JPH07316657A - Production of grain oriented silicon steel sheet reduced in iron loss - Google Patents

Production of grain oriented silicon steel sheet reduced in iron loss

Info

Publication number
JPH07316657A
JPH07316657A JP6110092A JP11009294A JPH07316657A JP H07316657 A JPH07316657 A JP H07316657A JP 6110092 A JP6110092 A JP 6110092A JP 11009294 A JP11009294 A JP 11009294A JP H07316657 A JPH07316657 A JP H07316657A
Authority
JP
Japan
Prior art keywords
slab
steel sheet
iron loss
cold rolling
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6110092A
Other languages
Japanese (ja)
Inventor
Hiroaki Sato
浩明 佐藤
Yosuke Kurosaki
洋介 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6110092A priority Critical patent/JPH07316657A/en
Publication of JPH07316657A publication Critical patent/JPH07316657A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a product reduced in iron loss by specifying temp. rise rate at the time of heating a continuously cast slab of steel with specific composition and also specifying aging temp. and aging time in interpass at the time of cold rolling. CONSTITUTION:A continuously cast slab, consisting of, by weight, 0.015-0.100% C, 2.0-4.0% Si, 0.03-0.12% Mn, 0.010-0.065% sol.Al, 0.0040-0.0100% N, 0.005-0.050% S and/or Se, further 0.003-0.3% of one or more elements among Sb, Sn, Cu, Mo, Ge, B, Te, As, and Bi, and the balance Fe, is used. This slab is heated and soaked to and at 1320-1450 deg.C, hot-rolled, preliminarily cold-rolled, precipitation-annealed, subjected to final cold rolling consisting of plural passes, and subjected to decarburizing and primary recrystallization annealing and then to final finish annealing, by which the grain oriented silicon steel sheet can be produced. In this method, heating for the slab in a high temp. region of >=1200 deg.C is done at >=5 deg.C/min temp. rise rate, and the steel sheet is held at 150-350 deg.C for >=1min at least in one interpass in the final cold rolling stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は変圧器等の鉄心に使用さ
れる低鉄損一方向性電磁鋼板の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low iron loss unidirectional electrical steel sheet used for an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は主に変圧器や発電機
の鉄心材料に使用されるが、省エネルギー化が要求され
ている昨今、さらに磁束密度が高く、鉄損の少ない鋼板
が市場から要求されている。一般的に、低鉄損を達成す
るためには、鋼板のSi含有量を極力高め素材の固有抵
抗を上げて渦電流損を下げる方法と、製品板厚を極力薄
くし渦電流損を下げる方法が知られている。さらに、低
鉄損を図るにはインヒビター、鋼板の組織、集合組織を
高度に制御する必要がある。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as iron core materials for transformers and generators, but with the recent demand for energy savings, steel sheets with higher magnetic flux density and less iron loss are available from the market. Is required. Generally, in order to achieve a low iron loss, a method of reducing the eddy current loss by increasing the Si content of the steel sheet as much as possible to increase the specific resistance of the material, and a method of reducing the eddy current loss by reducing the product sheet thickness as much as possible It has been known. Furthermore, in order to achieve low iron loss, it is necessary to highly control the inhibitor, the structure of the steel sheet, and the texture.

【0003】この中の一つであるインヒビター分散形態
のコントロールは、熱間圧延に先立つスラブ高温加熱中
にインヒビターを一旦溶体化させ、その後適当な冷却パ
ターンの熱間圧延を施すことが必要である。インヒビタ
ー溶体化のためのスラブ高温加熱をガス燃焼型加熱炉で
行うと、スラブ表面から熱せられるのでスラブ表層で温
度が高く、スラブ中心部で温度が低い状態になる。よっ
て、スラブ中心部まで目的の温度に達するためには、ス
ラブ表層温度は、スラブ中心部よりもかなり高い温度と
なり、またガス燃焼型加熱炉では昇温速度も1200℃
以上で約1℃/分と遅いために1200℃以上の高温域
に滞留する時間がかなり長くなり、スラブ高温加熱後の
結晶粒径は粗大化してしまい、線状細粒と呼ばれる2次
再結晶不良を製品にもたらす原因となっていた。この対
策として、特公昭56−18654号公報に提案されて
いるようなスラブ急速加熱方式を用いると、スラブ加熱
の短時間化が可能となった。
In order to control the inhibitor dispersion morphology, which is one of them, it is necessary to temporarily solution the inhibitor during high temperature heating of the slab prior to hot rolling, and then perform hot rolling with an appropriate cooling pattern. . When high-temperature heating of the slab for solution treatment of the inhibitor is performed in a gas combustion type heating furnace, the slab surface is heated, so the temperature is high at the surface layer of the slab and low at the center of the slab. Therefore, in order to reach the target temperature up to the center of the slab, the surface temperature of the slab is considerably higher than that of the center of the slab, and the temperature rise rate is 1200 ° C in the gas combustion type heating furnace.
Because of the slow rate of about 1 ° C / min above, the residence time in the high temperature region of 1200 ° C or higher becomes considerably long, and the crystal grain size after heating the slab at high temperature becomes coarse, resulting in secondary recrystallization called linear fine grains. It was a cause of causing defects in the product. As a countermeasure against this, if a slab rapid heating method as proposed in Japanese Patent Publication No. 56-18654 is used, it is possible to shorten the slab heating time.

