浸漬し、100〜400Vで陰分極
させることにより、金属基体表面にガラス粒子を析出さ
せる。これを乾燥後、850〜900℃で10分〜1時間焼成す
る。これによって、ガラスの微粒子が溶融すると共に、
ガラスの成分と金属材料の成分が、充分に相互拡散する
ためガラス層と金属基体との強固な密着が得られる。
In this method, glass, alcohol and a small amount of water are added, and the mixture is crushed and mixed in a ball mill for about 20 hours,
The average particle size of glass is set to about 1 to 5 μm. The obtained slurry is put in an electrolytic cell and the liquid is circulated. Then, the metal substrate is immersed in this slurry and negatively polarized at 100 to 400 V to deposit glass particles on the surface of the metal substrate. After this is dried, it is baked at 850 to 900 ° C. for 10 minutes to 1 hour. This melts the fine particles of glass,
Since the glass component and the metal material component sufficiently diffuse into each other, a strong adhesion between the glass layer and the metal substrate can be obtained.

【0022】なお、焼成は常温から徐々に昇温して上記
温度に到達させるほうが微細針状結晶が無数に析出する
ためいわゆるアンカー効果の働きがより向上し、本発明
の感歪抵抗体としての抵抗素子との密着性向上に効果が
あり、より好ましい。
When firing is performed by gradually raising the temperature from room temperature to reach the above temperature, innumerable fine needle-shaped crystals are deposited, so that the function of the so-called anchor effect is further improved, and the strain-sensitive resistor of the present invention is improved. It is more preferable because it has the effect of improving the adhesion to the resistance element.

【0023】結晶化ガラス材料が選択されるもう1つの
理由は、ガラス層の耐熱温度を高くするためである。
Another reason for selecting the crystallized glass material is to increase the heat resistant temperature of the glass layer.

【0024】すなわち、ガラス層に抵抗体および電極体
を焼成法で形成するとき、高温で焼成するのでガラス層
の耐熱温度は少なくとも900℃以上必要である。ガラス
層が非晶質の時の耐熱温度は650℃程度であるが、結晶
化させることによって耐熱温度が900℃以上(900℃でも
ガラスが流動しないので、850℃で抵抗素子を焼成して
も問題ない)になる。それに対して一般の非晶質ガラス
は、再加熱しても結晶化しないので耐熱性(約600℃以
上でガラスが流動するので、抵抗素子を600℃以上で焼
成するとガラスと反応する)は向上しない。
That is, when a resistor and an electrode body are formed on the glass layer by a firing method, the glass layer is fired at a high temperature, so that the glass layer must have a heat resistant temperature of at least 900 ° C. or higher. The heat-resistant temperature when the glass layer is amorphous is about 650 ℃, but the heat-resistant temperature is 900 ℃ or more by crystallizing (Since the glass does not flow even at 900 ℃, even if the resistive element is fired at 850 ℃ There is no problem). On the other hand, general amorphous glass does not crystallize even when reheated, so heat resistance (because the glass flows at about 600 ° C or higher, it reacts with the glass when the resistance element is fired at 600 ° C or higher) is improved. do not do.

【0025】(3)抵抗素子 抵抗素子用の材料としては、Cu−Ni合金,Ni−Cr合金,酸
化ルテニウム等の種々の歪変化によって電気抵抗が変化
する性質を有する抵抗材料が使用される。本発明の計測
器用歪センサにおける抵抗素子の形成法としては、スク
リーン印刷法、ディスペンサ法、メタルマスク法、ドク
ターブレード法、オフセット印刷法が好ましい。
(3) Resistance element As the material for the resistance element, a resistance material such as Cu-Ni alloy, Ni-Cr alloy, ruthenium oxide, etc. having a property of changing electric resistance due to various strain changes is used. As a method of forming the resistance element in the strain sensor for a measuring instrument of the present invention, a screen printing method, a dispenser method, a metal mask method, a doctor blade method, and an offset printing method are preferable.

