JPH07312217A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH07312217A
JPH07312217A JP6151665A JP15166594A JPH07312217A JP H07312217 A JPH07312217 A JP H07312217A JP 6151665 A JP6151665 A JP 6151665A JP 15166594 A JP15166594 A JP 15166594A JP H07312217 A JPH07312217 A JP H07312217A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6151665A
Other languages
Japanese (ja)
Other versions
JP3395370B2 (en
Inventor
Koichiro Hikuma
弘一郎 日隈
Kazuhiro Noda
和宏 野田
Koichi Tanaka
浩一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP15166594A priority Critical patent/JP3395370B2/en
Publication of JPH07312217A publication Critical patent/JPH07312217A/en
Application granted granted Critical
Publication of JP3395370B2 publication Critical patent/JP3395370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a lithium secondary battery superior in battery characteristics by using a positive electrode active material superior in profitability. CONSTITUTION:A lithium secondary battery is provided with a material for doping/dedoping lithium, a negative electrode 1 consisting of metal lithium or lithium alloy, a positive electrode 2, and nonaqueous electrolyte formed by melting electrolyte in nonaqueous solvent. Compound represented by a composition formula. Fe2(SO4)x(MoO4)3-xo is used as a positive electrode active material for constituting the positive electrode 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
する。より詳しくは、本発明は、特定の正極活物質を使
用することにより、優れた電池特性を安価に達成するリ
チウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery. More specifically, the present invention relates to a lithium secondary battery that achieves excellent battery characteristics at low cost by using a specific positive electrode active material.

【0002】[0002]

【従来の技術】近年のカメラ一体型VTR、電話、ラッ
プトップコンピューター等の電子機器の小型軽量化、ポ
ータブル化に伴い、軽量で高容量の二次電池が求められ
るようになっており、その開発が進められている。その
中でも、リチウム二次電池は、従来から使用されている
ニッケル−カドミウム二次電池や鉛二次電池と比較して
軽量で、高エネルギー密度が得られ、高電圧を発生で
き、無公害の電池を実現できるため、活発に研究が進め
られている。この場合、研究の一つの柱は、リチウム二
次電池に適した正極活物質の開発にある。
2. Description of the Related Art With the recent trend toward smaller and lighter electronic devices such as camera-integrated VTRs, telephones, laptop computers, etc., and portable devices, lightweight and high-capacity secondary batteries have been demanded and developed. Is being promoted. Among them, lithium secondary batteries are lighter in weight than conventional nickel-cadmium secondary batteries and lead secondary batteries, have high energy density, can generate high voltage, and are pollution-free batteries. Therefore, research is being actively pursued. In this case, one pillar of the research is to develop a positive electrode active material suitable for a lithium secondary battery.

【0003】従来、正極活物質として、例えば、チタ
ン、モリブデン、ニオビウム、バナジウム、ジルコニウ
ム等のカルコゲナイド(硫化物、セレン化物、テルル化
物)や、モリブデン、タングステン、バナジウム等の金
属酸化物もしくは鉄等のハロゲン化物などが提案されて
いる。
Conventionally, as positive electrode active materials, for example, chalcogenides (sulfides, selenides, tellurides) such as titanium, molybdenum, niobium, vanadium and zirconium, metal oxides such as molybdenum, tungsten and vanadium, or iron are used. Halides have been proposed.

【0004】しかし、これらの正極活物質を使用したリ
チウム二次電池は、電池特性や経済性が実用上十分でな
いために実用化されているものは少ない。例えば、硫化
モリブデンを使用したものは、放電電位が低く、過充電
に弱い等の欠点を有している。また、バナジウム酸化物
を使用したものは放電電位は高いが放電容量が比較的小
さく、充放電サイクルに伴う容量低下も大きい。
However, few lithium secondary batteries using these positive electrode active materials have been put into practical use because the battery characteristics and economical efficiency are not practically sufficient. For example, those using molybdenum sulfide have drawbacks such as low discharge potential and weakness against overcharge. In addition, the one using vanadium oxide has a high discharge potential, but the discharge capacity is relatively small, and the capacity decreases with charge / discharge cycles.