【0004】一方、2回以上の冷間圧延を行い一方向性
電磁鋼板を製造する方法において、最終冷間圧延時に時
効処理を施すこと、ならびにこの時効処理に関連して最
終冷間圧延前の工程である中間焼鈍の冷却速度をコント
ロールすることによって磁気特性が向上することが報告
されている(特公昭56−3892号公報参照)。
On the other hand, in a method for producing a grain-oriented electrical steel sheet by performing cold rolling two or more times, aging treatment is performed at the time of final cold rolling, and the aging treatment is performed before the final cold rolling. It has been reported that the magnetic properties are improved by controlling the cooling rate of the intermediate annealing which is a step (see Japanese Patent Publication No. 56-3892).

【0005】[0005]

【発明が解決しようとする課題】前記従来技術の方法で
得られる製品は、低鉄損という点で満足できるものでは
なかった。本発明は、スラブ加熱時の高温域におけるス
ラブ加熱の昇温速度を規制することによりスラブ加熱時
の結晶粒の成長を抑制し、冷間圧延時のパス間時効温度
およびパス間時効時間をある範囲に制御することによ
り、低鉄損な製品を得られる方法を提供するものであ
る。
The products obtained by the above-mentioned methods of the prior art are not satisfactory in terms of low iron loss. The present invention suppresses the growth of crystal grains during slab heating by controlling the temperature rising rate of slab heating in the high temperature range during slab heating, and there is an interpass aging temperature and an interpass aging time during cold rolling. It is intended to provide a method for obtaining a product with low iron loss by controlling the range.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は重量
%で、C :0.015〜0.100%、 Si:
2.0〜4.0%、Mn:0.03〜0.12%、
Sol.Al:0.010〜0.065%、N :0.0
040〜0.0100%、SおよびSeのうちから選ん
だ1種または2種合計:0.005〜0.050%、さ
らにSb,Sn,Cu,Mo,Ge,B,Te,Asお
よびBiから選ばれる1種または2種以上を0.003
〜0.3%を含有し、残部は実質的にFeの組成になる
連続鋳造スラブを、1320〜1450℃に加熱均熱し
た後熱延し、予備冷延し、析出焼鈍し、複数パスよりな
る最終冷延を施し、脱炭・1次再結晶焼鈍、最終仕上焼
鈍によって一方向性電磁鋼板を製造する方法において、
上記スラブの1200℃以上の高温域の加熱を5℃/分
以上の昇温速度で行うと共に、最終冷延工程の少なくと
も1回のパス間で鋼板を150〜350℃の温度範囲で
1分以上の時間保持することを特徴とする低鉄損一方向
性電磁鋼板の製造方法である。また、本発明は上記スラ
ブの1200℃以上の高温域の加熱の前に、50%以下
の圧下率で熱間変形を加えることを特徴とし、さらに本
発明は上記熱延板に熱延板焼鈍を施すことをも特徴とす
る。
That is, the present invention, in% by weight, is C: 0.015 to 0.100%, Si:
2.0-4.0%, Mn: 0.03-0.12%,
Sol.Al:0.010-0.065%, N: 0.0
040 to 0.0100%, one or two kinds selected from S and Se total: 0.005 to 0.050%, and further from Sb, Sn, Cu, Mo, Ge, B, Te, As and Bi 0.003 for one or more selected
A continuous cast slab containing ~ 0.3%, the balance being substantially Fe, heated and soaked at 1320 to 1450 ° C, then hot rolled, pre-cold rolled, precipitation annealed, and from multiple passes In the method of producing a grain-oriented electrical steel sheet by decarburization / primary recrystallization annealing and final finishing annealing,
The slab is heated in a high temperature range of 1200 ° C. or higher at a temperature rising rate of 5 ° C./min or higher, and the steel sheet is heated in the temperature range of 150 to 350 ° C. for at least 1 minute between at least one pass of the final cold rolling step. It is a method for manufacturing a low iron loss unidirectional electrical steel sheet characterized by holding for a period of time. In addition, the present invention is characterized in that hot deformation is applied at a rolling reduction of 50% or less before heating the slab in a high temperature region of 1200 ° C. or more, and further, the present invention is annealed to the hot rolled sheet. It is also characterized by applying.

【0007】本発明者は、鉄損の低い一方向性電磁鋼板
を製造する方法を検討したところ、スラブ加熱時の高温
域におけるスラブ加熱を5℃/分以上の昇温速度で行い
スラブ加熱時の結晶粒の成長を抑制し、かつ、最終冷間
圧延時のパス間時効温度およびパス間時効時間をある範
囲に制御することが非常に有効であることを見出した。
The present inventor has studied a method for producing a grain-oriented electrical steel sheet having a low iron loss. As a result, slab heating in a high temperature range during slab heating is performed at a temperature rising rate of 5 ° C./min or more. It has been found that it is very effective to suppress the growth of crystal grains and to control the aging temperature between passes and the aging time between passes in the final cold rolling within a certain range.