【0026】上記印刷法で抵抗素子を形成する方法は、
有機金属化合物を出発原料とし、それを主成分とするペ
ーストを作成してガラス層の表面に印刷し、さらに、そ
の熱分解により抵抗素子成分元素の金属および合金膜を
形成する。感歪抵抗体成分元素として、ニッケル、クロ
ム、銅、鉄、ルテニュウムからなる群から選択された有
機金属化合物で、その他形成添加剤としてBi、Rh、V、S
bからなる熱分解有機化合物を少なくとも2種以上を添
加する。この構成のものは、従来の厚膜技術で薄膜並の
膜厚を得ることができる。
The method of forming the resistance element by the above printing method is as follows.
Using an organometallic compound as a starting material, a paste containing the organometallic compound as a main component is prepared and printed on the surface of the glass layer, and the metal and alloy film of the resistance element component element are formed by thermal decomposition thereof. As the strain sensitive resistor component element, an organometallic compound selected from the group consisting of nickel, chromium, copper, iron, and ruthenium, and Bi, Rh, V, S as other forming additives.
At least two or more of the thermally decomposed organic compounds consisting of b are added. With this structure, a film thickness comparable to that of a thin film can be obtained by the conventional thick film technology.

【0027】もう1つの印刷法で抵抗素子を形成する方
法は、酸化ルテニュウムおよびガラスフリットを主成分
とするペーストを結晶化ガラス層に印刷し、その後焼成
する方法である。このペーストの成分には、主成分の酸
化ルテニュウムおよびガラスフリット(ホウケイ酸系ガ
ラス等)のほか、フィラー(ZrO2等)、酸化ビスマ
ス、エチルセルロース、ブチルカルビトールアセテート
(テルピネオールでもよい)等が含まれている。
Another method of forming a resistance element by a printing method is a method of printing a paste containing ruthenium oxide and glass frit as a main component on a crystallized glass layer and then firing it. The components of this paste include ruthenium oxide and glass frit (borosilicate glass, etc.) as main components, as well as filler (ZrO 2 etc.), bismuth oxide, ethyl cellulose, butyl carbitol acetate (terpineol may be used), etc. ing.

【0028】次に、更に具体的な実施例について述べ
る。
Next, more specific examples will be described.

【0029】(実施例1)図1は、本発明の計測器用歪
センサにかかる一実施例であり、上述の製造方法に基づ
いて抵抗素子を形成したセンサの構成を示す図である。
(Embodiment 1) FIG. 1 is an embodiment of a strain sensor for a measuring instrument according to the present invention, and is a diagram showing a structure of a sensor in which a resistance element is formed based on the above manufacturing method.

【0030】以下、同図を用いて、本実施例について具
体的に説明する。
The present embodiment will be specifically described below with reference to FIG.

【0031】外形40φmm、厚さ20mmの円筒金属体(本発
明の金属基材に対応)1を脱脂・水洗・酸洗・水洗・ニ
ッケルメッキ・水洗して前処理を行った後、(表1)の
組成番号のNo7ガラス粒子からなるスラリー中に浸漬し
て、対極と円筒金属体1間に直流電圧を印加して、円筒
金属体1上にガラス粒子を100μm被覆し、常温から880
℃まで4時間かけて昇温し、さらにこの温度で10分間保
持する焼成を行ない結晶化ガラス層2を形成した。
A cylindrical metal body having an outer diameter of 40 mm and a thickness of 20 mm (corresponding to the metal substrate of the present invention) 1 was degreased, washed with water, pickled, washed with water, nickel-plated, washed with water, and then pretreated (Table 1 ) Composition No. 7 No. 7 glass particles are immersed in a slurry, and a DC voltage is applied between the counter electrode and the cylindrical metal body 1 to coat the cylindrical metal body 1 with 100 μm of glass particles, and the temperature is maintained at room temperature from 880
The temperature was increased to 4 ° C. over 4 hours, and the temperature was maintained for 10 minutes to perform firing to form a crystallized glass layer 2.

【0032】次に、結晶化ガラス層2の表面にAg−Pdペ
ーストをスクリーン印刷法でパターン印刷、850℃で焼
成して電極体4を形成した。この電極間に酸化ルテニウ
ムとガラスフリットを主成分とする昭栄化学製ペースト
をディスペンサ法で所定のパターンに印刷、830℃で焼
成して、抵抗素子3を形成して計測用歪センサ5を作製
した。
Next, an Ag-Pd paste was pattern-printed on the surface of the crystallized glass layer 2 by a screen printing method and baked at 850 ° C. to form an electrode body 4. A paste made by Shoei Chemical Co., which contains ruthenium oxide and glass frit as main components, is printed between the electrodes in a predetermined pattern by a dispenser method and fired at 830 ° C. to form a resistance element 3 to manufacture a strain sensor 5 for measurement. .