【0005】これに対して、近年、放電電圧が高く、サ
イクル特性に優れた正極活物質としてリチウム含有酸化
コバルト(LiCoO:式中、xは電池の充放電状
態によって異なり、通常0.05≦x≦1.10であ
る)が提案されており、これを用いたリチウム二次電池
が実用化されている。また、安価に得られる正極活物質
として、硫酸第二鉄(Fe(SO)が提案され
ている(ECS Spring Meeting,Ho
nolulu,Hawaii,May 16−21,1
993,Extended Abstract,vo
l.93−1,No.87,p130)。
On the other hand, in recent years, lithium-containing cobalt oxide (Li x CoO 2 : as a positive electrode active material having a high discharge voltage and excellent cycle characteristics): In the formula, x varies depending on the charging / discharging state of the battery. 05 ≦ x ≦ 1.10) has been proposed, and a lithium secondary battery using this has been put into practical use. Ferric sulfate (Fe 2 (SO 4 ) 3 ) has been proposed as a positive electrode active material that can be obtained at low cost (ECS Spring Meeting, Ho).
nolulu, Hawaii, May 16-21,1
993, Extended Abstract, vo
l. 93-1, No. 87, p130).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、リチウ
ム含有酸化コバルト(LiCoO)は、その原料と
なるコバルトが高価であり、さらに特定地域に偏在して
いるために経済的に安定供給を確保することが難しいと
いう問題を有している。また、硫酸第二鉄(Fe(S
)は、(NHFe(SO・6H
Oを焼成したり、硫酸第二鉄水和物(Fe(S
・nHO)を焼成したりすることにより得ら
れるが、前者の場合、焼成過程でNOやSOが発生
するため工業的には不利であるという問題があり、ま
た、後者の場合、結晶水が完全に除去できない等の問題
がある。
However, since cobalt as a raw material of lithium-containing cobalt oxide (Li x CoO 2 ) is expensive and the lithium-containing cobalt oxide is unevenly distributed in a specific area, a stable supply is secured economically. It is difficult to do. Further, ferric sulfate (Fe 2 (S
O 4) 3) is, (NH 4) 2 Fe 2 (SO 4) 2 · 6H
2 O is fired or ferric sulfate hydrate (Fe 2 (S
O 4 ) 3 · nH 2 O) is obtained by firing, but in the former case, there is a problem that NO x and SO x are generated in the firing process, which is industrially disadvantageous. In the latter case, there is a problem that the water of crystallization cannot be completely removed.

【0007】本発明は、このような従来技術の課題を解
決しようとするものであり電池特性及び経済性の両面に
優れたリチウム二次電池を提供することを目的とする。
The present invention is intended to solve the problems of the prior art, and an object of the present invention is to provide a lithium secondary battery excellent in both battery characteristics and economy.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために種々の検討を重ねた結果、正極活物
質として、Fe(SO(MoO3−xを使
用することが有効であることを見出し、本発明を完成さ
せるに至った。
As a result of various studies to achieve the above object, the present inventors have found that Fe 2 (SO 4 ) x (MoO 4 ) 3-x is used as a positive electrode active material. It has been found that the use of is effective, and the present invention has been completed.

【0009】即ち、本発明は、リチウムをドープ、脱ド
ープできる材料、金属リチウム又はリチウム合金からな
る負極と、正極と、非水溶媒に電解質が溶解されている
非水電解液とを備えるリチウム二次電池において、正極
が組成式Fe(SO(MoO3−xで表さ
れる正極活物質を含むことを特徴とするリチウム二次電
池を提供する。
That is, the present invention provides a lithium battery including a negative electrode made of a material capable of doping and dedoping lithium, metallic lithium or a lithium alloy, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. Provided is a secondary battery, wherein the positive electrode contains a positive electrode active material represented by a composition formula Fe 2 (SO 4 ) x (MoO 4 ) 3-x .

【0010】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0011】本発明のリチウム二次電池においては、上
述のように、正極を構成する正極活物質として、Fe
(SO(MoO3−xを使用することを特徴
としている。このように、硫酸第二鉄とモリブデン酸鉄
との複塩を正極活物質として使用することにより、後述
するように、明確なカットオフ電位、安定な作動電位及
び安定なサイクル特性などの電池特性並びに低コストの
両面に優れたリチウム二次電池を提供することができ
る。
In the lithium secondary battery of the present invention, as described above, Fe 2 is used as the positive electrode active material forming the positive electrode.
(SO 4 ) x (MoO 4 ) 3-x is used. Thus, by using the double salt of ferric sulfate and iron molybdate as the positive electrode active material, the battery characteristics such as a clear cut-off potential, a stable operating potential, and a stable cycle characteristic will be described later. In addition, it is possible to provide a lithium secondary battery that is excellent in both aspects of low cost.

【0012】本発明で使用する正極活物質の組成式中の
xに関し、xが小さすぎるとMoの含有率が上がり製造
コスト的に不利となり、xが大きすぎると放電容量が大
きく低下する傾向がある。従って、xの範囲は、好まし
くは0<x≦1.8、より好ましくは0<x≦1.5と
する。
Regarding x in the composition formula of the positive electrode active material used in the present invention, if x is too small, the Mo content increases, which is disadvantageous in manufacturing cost, and if x is too large, the discharge capacity tends to largely decrease. is there. Therefore, the range of x is preferably 0 <x ≦ 1.8, more preferably 0 <x ≦ 1.5.