【0008】図1は、本発明者が行った実験結果の一例
である。本発明に従った成分範囲にあるC:0.070
%、Si:3.19%、Mn:0.071%、S:0.
022%、Sol.Al:0.031%、N:0.0077
%、Sn:0.11%を含有する鋳片を連続鋳造し、短
時間加熱が可能な電気式雰囲気制御型誘導加熱炉により
到達温度1350℃とし、1200℃から1350℃ま
でを種々の昇温速度で加熱したスラブを用いて板厚2.
30mmの熱延板を作製した。そして、1.75mmに予備
冷延し1000℃×2分均熱後急冷するという析出焼鈍
後、最終冷間圧延工程で途中板厚0.80mmと0.50
mmの段階で種々の温度で10分間のパス間時効を施し
0.22mmの最終仕上厚とした。得られた冷延板を公知
の方法で脱炭焼鈍し、焼付分離材を塗布した後、最終仕
上焼鈍を行い、コーティング液を塗布し製品とした。か
くして得られた製品板の鉄損とスラブ昇温速度、パス間
時効温度との関係について調べた結果を示したのが図1
である。同図より明らかなように、スラブ昇温速度を5
℃/分以上とし、かつ、最終冷延工程で150〜350
℃の温度でパス間時効を施すことにより良好な磁気特性
が得られることが分かる。
FIG. 1 shows an example of the result of an experiment conducted by the present inventor. C: 0.070 in the composition range according to the invention
%, Si: 3.19%, Mn: 0.071%, S: 0.
022%, Sol.Al: 0.031%, N: 0.0077
%, Sn: 0.11% is continuously cast, and the ultimate temperature is set to 1350 ° C. by an electric atmosphere control type induction heating furnace capable of heating for a short time, and various temperature increases from 1200 ° C. to 1350 ° C. Plate thickness using slab heated at speed 2.
A 30 mm hot rolled sheet was prepared. Then, after precipitation annealing of pre-cold rolling to 1.75 mm, soaking at 1000 ° C. for 2 minutes, and then rapid cooling, in the final cold rolling step, plate thicknesses of 0.80 mm and 0.50 were obtained.
mm aging was done for 10 minutes between passes at various temperatures to give a final finished thickness of 0.22 mm. The obtained cold-rolled sheet was decarburized and annealed by a known method, and after applying a baking separating material, final finishing annealing was performed and a coating solution was applied to obtain a product. Fig. 1 shows the results of an investigation of the relationship between the iron loss of the product sheet thus obtained, the slab temperature rising rate, and the interpass aging temperature.
Is. As is clear from the figure, the slab heating rate was set to 5
℃ / min or more, and 150-350 in the final cold rolling process
It can be seen that good magnetic characteristics can be obtained by aging between passes at a temperature of ° C.

【0009】図2に製品の磁気特性と冷延パス間の時効
時間の関係を示す。本発明に従った成分範囲にあるC:
0.070%、Si:3.19%、Mn:0.071
%、S:0.022%、Sol.Al:0.031%、N:
0.0077%、Sn:0.11%を含有する鋳片を連
続鋳造し、短時間加熱が可能な電気式雰囲気制御型誘導
加熱炉により到達温度1390℃とし、1200℃から
1390℃までを10℃/分の昇温速度で加熱したスラ
ブを用いて板厚2.30mmの熱延板を作製した。そし
て、1.70mmに予備冷延し1000℃×2分均熱後急
冷するという析出焼鈍後、最終冷間圧延工程で途中板厚
0.80mmの段階で鋼板を250℃に種々の時間保持
し、0.22mmの最終仕上厚とした。得られた冷延板を
公知の方法で脱炭焼鈍し、焼付分離材を塗布した後、最
終仕上焼鈍を行いコーティング液を塗布し製品とした。
かくして得られた製品板の磁束密度、鉄損とパス間時効
時間との関係について調べた結果を示したのが図2であ
る。同図より明らかなようにパス間時効時間を1分以上
とすると良好な磁気特性が得られることが分かる。
FIG. 2 shows the relationship between the magnetic properties of the product and the aging time between cold rolling passes. C in the component range according to the invention:
0.070%, Si: 3.19%, Mn: 0.071
%, S: 0.022%, Sol.Al: 0.031%, N:
A slab containing 0.0077% and Sn: 0.11% is continuously cast, and the ultimate temperature is set to 1390 ° C. by an electric atmosphere control type induction heating furnace capable of heating for a short time. A hot-rolled plate having a plate thickness of 2.30 mm was produced using a slab heated at a temperature rising rate of ° C / min. Then, after precipitation annealing of pre-cold rolling to 1.70 mm, soaking at 1000 ° C. for 2 minutes and then rapid cooling, the steel plate was kept at 250 ° C. for various times at the stage of 0.80 mm in the final cold rolling process. , 0.22 mm final finished thickness. The obtained cold-rolled sheet was decarburized and annealed by a known method, and after applying a baking separating material, final finishing annealing was performed and a coating liquid was applied to obtain a product.
FIG. 2 shows the results of examining the relationship between the magnetic flux density, the iron loss, and the interpass aging time of the product sheet thus obtained. As is clear from the figure, good magnetic characteristics can be obtained when the aging time between passes is 1 minute or more.