【0033】比較例として、樹脂フィルム上に、Cu-Ni
合金の抵抗素子をスパッタリングした従来のロードセル
をステンレス基材にエポキシ系接着剤で貼り付けたサン
プルを用いた。
As a comparative example, Cu-Ni was formed on a resin film.
A sample was used in which a conventional load cell formed by sputtering an alloy resistance element was attached to a stainless steel substrate with an epoxy adhesive.

【0034】図3に、本発明にかかる一実施例の計測器
用歪センサと従来センサでの荷重量と抵抗変化率の関係
を示す。
FIG. 3 shows the relationship between the load amount and the resistance change rate in the strain sensor for a measuring instrument according to one embodiment of the present invention and the conventional sensor.

【0035】本実施例の計測器用歪センサおよび従来セ
ンサは、荷重量に対し抵抗変化率が直線的に変化する
が、本実施例の計測器用歪センサは従来に比べ、抵抗変
化率が大きく優れた特性を示すことが判った。
In the strain sensor for a measuring instrument of the present embodiment and the conventional sensor, the resistance change rate linearly changes with respect to the load amount, but the strain sensor for a measuring instrument of this embodiment has a large resistance change rate and is superior to the conventional one. It has been found that it exhibits excellent characteristics.

【0036】さらに本実施例の計測器用歪センサと従来
センサを用いて、約50℃の水中浸漬試験を行った。従
来センサは、500時間でセンサがステンレス基材から
剥離した。それに対し、本実施例の計測器用歪センサ
は、5000時間の浸漬試験でも剥離することがなく、
全く問題がなかった。すなわち、本実施例の計測器用歪
センサは耐久性にも優れていることが判明した。
Further, an immersion test at about 50 ° C. in water was conducted using the strain sensor for measuring instrument of this embodiment and the conventional sensor. In the conventional sensor, the sensor peeled off from the stainless steel substrate in 500 hours. On the other hand, the strain sensor for a measuring instrument according to the present embodiment does not peel off even in the immersion test for 5000 hours,
There was no problem at all. That is, it was found that the strain sensor for a measuring instrument of this example was also excellent in durability.

【0037】本実施例の計測器用歪センサを、図2に示
すような被検知物品の積載台6と、積載台6を支えるて
こ7と、てこ比により被検知物品の荷重を縮小した力を
検知するロードセル式台はかり8に装着し、被検知物品
の荷重量の検知試験を行った。被検知物品の荷重量は0
〜100kgの範囲で変化させ、センサで検出される荷
重量を基準分銅を用いて相関を求めた。その結果、荷重
量は10g単位で計測することができた。
The strain sensor for a measuring instrument according to this embodiment is provided with a loading platform 6 for an article to be detected as shown in FIG. 2, a lever 7 for supporting the loading platform 6, and a force for reducing the load of the article to be detected by the leverage. The load cell type balance 8 for detection was mounted and a load amount detection test of the detected article was conducted. The load of the detected article is 0
The load amount detected by the sensor was changed within the range of up to 100 kg, and the correlation was obtained using the reference weight. As a result, the amount of load could be measured in units of 10 g.

【0038】(実施例2)前述のガラス層被覆工程に従
い、SUS430基体(100mm×100mm×0.5mm)の表面に、厚
さ100μmの(表1)〜(表5)に示す組成の結晶化ガラ
ス層を電気泳動電着し、880℃で10分焼成しサンプルの
表面粗度、うねり性、耐熱性等の諸特性を調べた。(表
1)〜(表5)は、その結果を組成とともに示すもので
あり、以下、同表を用いて、本実施例について具体的に
説明する。
Example 2 Crystallized glass having a composition shown in (Table 1) to (Table 5) having a thickness of 100 μm was formed on the surface of a SUS430 substrate (100 mm × 100 mm × 0.5 mm) according to the glass layer coating step described above. The layer was electrophoretically electrodeposited and baked at 880 ° C. for 10 minutes, and various characteristics of the sample such as surface roughness, waviness and heat resistance were examined. (Table 1) to (Table 5) show the results together with the composition. Hereinafter, this example will be specifically described with reference to the same table.

【0039】なお、表面粗度はタリサーフ表面粗さ計で
測定し、表面中心線平均粗さRaで示し、うねり性はタリ
サーフ表面粗さ計で得られた山と谷の差Rmaxで表わし
た。
The surface roughness was measured by a Talysurf surface roughness meter and indicated by the surface centerline average roughness Ra, and the waviness was expressed by the difference Rmax between the peaks and valleys obtained by the Talysurf surface roughness meter.