【0013】本発明で正極活物質として使用するFe
(SO(MoO3−xは、公知の方法により
製造することができる。例えば、酸化第二鉄(Fe
)と酸化モリブデン(MoO)と硫酸第二鉄水和物
(Fe(SO・nHO)とを所定比で混合し
た後、酸素含有雰囲気下で焼成することにより好ましく
製造することができる。あるいは、硝酸第二鉄もしくは
塩化第二鉄の水溶液とパラモリブデン酸アンモニウムの
水溶液とを混合し、生成した沈殿物を濾取し、乾燥し、
酸素雰囲気下で焼成することによりFe(MoO
を調製し、これと硫酸第二鉄水和物(Fe(S
・nHO)とを所定比で混合し、酸素含有雰
囲気下で焼成することにより好ましく製造することがで
きる。これらの方法によれば、硫酸鉄系の材料を使用し
ているにもかかわらず、NOやSOなどの発生がな
く、また、結晶水が仮に残存したとしてもその影響を排
除することができる。従って、Fe(SO(M
oO3−xは、無公害で、簡便且つ低コストで得る
ことができる。
Fe 2 used as the positive electrode active material in the present invention
(SO 4) x (MoO 4 ) 3-x can be prepared by known methods. For example, ferric oxide (Fe 2 O
3 ), molybdenum oxide (MoO 3 ) and ferric sulfate hydrate (Fe 2 (SO 4 ) 3 .nH 2 O) are mixed at a predetermined ratio, and then preferably baked in an oxygen-containing atmosphere. can do. Alternatively, an aqueous solution of ferric nitrate or ferric chloride and an aqueous solution of ammonium paramolybdate are mixed, the resulting precipitate is collected by filtration, dried,
Fe 2 (MoO 4 ) by firing in an oxygen atmosphere
3 was prepared and ferric sulfate hydrate (Fe 2 (S
O 4 ) 3 · nH 2 O) is mixed at a predetermined ratio, and the mixture is baked in an oxygen-containing atmosphere. According to these methods, although an iron sulfate-based material is used, NO x and SO x are not generated, and even if crystallization water remains, its influence can be eliminated. it can. Therefore, Fe 2 (SO 4 ) x (M
oO 4 ) 3-x is pollution-free and can be obtained easily and at low cost.

【0014】なお、このようなFe(SO(M
oO3−xを使用して正極を構成するに際しては、
公知の導電剤や結着剤等を添加することができる。
Note that such Fe 2 (SO 4 ) x (M
When forming a positive electrode using oO 4 ) 3-x ,
Known conductive agents, binders, etc. can be added.

【0015】本発明において、負極は、リチウムをドー
プ、脱ドープできる材料、金属リチウム又はリチウム合
金を使用して構成する。このような負極を形成する材料
または負極活物質のうちリチウムをドープ、脱ドープで
きる材料としては、例えば、熱分解炭素類、コークス類
(ピッチコークス、ニードルコークス、石油コークス
等)、グラファイト類、ガラス状炭素類、有機高分子化
合物焼成体(フェノール樹脂、フラン樹脂等を適当な温
度で焼成し炭素化したもの)、炭素繊維、活性炭等の炭
素質材料、あるいはポリアセチレン、ポリピロール等の
ポリマー等を使用することができる。また、リチウム合
金としては、例えば、リチウム−アルミニウム合金等を
使用することができる。中でも、負極としてに金属リチ
ウムを使用した場合には、3V付近に平坦な作動電圧が
得られ、従来の1.5V系電池と互換性よく使用するこ
とが可能となるので好ましい。また、炭素質材料を使用
する場合には、予め炭素質材料中にリチウムをドープし
ておくことが好ましい。。
In the present invention, the negative electrode is composed of a material capable of doping or dedoping lithium, metallic lithium or a lithium alloy. Examples of the material forming the negative electrode or the material capable of being doped with lithium out of the negative electrode active material include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glass Carbonaceous materials, organic polymer compound fired products (phenolic resin, furan resin, etc. fired at an appropriate temperature to carbonize), carbonaceous materials such as carbon fiber and activated carbon, or polymers such as polyacetylene and polypyrrole can do. Moreover, as the lithium alloy, for example, a lithium-aluminum alloy or the like can be used. Above all, when metallic lithium is used as the negative electrode, a flat operating voltage is obtained in the vicinity of 3 V, and it is possible to use it with good compatibility with a conventional 1.5 V battery, which is preferable. When using a carbonaceous material, it is preferable to dope lithium into the carbonaceous material in advance. .