【0010】このようにこの発明は、高温スラブ加熱を
スラブの昇温速度を5℃/分以上とし、かつ、最終冷延
工程で150〜350℃の温度で1分以上のパス間時効
を施すことにより磁気特性が著しく向上するという全く
新しい知見に基づいて完成されたものである。
As described above, according to the present invention, the high temperature slab heating is performed by increasing the temperature of the slab to 5 ° C./min or more, and in the final cold rolling step, the pass aging is performed for 1 minute or more at a temperature of 150 to 350 ° C. This has been completed based on a completely new finding that magnetic properties are significantly improved.

【0011】ここにこの発明によって磁気特性が向上す
る理由については、必ずしも明確に解明されたわけでは
ないが、次のとおりと考えられる。すなわち、スラブ昇
温速度を速めることによりスラブ加熱中の結晶粒の成長
を抑制し、熱間圧延後、熱延板の組織および析出物の均
一化が図られると共に熱延板での結晶粒径が小さくな
る。集合組織も{100}方位粒が減少し、{111}
方位粒が増加する。冷延前の結晶粒径が小さくなると、
1次再結晶後、粒内から核発生する{110}方位粒は
減少し、粒界近傍から核発生する{111}方位粒が増
加する。{111}方位粒が増加し、{100}方位粒
が減少することは、2次再結晶の安定をもたらすが、一
方、{110}方位粒が減少するために、安定して低鉄
損を得られない。そこで、パス間時効温度を従来よりも
狭い範囲に限定することで、固溶C,Nが冷間圧延によ
って形成された転位等欠陥部に固着する作用、または微
細炭化物による転位運動の妨害作用によって変形機構に
影響を大きく与え、{110}〈001〉方位粒を増加
させてやると、{110}方位粒、{111}方位粒が
増加し、{100}方位粒が減少し、従来よりも安定し
て鉄損の低い一方向性電磁鋼板が得られることになる。
The reason why the magnetic characteristics are improved by the present invention has not been clearly clarified, but it is considered as follows. That is, by suppressing the growth of crystal grains during slab heating by increasing the slab temperature rising rate, after hot rolling, the structure and precipitates of the hot rolled sheet can be made uniform and the grain size of the hot rolled sheet can be increased. Becomes smaller. The texture also decreases in {100} orientation grains, {111}
The orientation grains increase. When the crystal grain size before cold rolling becomes small,
After the primary recrystallization, the number of {110} oriented grains that nucleate from inside the grain decreases and the number of {111} oriented grains that nucleate near the grain boundary increases. Increasing the {111} oriented grains and decreasing the {100} oriented grains stabilizes the secondary recrystallization, while the {110} oriented grains are decreased, so that the low iron loss is stably reduced. I can't get it. Therefore, by limiting the aging temperature between passes to a range narrower than that of the conventional one, solid solution C and N are fixed to defects such as dislocations formed by cold rolling, or dislocation motion is disturbed by fine carbides. When the {110} <001> oriented grains are increased with a large influence on the deformation mechanism, the {110} oriented grains and the {111} oriented grains increase, and the {100} oriented grains decrease, which is more than conventional. A unidirectional electrical steel sheet with a stable low iron loss can be obtained.

【0012】以下に本発明の成分および処理条件を限定
した理由を説明する。Siは、下限2%未満では良好な
鉄損が得られず、上限4%を超えると冷延性が著しく劣
化する。Cは、下限0.015%未満であれば2次再結
晶が不安定となり、上限の0.100%はこれよりCが
多くなると脱炭所要時間が長くなり経済的に不利となる
ために限定した。Mnは、下限0.03%未満であれば
熱間脆化を起こし、上限0.12%を超えるとかえって
磁気特性を劣化させる。
The reasons for limiting the components and processing conditions of the present invention will be described below. If Si is less than the lower limit of 2%, good iron loss cannot be obtained, and if it exceeds the upper limit of 4%, cold ductility is significantly deteriorated. If the lower limit of C is less than 0.015%, the secondary recrystallization becomes unstable, and the upper limit of 0.100% is limited because if C is more than this, the time required for decarburization becomes long and it is economically disadvantageous. did. If the lower limit of Mn is less than 0.03%, hot embrittlement occurs, and if it exceeds the upper limit of 0.12%, the magnetic properties deteriorate rather.

【0013】Sol.Alは、AlNを形成するために必要
な元素で、下限0.010%未満ではAlNの絶対量が
不足し、上限0.065%を超えるとAlNの適当な分
散状態が得られない。Nは、AlNを形成するために必
要な元素で、下限0.0040%未満ではAlNの絶対
量が不足し、上限0.0100%を超えるとAlNの適
当な分散状態が得られない。
Sol.Al is an element necessary for forming AlN. If the lower limit is less than 0.010%, the absolute amount of AlN is insufficient, and if the upper limit is more than 0.065%, a suitable dispersed state of AlN is obtained. I can't. N is an element necessary for forming AlN. If the lower limit is less than 0.0040%, the absolute amount of AlN is insufficient, and if it exceeds the upper limit of 0.0100%, a proper dispersed state of AlN cannot be obtained.