【0040】耐熱性は、サンプルを850℃の電気炉中に1
0分入れ、炉から取り出し30分間、自然放冷するサイク
ルを繰り返すスポーリングテストを行って、サンプルの
クラックや剥離の状態を調べた。なお、クラックは赤イ
ンク中に浸漬し、その後、表面を拭き取って、目視観察
によって、その有無を調べた。表中の○、△、×は、○
が10サイクル以上行っても、異常が認められないもの
を、△は5〜9サイクルで発生したものを、×は4サイ
クル以下で発生したものを示す。
The heat resistance was measured by placing the sample in an electric furnace at 850 ° C.
A spalling test in which a cycle of putting in 0 minutes and taking out from the furnace for 30 minutes and being naturally cooled was repeated to examine the state of cracks and peeling of the samples. The cracks were immersed in the red ink, the surface was wiped off, and the presence or absence of the cracks was checked by visual observation. ○, △, × in the table are ○
Indicates that no abnormality was observed even after 10 cycles or more, Δ indicates that it occurred in 5 to 9 cycles, and x indicates that it occurred in 4 cycles or less.

【0041】密着性は、基体の曲げ試験を行い、ガラス
層が剥離して金属部が露出したものを×、金属部が一部
だけ露出したものを△、金属部が露出していないものを
○とした。
The adhesion was evaluated by conducting a bending test on the substrate, and x indicating that the metal part was exposed by peeling the glass layer, Δ indicating that the metal part was partially exposed, and Δ indicating that the metal part was not exposed. ○

【0042】以上の評価に基づき総合評価を行い、その
結果を○、△、×で示した。No1〜8は他の成分を一定
として、SiO2とB23を変化させたもの、No9〜15
は、SiO2/B23をほぼ一定にし、MgO量を変化
させたもの、No16〜19は同じく、CaO量を変化させた
もの。No20〜24は、同じく、BaO量を変化させたも
の。No25〜29は、同じくLa23量を変化させたもの。
No30〜42はそれぞれ、ZrO2、TiO2、SnO2、P2
5、ZnOの影響を示す。
A comprehensive evaluation was carried out based on the above evaluations, and the results are shown by ◯, Δ, and x. Nos. 1 to 8 are those in which SiO 2 and B 2 O 3 are changed while other components are kept constant, Nos. 9 to 15
Indicates that SiO 2 / B 2 O 3 is kept almost constant and the amount of MgO is changed, and Nos. 16 to 19 are those where the amount of CaO is changed. No. 20 to 24 have the same BaO content. No. 25 to 29 are the ones with the same La 2 O 3 content.
No. 30 to 42 are ZrO 2 , TiO 2 , SnO 2 and P 2 respectively.
The influence of O 5 and ZnO is shown.

【0043】表から明らかなように、SiO2を増加し
ていけば、耐熱性は向上するが、表面性、および密着性
が悪くなる。逆に、B23量を増加していけば、たしか
に表面性、密着性は向上するが耐熱性は低下する。した
がって、本発明では、SiO2;7〜30重量%、B
23;5〜34重量%の範囲内が好ましい。
As is clear from the table, when the SiO 2 content is increased, the heat resistance is improved, but the surface property and the adhesion are deteriorated. On the contrary, if the amount of B 2 O 3 is increased, the surface property and the adhesion are certainly improved, but the heat resistance is decreased. Therefore, in the present invention, SiO 2 ; 7 to 30% by weight, B
2 O 3 ; preferably in the range of 5 to 34% by weight.

【0044】MgO量は結晶性と相関があり、16重量%
以下では結晶析出が不十分で、耐熱性に劣る。また、50
重量%以上では、結晶が析出しやすく、ガラス溶融時に
簡単に結晶化し、均質なガラスを得ることが難しく、ま
た、表面粗度が大きくなる。
The amount of MgO has a correlation with crystallinity, and is 16% by weight.
Below, crystal precipitation is insufficient and heat resistance is poor. Also, 50
If it is more than 10% by weight, crystals tend to precipitate, it is difficult to crystallize when the glass melts, it is difficult to obtain a homogeneous glass, and the surface roughness becomes large.

【0045】CaO量は、20重量%以上入れると、表面
性が悪くなり好ましくない。
If the CaO content is 20% by weight or more, the surface property is deteriorated, which is not preferable.

【0046】BaO量は、50重量%以上では、耐熱性、
および密着性が劣化し好ましくない。
When the amount of BaO is 50% by weight or more, heat resistance,
Also, the adhesiveness deteriorates, which is not preferable.