【0016】本発明において、非水電解液は従来の非水
系リチウム二次電池と同様のものを使用することができ
る。すなわち、非水電解液の非水溶媒としては、例えば
プロピレンカーボネート、エチレンカーボネート、ブチ
レンカーボネート、ビニレンカーボネート、γ−ブチロ
ラクトン、スルホラン、1,2−ジメトキシエタン、
1,2−ジエトキシエタン、2−メチルテトラヒドロフ
ラン、3−メチル−1,3−ジオキソラン、プロピオン
酸メチル、酪酸メチル、ジメチルカーボネート、ジエチ
ルカーボネート、ジプロピルカーボネート等を使用する
ことができる。特に、電圧に安定な点からプロピレンカ
ーボネート、エチレンカーボネート、ブチレンカーボネ
ート、ビニレンカーボネート等の環状カーボネート類、
又はジメチルカーボネート、ジエチルカーボネート、ジ
プロピルカーボネート等の鎖状カーボネート類を使用す
ることが好ましい。また、このような非水溶媒は、1種
または2種以上を組み合わせて使用することができる。
In the present invention, the same non-aqueous electrolyte as the conventional non-aqueous lithium secondary battery can be used. That is, as the non-aqueous solvent of the non-aqueous electrolytic solution, for example, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane,
1,2-diethoxyethane, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used. In particular, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, etc. from the viewpoint of stable voltage,
Alternatively, it is preferable to use chain carbonates such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate. Further, such non-aqueous solvent may be used alone or in combination of two or more kinds.

【0017】また、非水溶媒に溶解させる電解質として
は、例えば、LiClO、LiAsF、LiP
、LiBF、LiCFSO、LiN(CF
SO等を使用でき、このうち特にLiPFやL
iBFを使用することが好ましい。
The electrolyte to be dissolved in the non-aqueous solvent is, for example, LiClO 4 , LiAsF 6 or LiP.
F 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3
SO 2 ) 2 or the like can be used, among which LiPF 6 or L
It is preferred to use iBF 4 .

【0018】本発明の電池は、電池形状については特に
限定されることはない。円筒型、角型、コイン型、ボタ
ン型等の種々の形状にすることができる。
The shape of the battery of the present invention is not particularly limited. Various shapes such as a cylindrical shape, a square shape, a coin shape, and a button shape can be used.

【0019】[0019]

【作用】本発明のリチウム二次電池は、正極活物質とし
て組成式Fe(SO(MoO3−xで表さ
れる化合物を使用するが、この正極活物質は工業的に容
易に得られ、また、主たる構成元素が鉄であるため安価
に得られるので、優れた経済性を有する。
The lithium secondary battery of the present invention uses a compound represented by the composition formula Fe 2 (SO 4 ) x (MoO 4 ) 3-x as the positive electrode active material. It is easily obtained, and since the main constituent element is iron, it can be obtained at a low cost, so that it has excellent economic efficiency.

【0020】さらに、この正極活物質を使用したリチウ
ム二次電池は、活物質内でのリチウムイオンの拡散速度
が速いため、電池特性も向上したものとなる。特に、充
電に際して定電流充電すると、まず電圧が3V付近で一
定となり、その後急速に電圧が上昇するが、この時点で
ほぼ100%の充電が完了している。したがって、10
0%の充電をするために定電流充電をするだけで足り、
従来のように定電流充電後さらに定電圧充電をすること
が不要となる。よって、簡略化した充電器を使用し、急
速充電をすることが可能となる。
Further, the lithium secondary battery using this positive electrode active material has improved battery characteristics because the diffusion rate of lithium ions in the active material is high. In particular, when constant-current charging is performed during charging, the voltage first becomes constant at around 3 V, and then the voltage rises rapidly, but at this time, almost 100% charging is completed. Therefore, 10
Only constant current charging is required to charge 0%,
It becomes unnecessary to carry out constant voltage charging after constant current charging as in the conventional case. Therefore, it becomes possible to perform quick charging by using a simplified charger.

【0021】また、本発明のリチウム二次電池において
負極に金属リチウムを使用すると、3V付近に平坦な作
動電圧が得られるので、従来の1.5V系電池と互換性
よく使用することが可能となる。
Further, in the lithium secondary battery of the present invention, when metallic lithium is used for the negative electrode, a flat operating voltage can be obtained in the vicinity of 3V, so that it can be used with good compatibility with the conventional 1.5V type battery. Become.