【0014】S,Seは、MnS,MnSeを形成する
ために必要な元素で、これらの1種または2種の合計が
下限0.005%未満ではMnS,MnSeの絶対量が
不足し、上限0.050%を超えると熱間割れを生じ、
また、最終仕上焼鈍での純化が困難となる。Sb,S
n,Cu,Mo,Ge,B,Te,AsおよびBiは粒
界に偏析させ、2次再結晶を安定化させるが、下限0.
03%未満では偏析量が不足し、上限0.3%は経済的
理由と脱炭性の悪化によるものである。
S and Se are elements necessary for forming MnS and MnSe. If the total of one or two of these is less than the lower limit of 0.005%, the absolute amount of MnS and MnSe is insufficient, and the upper limit is 0. If it exceeds 0.050%, hot cracking occurs,
Further, it becomes difficult to purify by final finish annealing. Sb, S
n, Cu, Mo, Ge, B, Te, As and Bi segregate at the grain boundaries to stabilize secondary recrystallization, but the lower limit of 0.
If it is less than 03%, the segregation amount is insufficient, and the upper limit of 0.3% is due to economic reasons and deterioration of decarburization.

【0015】スラブ加熱温度は、1320〜1450℃
とするが、1320℃未満であると製品の鉄損のばらつ
きが大きい。1450℃を超えるとスラブが溶融する。
高温域におけるスラブ加熱に関しては、加熱時の結晶粒
径の粗大化の抑制および組織、集合組織の改善のため
に、1200℃以上の昇温速度を5℃/分以上とする
が、1200℃未満では粒成長への影響が少ないために
昇温速度を規定する必要はない。昇温速度5℃/分未満
では、磁気特性の改善効果が少ないためである。
The slab heating temperature is 1320 to 1450 ° C.
However, if the temperature is lower than 1320 ° C., the variation in iron loss of the product is large. When it exceeds 1450 ° C, the slab melts.
Regarding slab heating in a high temperature range, the temperature rising rate of 1200 ° C or higher is set to 5 ° C / min or higher, but less than 1200 ° C, in order to suppress coarsening of the crystal grain size during heating and to improve the texture and texture. In this case, since the influence on grain growth is small, it is not necessary to specify the heating rate. This is because if the heating rate is less than 5 ° C./minute, the effect of improving the magnetic properties is small.

【0016】最終冷間圧延時のパス間時効温度は、図1
に示すように、150℃より低温だと磁気特性の改善効
果に乏しく、また350℃を超えても磁気特性の改善効
果が少ない。時効処理は1回でも効果があるが、圧延と
時効処理を交互に繰り返すと製品の磁気特性が一層向上
する。パス間時効時間は、1分未満だと磁気特性の改善
効果が少ない。
The aging temperature between passes during final cold rolling is shown in FIG.
As shown in, the effect of improving the magnetic properties is poor at temperatures lower than 150 ° C, and the effect of improving the magnetic properties is low even at temperatures above 350 ° C. Although the aging treatment is effective even once, the rolling and aging treatment are alternately repeated to further improve the magnetic properties of the product. If the aging time between passes is less than 1 minute, the effect of improving the magnetic properties is small.

【0017】1200℃以上の高温域のスラブ加熱前に
50%以下の圧下で熱間変形を加えることは、柱状晶を
破壊し、熱延板の組織の均一化に有効で製品の磁気特性
のばらつきを少なくする。圧下率の上限を50%とした
のは、これ以上圧下率を高くしても、磁気特性の値に変
化がないからである。また、熱延板焼鈍は、必要に応じ
て実施する。熱延板の組織や析出物の均一化に有効で、
製品の磁気特性のばらつきを少なくする。
Applying hot deformation under a pressure of 50% or less before heating the slab in a high temperature range of 1200 ° C. or higher destroys the columnar crystals and is effective in homogenizing the structure of the hot rolled sheet, thus improving the magnetic properties of the product. Reduce variations. The upper limit of the rolling reduction is set to 50% because the magnetic characteristic value does not change even if the rolling reduction is further increased. The hot-rolled sheet annealing is carried out as necessary. Effective in homogenizing the structure and precipitates of hot rolled sheet,
Minimize variations in magnetic properties of products.