【0047】La23は、40重量%以上では、耐熱性が
劣化し好ましくない。
When La 2 O 3 is 40% by weight or more, heat resistance is deteriorated, which is not preferable.

【0048】その他の添加可能な成分はZrO2、Ti
2、SnO2、P25、ZnOなどが挙げられるが、5
重量%以下までなら添加可能である。
Other components that can be added are ZrO 2 , Ti
O 2 , SnO 2 , P 2 O 5 , ZnO and the like can be mentioned, but 5
It can be added up to a weight% of less.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】[0053]

【表5】 [Table 5]

【0054】以上のように、上記実施例の構成による計
測器用歪センサは、金属基材と結晶化ガラス層、結晶化
ガラス層と感歪抵抗体および電極体間でそれぞれの成分
元素が相互拡散しているため密着性が非常に強く、大き
な荷重量しかも水がかかるといった過酷な環境条件で使
用するセンサとしては最適なものである。
As described above, in the strain sensor for a measuring instrument according to the configuration of the above embodiment, the respective constituent elements of the metal substrate and the crystallized glass layer, the crystallized glass layer and the strain sensitive resistor, and the electrode body are mutually diffused. As a result, it has a very strong adhesion, and is optimal for a sensor used under severe environmental conditions such as a large load and water.

【0055】さらに上記計測器用歪センサを、被検知物
品の積載台と、積載台を支えるてこと、てこ比により被
検知物品の荷重を縮小した力を検知するロードセル式計
測器に装着することにより被検知物品の荷重を精度良く
検出することが出来るロードセル式計測器を実現するこ
とが出来る。
Further, by mounting the strain sensor for a measuring instrument on a loading platform for the article to be sensed, supporting the loading platform, and a load cell type instrument for detecting the force of reducing the load of the article to be sensed by the leverage. It is possible to realize a load cell type measuring instrument capable of accurately detecting the load of the article to be detected.

【0056】[0056]

【発明の効果】以上述べたところから明らかなように、
本発明は、従来に比べてより一層耐荷重性、耐久性に優
れた計測器用歪センサを提供することが出来るという長
所を有する。又、このような計測器用歪センサをロード
セル式計測器に用いて、被検知物品の荷重量をより一層
精度良く検出出来得るという長所を有する。
As is apparent from the above description,
INDUSTRIAL APPLICABILITY The present invention has an advantage of being able to provide a strain sensor for a measuring instrument, which is more excellent in load resistance and durability than conventional ones. Further, by using such a strain sensor for a measuring instrument in a load cell type measuring instrument, there is an advantage that the load amount of an article to be detected can be detected with higher accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明にかかる実施例1の計測用歪セン
サの斜視図 (b)同縦断面図
FIG. 1A is a perspective view of a strain sensor for measurement according to a first embodiment of the present invention, and FIG.

【図2】本発明にかかる一実施例の計測器用歪センサを
装着したロードセル式計測器の斜視図
FIG. 2 is a perspective view of a load cell type measuring instrument equipped with a strain sensor for a measuring instrument according to an embodiment of the present invention.

【図3】本発明にかかる一実施例の計測器用歪センサと
従来センサでの荷重量と抵抗変化率の関係
FIG. 3 is a diagram showing a relationship between a load amount and a resistance change rate in a strain sensor for a measuring instrument according to an embodiment of the present invention and a conventional sensor.

【符号の説明】[Explanation of symbols]

1 円筒金属体 2 結晶化ガラス層 3 抵抗素子 4 電極体 5 計測用歪センサ 6 積載台 7 てこ 8 ロードセル式台はかり DESCRIPTION OF SYMBOLS 1 Cylindrical metal body 2 Crystallized glass layer 3 Resistance element 4 Electrode body 5 Strain sensor for measurement 6 Loading platform 7 Lever 8 Load cell type platform scale