【0022】[0022]

【実施例】以下、本発明を実施例により具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0023】実施例1〜5 (i) 正極活物質の合成 酸化鉄(III) と酸化モリブデンと硫酸第二鉄水和物(F
(SO・nHO)とを、Fe:S:Mo=
2:0.3:2.7となるように混合し、酸素雰囲気中
700℃で7時間加熱処理して正極活物質を調製した。
この正極活物質をサンプル1とした。同様に、酸化鉄(I
II) と酸化モリブデンと硫酸第二鉄水和物とを、表1に
示すFe:S:Moの比となるようにする以外は同様に
して正極活物質サンプル2〜5を調製した。
Examples 1 to 5 (i) Synthesis of Positive Electrode Active Material Iron (III) oxide, molybdenum oxide, and ferric sulfate hydrate (F
e 2 (SO 4 ) 3 · nH 2 O) and Fe: S: Mo =
The mixture was mixed so as to be 2: 0.3: 2.7 and heat-treated in an oxygen atmosphere at 700 ° C. for 7 hours to prepare a positive electrode active material.
This positive electrode active material was used as Sample 1. Similarly, iron oxide (I
Positive electrode active material samples 2 to 5 were prepared in the same manner except that II), molybdenum oxide, and ferric sulfate hydrate were adjusted to have the ratio of Fe: S: Mo shown in Table 1.

【0024】[0024]

【表1】 (ii)正極の作製 上記正極活物質サンプル1〜5のそれぞれを80重量
%、導電剤としてカーボンブラックを15重量%、結着
剤としてフッ素樹脂粉末5重量%を加え、乳鉢で十分混
合し、その混合物を直径16mmのSUS網上にディス
ク状に加圧成形し、正極活物質サンプル1〜5に対応し
た正極板1〜5を得た。 (iii) リチウム二次電池の作製 図1のコイン型電池(外径20.0mm、厚さ2.5m
m)を作製した。この電池は、負極1と、上述の正極板
1〜5からなる正極2とをセパレータ3を介してそれぞ
れ負極電池缶4及び正極電池缶5に収納し、封口ガスケ
ット6をかしめることにより作製したものである。な
お、正極板1を使用したものを実施例1の電池、正極板
2を使用したものを実施例2の電池、正極板3を使用し
たものを実施例3の電池、正極板4を使用したものを実
施例4の電池、正極板5を使用したものを実施例5の電
池とした。
[Table 1] (ii) Preparation of Positive Electrode 80% by weight of each of the above-mentioned positive electrode active material samples 1 to 5, 15% by weight of carbon black as a conductive agent, and 5% by weight of fluororesin powder as a binder were added and sufficiently mixed in a mortar, The mixture was pressure-molded on a SUS net having a diameter of 16 mm in a disk shape to obtain positive electrode plates 1 to 5 corresponding to positive electrode active material samples 1 to 5. (iii) Preparation of lithium secondary battery Coin-type battery of FIG. 1 (outer diameter 20.0 mm, thickness 2.5 m
m) was prepared. This battery was manufactured by accommodating the negative electrode 1 and the positive electrode 2 composed of the positive electrode plates 1 to 5 in the negative electrode battery can 4 and the positive electrode battery can 5 via the separator 3 and caulking the sealing gasket 6. It is a thing. The positive electrode plate 1 was used for the battery of Example 1, the positive electrode plate 2 was used for the battery of Example 2, the positive electrode plate 3 was used for the battery of Example 3, and the positive electrode plate 4 was used. The battery was used as the battery of Example 4 and the battery using the positive electrode plate 5 was used as the battery of Example 5.

【0025】ここで、負極1としては、リチウム圧延板
を打ち抜いたものを使用した。また、セパレータ3とし
ては、ポリプロピレン不織布を用意し、一方、電解液と
して、プロピレンカーボネート(PC)とジメチルカー
ボネート(DMC)との混合溶媒(PC:DMC=1:
1(体積比))に六フッ素リン酸リチウム(LiP
)を1mol/lの割合で溶解させたものを調製
し、これをポリプロピレン不織布からなるセパレータ3
に含浸させて使用した。
Here, as the negative electrode 1, a punched lithium rolled plate was used. A polypropylene nonwoven fabric is prepared as the separator 3, while a mixed solvent of propylene carbonate (PC) and dimethyl carbonate (DMC) (PC: DMC = 1: 1) is used as an electrolytic solution.
1 (volume ratio) to lithium hexafluorophosphate (LiP
F 6 ) was dissolved at a ratio of 1 mol / l to prepare a separator 3 which was made of polypropylene nonwoven fabric.
It was used by being impregnated with.