【0018】[0018]

【実施例】【Example】

〔実施例1〕〔C〕0.072%、〔Si〕3.21
%、〔Mn〕0.088%、〔S〕0.025%、〔So
l.Al〕0.022%、〔N〕0.0089%、〔S
n〕0.10%、〔Cu〕0.06%を含有する鋳片を
連続鋳造し、スラブ予備加熱をガス燃焼型加熱炉でスラ
ブ中心部の温度が1200℃の温度域に達するまで加熱
し、その後、表1に示す試料番号3〜6,15〜18に
ついては種々の圧下率で熱間変形を加え、それ以外の試
料については、熱間変形を加えることなく、電気式雰囲
気制御型誘導加熱炉に導き、その後1380℃まで昇温
速度3℃/分または、12℃/分の条件でスラブ高温加
熱を行ったスラブを熱間圧延し2.2mm厚のホットコイ
ルとした。このホットストリップを1.50mmに予備冷
延し、1100℃×2分に均熱後急冷するという析出焼
鈍をし、最終冷間圧延工程において種々の温度で3分間
のパス間時効を施して0.22mmの最終仕上厚とした。
得られた冷延板を公知の方法で脱炭焼鈍し焼付分離材を
塗布した後最終仕上焼鈍を行いコーティング液を塗布し
製品とした。この時のスラブ昇温速度、パス間時効圧延
温度、スラブ高温加熱前のスラブ圧下率および得られた
製品n=10の平均の磁束密度B8 、鉄損W17/50 を表
1に示す。これより、本発明例は比較例と比べて低鉄損
材料が得られることが分かる。
[Example 1] [C] 0.072%, [Si] 3.21
%, [Mn] 0.088%, [S] 0.025%, [So
l.Al] 0.022%, [N] 0.0089%, [S
n] 0.10% and [Cu] 0.06% are continuously cast, and slab preheating is performed in a gas combustion type heating furnace until the temperature of the slab center reaches a temperature range of 1200 ° C. After that, the sample numbers 3 to 6 and 15 to 18 shown in Table 1 were subjected to hot deformation at various reduction rates, and the other samples were subjected to electrical atmosphere controlled induction without hot deformation. The slab was introduced into a heating furnace and heated up to 1380 ° C. at a heating rate of 3 ° C./min or 12 ° C./min at high temperature to hot-roll the slab to obtain a hot coil having a thickness of 2.2 mm. This hot strip was pre-cold rolled to 1.50 mm, soaked at 1100 ° C. for 2 minutes and then rapidly cooled for precipitation annealing, and then aged for 3 minutes at various temperatures during the final cold rolling step to give 0. The final finished thickness was 0.22 mm.
The obtained cold-rolled sheet was decarburized and annealed by a known method, coated with a bake-separating material, then subjected to final finish annealing and applied with a coating solution to obtain a product. Table 1 shows the slab temperature raising rate , the interpass aging rolling temperature, the slab reduction ratio before the high temperature heating of the slab, the average magnetic flux density B 8 and the iron loss W 17/50 of the obtained product n = 10 at this time. From this, it is understood that the example of the present invention can obtain a low iron loss material as compared with the comparative example.

【0019】[0019]

【表1】 [Table 1]

【0020】〔実施例2〕〔C〕0.073%、〔S
i〕3.22%、〔Mn〕0.070%、〔S〕0.0
25%、〔Sol.Al〕0.024%、〔N〕0.007
7%、〔Sn〕0.11%、〔Cu〕0.12%を含有
する鋳片を連続鋳造し、スラブ予備加熱をガス燃焼型加
熱炉でスラブ中心部の温度が1200℃の温度域に達す
るまで加熱し、その後、表2に示す試料番号5,6,1
7,18については種々の圧下率で熱間変形を加え、そ
れ以外の試料については、熱間変形を加えることなく、
電気式雰囲気制御型誘導加熱炉に導きその後1370℃
まで種々の昇温速度にてスラブ高温加熱を行ったスラブ
を熱間圧延し2.2mm厚のホットコイルとした。そして
試料番号3〜6,15〜18は、予備冷延前に1120
℃×2分の熱延板焼鈍を施し、それ以外の試料は、熱延
板焼鈍を施すことなく1.45mmに予備冷延し、110
0℃×2分の均熱後急冷するという析出焼鈍をし、最終
冷間圧延工程で、パス間時効温度を100℃と200℃
に2水準で10分間のパス間時効を施し0.17mmの最
終仕上厚とした。得られた冷延板を公知の方法で脱炭焼
鈍し焼付分離材を塗布した後、最終仕上焼鈍を行いコー
ティング液を塗布し製品とした。この時の鋳片のスラブ
昇温速度、パス間時効温度、スラブ高温加熱前圧下率、
熱延板焼鈍の有無および得られた製品n=10の平均の
磁束密度B8 、鉄損W17/50 を表2に示す。これより、
本発明例は比較例と比べ低鉄損材料が得られることが分
かる。
[Example 2] [C] 0.073%, [S]
i] 3.22%, [Mn] 0.070%, [S] 0.0
25%, [Sol.Al] 0.024%, [N] 0.007
A slab containing 7%, [Sn] 0.11% and [Cu] 0.12% is continuously cast, and slab preheating is performed in a gas combustion type heating furnace so that the temperature of the slab center is 1200 ° C. Heat until reached, then sample numbers 5, 6, 1 shown in Table 2.
For 7 and 18, hot deformation was applied at various reduction ratios, and for other samples, without hot deformation,
Lead to induction heating furnace with electric atmosphere control and then 1370 ℃
The slab heated to a high temperature at various heating rates was hot-rolled into a hot coil having a thickness of 2.2 mm. And the sample numbers 3 to 6 and 15 to 18 are 1120 before the preliminary cold rolling.
Annealed hot-rolled sheet at ℃ × 2 minutes, other samples were pre-cold rolled to 1.45mm without hot-rolled sheet annealing, 110
Precipitation annealing is performed by soaking at 0 ° C for 2 minutes and then rapidly cooling, and the aging temperature between passes is 100 ° C and 200 ° C in the final cold rolling step.
Was aged for 10 minutes at 2 levels for a final finished thickness of 0.17 mm. The obtained cold-rolled sheet was decarburized and annealed by a known method to apply a bake-separating material, and then final finish annealing was performed to apply a coating solution to obtain a product. Slab temperature rising rate of the slab at this time, aging temperature between passes, slab high temperature pre-heating reduction rate,
Table 2 shows the presence or absence of hot-rolled sheet annealing and the average magnetic flux density B 8 and iron loss W 17/50 of the obtained product n = 10. Than this,
It can be seen that the example of the present invention can obtain a low iron loss material as compared with the comparative example.

【0021】[0021]

【表2】 [Table 2]

【0022】〔実施例3〕〔C〕0.075%、〔S
i〕3.24%、〔Mn〕0.070%、〔Se〕0.
020%、〔Sol.Al〕0.025%、〔N〕0.00
84%、〔Sb〕0.025%を含有する鋳片を連続鋳
造し、スラブ予備加熱をガス燃焼型加熱炉でスラブ中心
部の温度が1200℃の温度域に達するまで加熱し、試
料番号5,6,11,12は、25%の圧下率で熱間変
形を加え、それ以外の試料については、熱間変形を加え
ることなく、電気式雰囲気制御型誘導加熱炉に導きその
後1370℃まで、1℃/sまたは20℃/sの昇温速度に
てスラブ高温加熱を行ったスラブを熱間圧延し2.2mm
厚のホットコイルとした。そして試料番号3〜6,9〜
12は予備冷延前に1120℃×2分の熱延板焼鈍を施
し、それ以外の試料は、熱延板焼鈍を施すことなく1.
45mmに予備冷延し、1100℃×2分の均熱後急冷す
るという析出焼鈍をし、最終冷間圧延工程で、パス間時
効温度を100℃と200℃の2水準で20分間のパス
間時効を施し0.17mmの最終仕上厚とした。得られた
冷延板を公知の方法で脱炭焼鈍し焼付分離材を塗布した
後最終仕上焼鈍を行いコーティング液を塗布し製品とし
た。この時の鋳片のスラブ昇温速度、パス間時効温度、
熱延板焼鈍の有無および得られた製品n=10の平均の
磁束密度B8 、鉄損W17/50 を表3に示す。これより、
本発明例は比較例と比べ低鉄損材料が得られることが分
かる。
[Embodiment 3] [C] 0.075%, [S
i] 3.24%, [Mn] 0.070%, [Se] 0.
020%, [Sol.Al] 0.025%, [N] 0.00
A slab containing 84% and [Sb] 0.025% is continuously cast, and slab preheating is performed in a gas combustion type heating furnace until the temperature of the slab center reaches a temperature range of 1200 ° C. , 6, 11, and 12 are subjected to hot deformation at a rolling reduction of 25%, and other samples are introduced into an electric atmosphere controlled induction heating furnace without hot deformation and then heated to 1370 ° C., The slab heated at a high temperature at a heating rate of 1 ° C / s or 20 ° C / s is hot-rolled to 2.2 mm.
It was a thick hot coil. And sample numbers 3-6, 9-
Sample No. 12 was annealed to a hot-rolled sheet at 1120 ° C. for 2 minutes before pre-cold rolling, and the other samples were annealed without hot-rolled sheet annealing.
Pre-cold rolled to 45 mm, soaked for 1 minute at 1100 ° C and then rapidly cooled for precipitation annealing. During the final cold rolling process, the aging temperature between passes was set to 100 ° C and 200 ° C for 20 minutes between passes. Aging was applied to give a final finished thickness of 0.17 mm. The obtained cold-rolled sheet was decarburized and annealed by a known method, coated with a bake-separating material, then subjected to final finish annealing and applied with a coating solution to obtain a product. Slab temperature rising rate of slab at this time, aging temperature between passes,
Table 3 shows the presence / absence of hot-rolled sheet annealing, the average magnetic flux density B 8 and the iron loss W 17/50 of the obtained product n = 10. Than this,
It can be seen that the example of the present invention can obtain a low iron loss material as compared with the comparative example.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【発明の効果】以上のごとく本発明によれば、鉄損の低
い一方向性電磁鋼板を工業的に安定して製造でき、その
工業的効果は非常に大きい。
As described above, according to the present invention, a grain-oriented electrical steel sheet having a low iron loss can be manufactured industrially stably, and its industrial effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続鋳造スラブの1200℃以上の高温域の加
熱における昇温速度と最終冷間圧延時のパス間時効温度
と製品の鉄損W17/50 の関係図である。
FIG. 1 is a relationship diagram of a temperature rising rate in heating a continuously cast slab in a high temperature range of 1200 ° C. or higher, an aging temperature between passes during final cold rolling, and an iron loss W 17/50 of a product.

【図2】最終冷間圧延時のパス間時効時間と製品の磁束
密度B8 、鉄損W17/50 の関係図である。
FIG. 2 is a diagram showing a relationship between aging time between passes, final magnetic flux density B 8 and iron loss W 17/50 at the time of final cold rolling.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.015〜0.100%、 Si:2.0〜4.0%、 Mn:0.03〜0.12%、 Sol.Al:0.010〜0.065%、 N :0.0040〜0.0100%、 SおよびSeのうちから選んだ1種または2種合計:
0.005〜0.050%、さらに、 Sb,Sn,Cu,Mo,Ge,B,Te,Asおよび
Biから選ばれる1種または2種以上を0.003〜
0.3%を含有し、残部は実質的にFeの組成になる連
続鋳造スラブを、1320〜1450℃に加熱均熱した
後熱延し、予備冷延し、析出焼鈍し、複数パスよりなる
最終冷延を施し、脱炭・1次再結晶焼鈍、最終仕上焼鈍
によって一方向性電磁鋼板を製造する方法において、上
記スラブの1200℃以上の高温域の加熱を5℃/分以
上の昇温速度で行うと共に、最終冷延工程の少なくとも
1回のパス間で鋼板を150〜350℃の温度範囲で1
分以上の時間保持することを特徴とする低鉄損一方向性
電磁鋼板の製造方法。
1. By weight%, C: 0.015 to 0.100%, Si: 2.0 to 4.0%, Mn: 0.03 to 0.12%, Sol.Al: 0.010 to 0.065%, N: 0.0040 to 0.0100%, one or two kinds selected from S and Se in total:
0.005 to 0.050%, and 0.003 to 1% or more selected from Sb, Sn, Cu, Mo, Ge, B, Te, As and Bi.
A continuously cast slab containing 0.3% and the balance being substantially Fe is heated and soaked at 1320 to 1450 ° C., hot rolled, pre-cold rolled, precipitation annealed, and made up of a plurality of passes. In a method for producing a grain-oriented electrical steel sheet by final cold rolling, decarburization / primary recrystallization annealing, and final finishing annealing, heating of the slab in a high temperature region of 1200 ° C or higher is increased by 5 ° C / min or more. At a speed of at least one pass in the final cold rolling process, and the steel sheet at a temperature range of 150 to 350 ° C. for 1 time.
A method for producing a low iron loss unidirectional electrical steel sheet, which is characterized by holding for at least a minute.
【請求項2】 スラブの1200℃以上の高温域の加熱
の前に、50%以下の圧下率で熱間変形を加えることを
特徴とする請求項1に記載した低鉄損一方向性電磁鋼板
の製造方法。
2. The low iron loss unidirectional electrical steel sheet according to claim 1, wherein hot deformation is applied at a rolling reduction of 50% or less before heating the slab in a high temperature range of 1200 ° C. or higher. Manufacturing method.
【請求項3】 熱延板に熱延板焼鈍を施すことを特徴と
する請求項1または2に記載した低鉄損一方向性電磁鋼
板の製造方法。
3. The method for producing a low iron loss unidirectional electrical steel sheet according to claim 1, wherein the hot rolled sheet is annealed.
JP6110092A 1994-05-24 1994-05-24 Production of grain oriented silicon steel sheet reduced in iron loss Pending JPH07316657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6110092A JPH07316657A (en) 1994-05-24 1994-05-24 Production of grain oriented silicon steel sheet reduced in iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6110092A JPH07316657A (en) 1994-05-24 1994-05-24 Production of grain oriented silicon steel sheet reduced in iron loss

Publications (1)

Publication Number Publication Date
JPH07316657A true JPH07316657A (en) 1995-12-05

Family

ID=14526828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6110092A Pending JPH07316657A (en) 1994-05-24 1994-05-24 Production of grain oriented silicon steel sheet reduced in iron loss

Country Status (1)

Country Link
JP (1) JPH07316657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193921A (en) * 2014-03-17 2015-11-05 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet excellent in iron loss characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193921A (en) * 2014-03-17 2015-11-05 Jfeスチール株式会社 Method for manufacturing oriented electromagnetic steel sheet excellent in iron loss characteristics

Similar Documents

Publication Publication Date Title
CN111417737A (en) Grain-oriented electromagnetic steel sheet with low iron loss and method for producing same
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH07316657A (en) Production of grain oriented silicon steel sheet reduced in iron loss
JPH08176665A (en) Production of grain oriented silicon steel sheet with low iron loss
JP3338238B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JPH1030125A (en) Production of grain oriented silicon steel sheet
JP3338263B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JPH08157963A (en) Production of grain oriented silicon steel sheet
JP3338257B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH05117751A (en) Method for hot-rolling continuously cast slab for grain-oriented electrical steel sheet
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH09143560A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP4075088B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0689406B2 (en) Method for producing grain-oriented silicon steel sheet having good magnetic properties
JPH01139723A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021105