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 康男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Mizuno 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Akihiko Yoshida 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属基材と、前記金属基材の上の絶縁性
ガラス層と、前記絶縁性ガラス層の上の感歪抵抗体と、
その感歪抵抗体に付着され、信号を伝達する電極体層と
を備えたことを特徴とする計測器用歪センサ。
1. A metal base material, an insulating glass layer on the metal base material, and a strain sensitive resistor on the insulating glass layer.
A strain sensor for a measuring instrument, comprising: an electrode layer attached to the strain sensitive resistor and transmitting a signal.
【請求項2】 絶縁性ガラス層が結晶化ガラス層である
ことを特徴とする請求項1記載の計測器用歪センサ。
2. The strain sensor for a measuring instrument according to claim 1, wherein the insulating glass layer is a crystallized glass layer.
【請求項3】 結晶化ガラスの組成は、MgOが16〜50
重量%、SiO2が7〜30重量%、B23が5〜34重量
%、BaOが0〜50重量%、La23が0〜40重量%、
CaOが0〜20重量%、P25が0〜5重量%、MO2
が0〜5重量%(但し、MはZr,Ti,Snのうち少な
くとも一種の元素)であることを特徴とする請求項2記
載の計測器用歪センサ。
3. The composition of crystallized glass is such that MgO is 16-50.
% By weight, 7 to 30% by weight of SiO 2 , 5 to 34% by weight of B 2 O 3 , 0 to 50% by weight of BaO, 0 to 40% by weight of La 2 O 3 ,
CaO is 0 to 20% by weight, P 2 O 5 is 0 to 5% by weight, MO 2
Is 0 to 5% by weight (where M is at least one element of Zr, Ti, and Sn), and the strain sensor for a measuring instrument according to claim 2.
【請求項4】 被検知物品の積載台と、積載台を支える
てこと、てこ比により被検知物品の荷重を縮小した力を
検知するロードセル式計測器において、上記請求項1、
2、又は3記載の計測器用歪センサを少なくとも1個用
いたことを特徴とするロードセル式計測器。
4. A load cell type measuring instrument for detecting a force of reducing a load of an article to be detected according to a loading platform for supporting the article to be detected, a support for the loading platform, and a lever ratio.
A load cell type measuring instrument, wherein at least one strain sensor for measuring instrument according to 2 or 3 is used.
JP11007694A 1994-05-24 1994-05-24 Strain sensor for measuring instrument and load cell type measuring instrument using this Pending JPH07318441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11007694A JPH07318441A (en) 1994-05-24 1994-05-24 Strain sensor for measuring instrument and load cell type measuring instrument using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11007694A JPH07318441A (en) 1994-05-24 1994-05-24 Strain sensor for measuring instrument and load cell type measuring instrument using this

Publications (1)

Publication Number Publication Date
JPH07318441A true JPH07318441A (en) 1995-12-08

Family

ID=14526433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11007694A Pending JPH07318441A (en) 1994-05-24 1994-05-24 Strain sensor for measuring instrument and load cell type measuring instrument using this

Country Status (1)

Country Link
JP (1) JPH07318441A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105136346A (en) * 2015-07-31 2015-12-09 北京博源天衡科技有限公司 Novel load sensor
US9482587B2 (en) 2011-08-02 2016-11-01 Ntn Corporation Magnetic load sensor unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9482587B2 (en) 2011-08-02 2016-11-01 Ntn Corporation Magnetic load sensor unit
CN105136346A (en) * 2015-07-31 2015-12-09 北京博源天衡科技有限公司 Novel load sensor

Similar Documents

Publication Publication Date Title
EP0561397B1 (en) A pressure sensor
EP0327106B1 (en) Glass ceramic for coating metal substrate
US5242722A (en) Strain sensor
JPH0593659A (en) Distortion sensor and its manufacture
US5985183A (en) Piezoresistance paste and mechanical sensor using the same
JPH08304200A (en) Distortion-sensing resistor paste and sensor for dynamical amount
JPH0696847A (en) Surface heating unit and manufacture thereof
JPH07318441A (en) Strain sensor for measuring instrument and load cell type measuring instrument using this
JPH0658706A (en) Strain sensor
JPH06137806A (en) Strain sensor
JP3030947B2 (en) Oil level sensor
JP3720129B2 (en) Resistive paste for strain sensitive resistor elements
JPH098325A (en) Production of electric insulation substrate and physical quantity sensor employing it
JPH06137979A (en) Pressure sensor and pressure detector using it
JPH07140022A (en) Paste for resistor element, resistor element and dynamic quantity sensor
JPH07307210A (en) Manufacture of metal resistor and dynamic quantity sensor
JPH0572017A (en) Level sensor and manufacture thereof
JPH0545234A (en) Temperature sensor
JPH07275562A (en) Washing machine fitted with distortion sensor
JPH0534205A (en) Temperature sensor
JPH07332695A (en) Automatic hot water supply machine for bath boiler and distortion sensor for bath boiler
JPH0545238A (en) Load sensing device and car suspension using it
JPH06137971A (en) Pressure sensor
JP3487675B2 (en) Manufacturing method of mechanical quantity sensor
JPH07167720A (en) Pressure sensor