【0026】(電池特性試験)得られた電池の放電特性
を、定電流(0.5mA/cm)で充放電させるとい
う充放電サイクルを繰り返すことにより測定した。ま
ず、これらの実施例の電池の中で中間的な組成の正極活
物質を使用した実施例3の電池の5サイクル目と20サ
イクル目の放電特性を図2に示す。この図から、実施例
3の電池は3V付近に平坦な作動電圧を有しており、安
定した放電特性を有することがわかる。また、5サイク
ル目と20サイクル目の放電特性を比較すると、充放電
サイクルの繰り返しによる劣化も小さいことがわかる。
(Battery Characteristic Test) The discharge characteristic of the obtained battery was measured by repeating a charge / discharge cycle of charging and discharging at a constant current (0.5 mA / cm 2 ). First, FIG. 2 shows the discharge characteristics at the 5th cycle and the 20th cycle of the battery of Example 3 using a positive electrode active material having an intermediate composition among the batteries of these Examples. From this figure, it is understood that the battery of Example 3 has a flat operating voltage near 3 V and has stable discharge characteristics. Further, comparing the discharge characteristics at the 5th cycle and the 20th cycle, it can be seen that the deterioration due to repeated charge / discharge cycles is small.

【0027】次に、実施例1〜5までの電池の10サイ
クル目の放電容量を比較した。その結果を図3に示す。
この図から、組成式Fe(SO(MoO
3−xにおけるxの値が実用的には1.8以下、好まし
くは1.5以下であることがわかる。
Next, the discharge capacities at the 10th cycle of the batteries of Examples 1 to 5 were compared. The result is shown in FIG.
From this figure, the composition formula Fe 2 (SO 4 ) x (MoO 4 )
It can be seen that the value of x in 3-x is practically 1.8 or less, preferably 1.5 or less.

【0028】実施例6〜10 (i) 正極活物質の合成及び正極板の作製 硝酸鉄(III) 水溶液とパラモリブデン酸アンモニウム水
溶液とを、Fe:Mo=2:3となるように混合し、黄
色の折出物を得た。この折出物を分別し、純水で洗浄
し、大気中60℃で乾燥させ、さらに酸素雰囲気中70
0℃で6時間加熱処理してFe(MoOを得
た。これと硫酸第二鉄水和物(Fe(SO・n
O)とをS:Mo=0.3:2.7となるように混
合し、酸素雰囲気中700℃で7時間加熱処理して正極
活物質を調製した。この正極活物質をサンプル6とし
た。同様に、Fe(MoOと硫酸第二鉄水和物
とを、表2に示すS:Moの比となるようにする以外は
同様にして正極活物質サンプル7〜10を調製した。そ
して、正極活物質として、正極活物質サンプル1に代え
て上記正極活物質サンプル6〜10を使用する以外は実
施例1と同様にして正極板6〜10を作製した。
Examples 6 to 10 (i) Synthesis of positive electrode active material and production of positive electrode plate An iron (III) nitrate aqueous solution and an ammonium paramolybdate aqueous solution were mixed so that Fe: Mo = 2: 3, A yellow extrudate was obtained. The exudates are separated, washed with pure water, dried in the atmosphere at 60 ° C., and further dried in an oxygen atmosphere at 70 ° C.
0 6 hours of heat treatment to at ℃ obtain a Fe 2 (MoO 4) 3. This and ferric sulfate hydrate (Fe 2 (SO 4 ) 3 · n
H 2 O) was mixed so that S: Mo = 0.3: 2.7 and heat-treated at 700 ° C. for 7 hours in an oxygen atmosphere to prepare a positive electrode active material. This positive electrode active material was used as sample 6. Similarly, positive electrode active material samples 7 to 10 were prepared in the same manner except that Fe 2 (MoO 4 ) 3 and ferric sulfate hydrate had the S: Mo ratio shown in Table 2. . Then, positive electrode plates 6 to 10 were produced in the same manner as in Example 1 except that the above positive electrode active material samples 6 to 10 were used as the positive electrode active material in place of the positive electrode active material sample 1.

【0029】[0029]

【表2】 (ii)リチウム二次電池の作製 上記(i) で得た正極板6〜10を使用し、実施例1と同
様にして実施例6〜10のリチウム二次電池を作製し
た。
[Table 2] (ii) Production of Lithium Secondary Battery Using the positive electrode plates 6 to 10 obtained in (i) above, lithium secondary batteries of Examples 6 to 10 were produced in the same manner as in Example 1.

【0030】(電池特性試験)得られた電池の放電特性
を実施例1〜5と同様にして測定した結果、実施例1〜
5と同様の結果が得られた。
(Battery characteristics test) The discharge characteristics of the obtained batteries were measured in the same manner as in Examples 1 to 5, and
Results similar to 5 were obtained.

【0031】実施例11〜15 (i) 正極活物質の合成及び正極板の作製 実施例1〜5の正極活物質サンプル1〜5と同様の正極
活物質サンプル11〜15を調製し、更に実施例1に従
って正極板11〜15を作製した。 (ii)リチウム二次電池の作製 電解液として実施例1と同様のものを調製した。
Examples 11 to 15 (i) Synthesis of Positive Electrode Active Material and Production of Positive Electrode Plate Positive electrode active material samples 11 to 15 similar to the positive electrode active material samples 1 to 5 of Examples 1 to 5 were prepared and further carried out. Positive electrode plates 11 to 15 were manufactured according to Example 1. (ii) Preparation of Lithium Secondary Battery The same electrolytic solution as in Example 1 was prepared.

【0032】また、負極を作製するに際しては、まず、
カーボン(フルフリルアルコールを焼成して得られた難
黒鉛化カーボン)とフッ素樹脂粉末とを重量比で9:1
に混合し、これを正極の作製の場合と同様に、直径16
mmのSUS網上にディスク状に加圧成形し、負極板と
した。そして、これをリチウム二次電池に組む前に、予
め、電解液中でリチウム金属電極と対向させて通電し、
負極板の中にリチウムイオンを挿入した。こうして負極
板を上述の正極板と組み合わせてリチウム二次電池を構
成した場合に、この負極板でリチウムイオンのドープ、
脱ドープが起こるようにした。
In producing the negative electrode, first,
Carbon (non-graphitizable carbon obtained by firing furfuryl alcohol) and fluororesin powder in a weight ratio of 9: 1
And mixed with the same as in the case of producing the positive electrode,
It was pressure-molded into a disk shape on a SUS mesh of mm to obtain a negative electrode plate. Then, before assembling this into a lithium secondary battery, it is energized by facing the lithium metal electrode in the electrolytic solution in advance,
Lithium ions were inserted into the negative electrode plate. In this way, when a lithium secondary battery is constructed by combining the negative electrode plate with the above positive electrode plate, the negative electrode plate is doped with lithium ions,
Allowed dedoping.

【0033】その後、この負極板と上述の正極板11〜
15と電解液とを使用して実施例1と同様に,外径2
0.0mm、厚さ2.5mmの実施例11〜15のコイ
ン型電池を作製した。
Thereafter, the negative electrode plate and the positive electrode plates 11 to 11 described above are used.
15 and the electrolytic solution, the outer diameter 2
The coin type batteries of Examples 11 to 15 having a thickness of 0.0 mm and a thickness of 2.5 mm were produced.

【0034】(電池特性試験)得られた電池の放電特性
を、実施例1〜5と同様に測定した。その結果、実施例
1〜5と同様のサイクル特性を示すことがわかった。た
だし、図4に示すように、これらの実施例11〜15の
電池の中で中間的な組成の正極活物質を使用した実施例
13の電池の5サイクル目と20サイクル目の放電特性
は、実施例3の電池の放電特性(図2)に比べ、作動電
圧が時間の経過に従って徐々に低下していた。これは、
負極として比較的結晶化度の低い炭素質材料を使用した
ためと考えられる。グラファイトなどの結晶性の高い炭
素質材料を負極として使用することにより、安定な放電
特性を示すことが期待できる。
(Battery Characteristic Test) The discharge characteristics of the obtained battery were measured in the same manner as in Examples 1-5. As a result, it was found that the same cycle characteristics as those of Examples 1 to 5 were exhibited. However, as shown in FIG. 4, the discharge characteristics at the 5th cycle and the 20th cycle of the battery of Example 13 using the positive electrode active material having an intermediate composition among the batteries of Examples 11 to 15 were as follows. Compared to the discharge characteristics (FIG. 2) of the battery of Example 3, the operating voltage gradually decreased with the passage of time. this is,
This is probably because a carbonaceous material having a relatively low crystallinity was used as the negative electrode. By using a highly crystalline carbonaceous material such as graphite as the negative electrode, stable discharge characteristics can be expected.

【0035】実施例16〜20 (i) 正極活物質の合成及び正極板の作製 実施例6〜10の正極活物質サンプル6〜10と同様の
正極活物質サンプル116〜20を調製し、更に実施例
1に従って正極板16〜20を作製した。 (ii)リチウム二次電池の作製 正極板16〜20を使用する以外は実施例11〜15と
同様にして実施例16〜20のリチウム二次電池を作製
した。
Examples 16 to 20 (i) Synthesis of Positive Electrode Active Material and Production of Positive Electrode Plate Positive electrode active material samples 116 to 20 similar to the positive electrode active material samples 6 to 10 of Examples 6 to 10 were prepared and further carried out. Positive electrode plates 16 to 20 were manufactured according to Example 1. (ii) Production of Lithium Secondary Battery Lithium secondary batteries of Examples 16 to 20 were produced in the same manner as in Examples 11 to 15 except that the positive electrode plates 16 to 20 were used.

【0036】(電池特性試験)得られた電池の放電特性
を実施例1〜5と同様にして測定した結果、実施例11
〜15と同様の結果が得られた。
(Battery Characteristic Test) The discharge characteristics of the obtained battery were measured in the same manner as in Examples 1 to 5, and the result was Example 11.
Results similar to ~ 15 were obtained.

【0037】[0037]

【発明の効果】本発明によれば、電池特性及び経済性の
両面に優れたリチウム二次電池を得ることが可能とな
る。
According to the present invention, it is possible to obtain a lithium secondary battery excellent in both battery characteristics and economy.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製したリチウム二次電池の断面図で
ある。
FIG. 1 is a cross-sectional view of a lithium secondary battery manufactured in an example.

【図2】実施例3のリチウム二次電池の放電特性図であ
る。
FIG. 2 is a discharge characteristic diagram of the lithium secondary battery of Example 3.

【図3】実施例1〜5のリチウム二次電池の放電容量特
性図である。
FIG. 3 is a discharge capacity characteristic diagram of the lithium secondary batteries of Examples 1 to 5.

【図4】実施例13のリチウム二次電池の放電特性図で
ある。
FIG. 4 is a discharge characteristic diagram of the lithium secondary battery of Example 13.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 3 セパレータ 4 負極缶 5 正極缶 6 封口ガスケット 1 Negative electrode 2 Positive electrode 3 Separator 4 Negative electrode can 5 Positive electrode can 6 Sealing gasket

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムをドープ、脱ドープできる材
料、金属リチウム又はリチウム合金からなる負極と、正
極と、非水溶媒に電解質が溶解されている非水電解液と
を備えるリチウム二次電池において、正極が組成式 【化1】Fe(SO(MoO3−x で表される正極活物質を含むことを特徴とするリチウム
二次電池。
1. A lithium secondary battery comprising a negative electrode made of a material capable of doping and dedoping lithium, metallic lithium or a lithium alloy, a positive electrode, and a non-aqueous electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, A lithium secondary battery, wherein the positive electrode contains a positive electrode active material represented by the composition formula: Fe 2 (SO 4 ) x (MoO 4 ) 3-x .
【請求項2】 組成式中のxが、0<x≦1.8である
請求項1記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein x in the composition formula is 0 <x ≦ 1.8.
【請求項3】 負極が金属リチウムからなる請求項1記
載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the negative electrode is made of metallic lithium.
【請求項4】 負極がリチウムをドープ、脱ドープでき
る炭素質材料からなる請求項1記載のリチウム二次電
池。
4. The lithium secondary battery according to claim 1, wherein the negative electrode is made of a carbonaceous material capable of being doped and dedoped with lithium.
JP15166594A 1994-03-22 1994-06-08 Lithium secondary battery Expired - Fee Related JP3395370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15166594A JP3395370B2 (en) 1994-03-22 1994-06-08 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-76607 1994-03-22
JP7660794 1994-03-22
JP15166594A JP3395370B2 (en) 1994-03-22 1994-06-08 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07312217A true JPH07312217A (en) 1995-11-28
JP3395370B2 JP3395370B2 (en) 2003-04-14

Family

ID=26417745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15166594A Expired - Fee Related JP3395370B2 (en) 1994-03-22 1994-06-08 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3395370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695893A (en) * 1995-05-18 1997-12-09 Nippon Telegraph And Telephone Corporation Material for use in the positive electrodes of lithium batteries, its manufacture, and lithium batteries incorporating this material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695893A (en) * 1995-05-18 1997-12-09 Nippon Telegraph And Telephone Corporation Material for use in the positive electrodes of lithium batteries, its manufacture, and lithium batteries incorporating this material

Also Published As

Publication number Publication date
JP3395370B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP3319258B2 (en) Method for producing positive electrode active material for lithium secondary battery and method for producing lithium secondary battery
JP6462250B2 (en) Positive electrode active material for lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery including the same
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
JP3624578B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
KR20140031018A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JPH07211311A (en) Nonaqueous-electrolyte secondary battery
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
KR20000071371A (en) Non-Aqueous Electrolyte Battery
JP4103487B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
KR101754612B1 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP2003272623A (en) Positive electrode active material for lithium secondary battery and its manufacturing method as well as lithium secondary battery using it
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same
JP3475480B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3395370B2 (en) Lithium secondary battery
JPH087883A (en) Nonaqueous electrolytic secondary battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP2004087278A (en) Manufacturing method of lithium secondary battery and positive electrode active material used for it
JP4040271B2 (en) Lithium secondary battery and method for producing positive electrode active material used therefor
KR102194076B1 (en) Positive active material for rechargeable lithium battery, method of prepareing the same and rechargeable lithium battery including the same
KR102608041B1 (en) Lithium transition metal oxide, positive electrode additive for lithium secondary battery, lithium secondary battery comprising the same
JPH07176324A (en) Lithium secondary battery
JP2002246024A (en) Lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees