JPH07310742A - Cylindrical roller bearing and spindle device using the bearing - Google Patents

Cylindrical roller bearing and spindle device using the bearing

Info

Publication number
JPH07310742A
JPH07310742A JP10363094A JP10363094A JPH07310742A JP H07310742 A JPH07310742 A JP H07310742A JP 10363094 A JP10363094 A JP 10363094A JP 10363094 A JP10363094 A JP 10363094A JP H07310742 A JPH07310742 A JP H07310742A
Authority
JP
Japan
Prior art keywords
cylindrical roller
bearing
outer ring
spindle
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10363094A
Other languages
Japanese (ja)
Inventor
Masatsugu Mori
正継 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP10363094A priority Critical patent/JPH07310742A/en
Publication of JPH07310742A publication Critical patent/JPH07310742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To eliminate the occurrence of an excessive load due to the internal gap decrease of a bearing generated during operation, and provide high main spindle rigidity over a range from low speed to high speed rotation, regarding a cylindrical roller bearing used in the main spindle of a machine tool. CONSTITUTION:Raceways 17 and 18 having a different diameter are formed on the inner surface of the outer ring 7 of a cylindrical roller bearing 5, and a sleeve 16 with the built-in outer ring 7 is moved in an axial direction under the pressure of a fluid introduced into a pressure chamber 20. The outer ring 7 is moved, depending on a change in the speed of a main spindle 3, thereby controlling a bearing gap during operation and preventing an excessive load from acting on the bearing 5 during high speed operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、工作機械の主軸等の
支持に用いられる円筒ころ軸受と、その円筒ころ軸受を
用いたスピンドル装置に関し、特に、軸受を組込んだ状
態で軸受の内部すきまを任意に調整可能にした構造に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical roller bearing used for supporting a main shaft of a machine tool, etc., and a spindle device using the cylindrical roller bearing, and more particularly to an internal clearance of the bearing when the bearing is assembled. The present invention relates to a structure in which can be arbitrarily adjusted.

【0002】[0002]

【従来技術及びその課題】円筒ころ軸受で支持した主軸
を高速運転すると、円筒ころ軸受の内部では、内外輪の
温度差(内輪の方が外輪より高温度になる)と遠心力に
よる内輪の膨張等から、軸受すきまが減少し、転動体荷
重が増加する現象が生じる。
2. Description of the Related Art When a spindle supported by a cylindrical roller bearing is operated at high speed, the temperature difference between the inner and outer rings (the inner ring has a higher temperature than the outer ring) and the inner ring expands due to centrifugal force when the spindle is supported. As a result, the bearing clearance decreases and the rolling element load increases.

【0003】このため、軸受組込み後の初期軸受すきま
が小さい場合、主軸剛性は高くなるが、高速運転が難し
くなり、逆に、初期軸受すきまを大きくすると、高速運
転が可能となるが、低速域での剛性が低下する不具合が
ある。
Therefore, when the initial bearing clearance after the bearing is assembled is small, the spindle rigidity is high, but high-speed operation becomes difficult, and conversely, when the initial bearing clearance is large, high-speed operation is possible, but in the low speed range. There is a problem that the rigidity at

【0004】したがって、従来のスピンドルでは、低速
高剛性と高速運転との両機能を単一のスピンドルで満足
することは難しく、一般に主軸剛性が必要な場合は、軸
受組込み後の内部すきま(ラジアル方向すきま)をゼロ
又はマイナスの値に調整して使用し、高速仕様の場合に
は、内部すきまを大きくしたスピンドルを使用し、使用
状態条件に応じて異なる仕様のスピンドルを使い分けす
る方法がとられていた。
Therefore, it is difficult for a conventional spindle to satisfy both functions of low speed and high rigidity and high speed operation with a single spindle. In general, when main shaft rigidity is required, the internal clearance (radial direction) after the bearing is assembled. (Clearance) is adjusted to zero or a negative value, and in the case of high-speed specifications, a spindle with a large internal clearance is used, and spindles with different specifications are used according to the operating conditions. It was

【0005】しかしながら、最近では、1つの工作機械
で加工される材料の種類や加工内容が多様化し、それに
応じて加工に適した加工条件も広範囲なものに拡大して
いるため、低速回転から高速回転に至るまでの広い範囲
で高い主軸剛性を備えたスピンドルの出現が要望されて
いる。
However, recently, since the types of materials to be machined by one machine tool and the contents to be machined have been diversified, and the machining conditions suitable for machining have been expanded to a wide range accordingly, so that low speed rotation to high speed The advent of spindles with high spindle rigidity in a wide range up to rotation is desired.

【0006】そこで、この発明は、上記の課題を解決
し、軸受組込み後の状態において軸受の内部すきまを任
意に調節でき、主軸剛性を変化させることができる円筒
ころ軸受を提供することを目的としている。
Therefore, an object of the present invention is to solve the above problems and to provide a cylindrical roller bearing in which the internal clearance of the bearing can be arbitrarily adjusted and the main shaft rigidity can be changed after the bearing is assembled. There is.

【0007】また、この発明の第2の目的は、上記の円
筒ころ軸受を用いて、主軸の回転数等に応じて主軸剛性
を最適に制御することができるスピンドル装置を提供す
ることにある。
A second object of the present invention is to provide a spindle device which uses the above cylindrical roller bearing and can optimally control the rigidity of the spindle according to the rotational speed of the spindle.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決するた
め、この発明の円筒ころ軸受は、外輪の内径面の径寸法
を軸方向に変化させ、その外輪を、内輪に保持された円
筒ころに対して軸方向に移動可能にしたのである。
In order to solve the above-mentioned problems, the cylindrical roller bearing of the present invention is configured such that the diameter dimension of the inner diameter surface of the outer ring is changed in the axial direction and the outer ring is held by the inner ring. It is possible to move in the axial direction.

【0009】また、この発明のスピンドル装置は、上記
構造の円筒ころ軸受の外輪を、スピンドル外筒の内側に
軸方向に移動可能に取付け、円筒ころ軸受の内輪を、ス
ピンドル外筒の内部に挿入した主軸に固定し、スピンド
ル外筒に、上記外輪を任意のタイミングで軸方向に移動
させる駆動手段を連結したのである。
Further, in the spindle device of the present invention, the outer ring of the cylindrical roller bearing having the above structure is attached to the inner side of the spindle outer cylinder so as to be movable in the axial direction, and the inner ring of the cylindrical roller bearing is inserted inside the spindle outer tube. It is fixed to the main shaft, and a drive means for moving the outer ring in the axial direction at an arbitrary timing is connected to the spindle outer cylinder.

【0010】なお、上記のスピンドル装置において、円
筒ころ軸受の外輪を、スピンドル外筒の内側を軸方向に
移動するスリーブに保持し、このスリーブに、外輪の軸
方向両側から軸受内部に潤滑剤を供給する複数の潤滑剤
通路を設け、スピンドル外筒には、外輪が軸方向に移動
した時にその移動方向側の潤滑剤通路と交互に連通する
潤滑剤の導入路を設けるようにしてもよい。
In the above spindle device, the outer ring of the cylindrical roller bearing is held by a sleeve that moves axially inside the outer cylinder of the spindle, and a lubricant is applied to the sleeve from both axial sides of the outer ring. A plurality of lubricant passages to be supplied may be provided, and the spindle outer cylinder may be provided with a lubricant introduction passage that alternately communicates with the lubricant passage on the moving direction side when the outer ring moves in the axial direction.

【0011】[0011]

【作用】上記の円筒ころ軸受においては、円筒ころと内
輪に対して外輪を軸方向に相対移動させると、円筒ころ
に向き合う外輪の内径面の径寸法が変化するため、軸受
の内部すきまの大きさも変化する。
In the above cylindrical roller bearing, when the outer ring is relatively moved relative to the cylindrical roller and the inner ring in the axial direction, the diameter of the inner diameter surface of the outer ring facing the cylindrical roller changes, so that the internal clearance of the bearing becomes large. Also changes.

【0012】また、上記スピンドル装置では、駆動手段
により円筒ころ軸受の外輪を移動させると、軸受すきま
が変化し、それに応じて軸受による主軸の支持剛性も変
化する。このため、主軸の回転数の変化に応じて、低速
回転時の軸受すきまを小さく、高速回転時の軸受すきま
を大きく調整することにより、広い回転の範囲において
最適な主軸剛性を得ることができる。
Further, in the above spindle device, when the outer ring of the cylindrical roller bearing is moved by the driving means, the bearing clearance changes, and the supporting rigidity of the main shaft by the bearing also changes accordingly. Therefore, by adjusting the bearing clearance during low-speed rotation and increasing the bearing clearance during high-speed rotation in accordance with changes in the rotational speed of the main spindle, optimum spindle rigidity can be obtained over a wide range of rotation.

【0013】[0013]

【実施例】以下、添付図面に基づいて、この発明の実施
例を説明する。図1において、1はスピンドル外筒、2
はそのスピンドル外筒1の蓋部材であり、スピンドル外
筒1の内部孔1aに主軸3が挿通し、その主軸3の後端
部が、背面組合せの状態で並列配置した2個のアンギュ
ラ玉軸受4、4により支持されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, 1 is a spindle outer cylinder, 2
Is a cover member of the spindle outer cylinder 1, and the main shaft 3 is inserted into the inner hole 1a of the spindle outer cylinder 1, and the rear end portion of the main shaft 3 has two angular ball bearings arranged in parallel in a rear face combined state. It is supported by four and four.

【0014】また、主軸3の前端部(ワーク取付け側)
には、この発明に係る円筒ころ軸受5が組込まれてい
る。この円筒ころ軸受5は、内輪6と、外輪7と、その
内外輪6、7間に組込まれる複数の円筒ころ8から成
り、内輪6が主軸3の外径面に固定されている。
The front end of the spindle 3 (work mounting side)
The cylindrical roller bearing 5 according to the present invention is incorporated in. The cylindrical roller bearing 5 is composed of an inner ring 6, an outer ring 7, and a plurality of cylindrical rollers 8 incorporated between the inner and outer rings 6, 7, and the inner ring 6 is fixed to the outer diameter surface of the main shaft 3.

【0015】この内輪6の両側には、図3に示すよう
に、位置決め用間座9と固定用間座10が組込まれ、主
軸3端部のねじ部11にねじ込んだ固定ナット12によ
り固定用間座10を軸方向に締め込むことにより、その
両間座9、10の間で内輪6が位置決め固定されてい
る。
As shown in FIG. 3, a positioning spacer 9 and a fixing spacer 10 are incorporated on both sides of the inner ring 6, and are fixed by a fixing nut 12 screwed into a screw portion 11 at the end of the main shaft 3. By tightening the spacer 10 in the axial direction, the inner ring 6 is positioned and fixed between the spacers 9 and 10.

【0016】また、内輪6の外径面には、円筒ころ8が
転動する軌道溝13が形成され、この軌道溝13の両側
のつば部14、14が円筒ころ8の軸方向に動きを規制
し、一定の位置で円筒ころ8が回転するように保持して
いる。
A raceway groove 13 on which the cylindrical roller 8 rolls is formed on the outer diameter surface of the inner ring 6, and the flange portions 14 and 14 on both sides of the raceway groove 13 move in the axial direction of the cylindrical roller 8. It is regulated and held so that the cylindrical roller 8 rotates at a fixed position.

【0017】一方、円筒ころ軸受5の外輪7は、スピン
ドル外筒1と蓋部材2の内部の凹所15に組込まれたス
リーブ16に固定されており、スリーブ16と外輪7が
一体で凹所15の内部を軸方向に移動可能になってい
る。
On the other hand, the outer ring 7 of the cylindrical roller bearing 5 is fixed to a sleeve 16 incorporated in a recess 15 inside the spindle outer cylinder 1 and the lid member 2, so that the sleeve 16 and the outer ring 7 are integrally recessed. The inside of 15 can be moved in the axial direction.

【0018】この外輪7の内径面には、径寸法の異なる
2つの軌道面17、18が軸方向に並列して形成され、
その両軌道面17、18の間に、その双方の間で円筒こ
ろ8を滑らかに摺動させる傾斜面19が形成されてい
る。
On the inner diameter surface of the outer ring 7, two raceway surfaces 17, 18 having different diameters are formed in parallel in the axial direction.
An inclined surface 19 that allows the cylindrical roller 8 to slide smoothly between the two raceway surfaces 17 and 18 is formed between the two raceway surfaces 17 and 18.

【0019】ここで、上記軌道面17、18のうち、小
径側の軌道面17の径寸法は、内輪6の軌道溝13との
間で円筒ころ8に対する内部すきまがゼロ又はわずかに
マイナスとなるような大きさで形成され、大径側の軌道
面18の径寸法は、高速回転時に内輪6が膨張しても円
筒ころ8と軌道面18の間で適切な軸受すきまが生じる
ような大きさで形成されており、この両軌道面17、1
8の寸法とも、外輪7が軸方向に移動した時にその内側
へ円筒ころ8がスムーズに入り込むような大きさに設定
されている。
Here, of the raceway surfaces 17 and 18, the diameter dimension of the raceway surface 17 on the smaller diameter side is such that the internal clearance between the inner race 6 and the raceway groove 13 with respect to the cylindrical roller 8 is zero or slightly negative. The diameter of the raceway surface 18 on the large diameter side is such a size that an appropriate bearing clearance is generated between the cylindrical roller 8 and the raceway surface 18 even if the inner ring 6 expands at high speed rotation. Are formed on both raceway surfaces 17, 1
The size of 8 is set so that the cylindrical roller 8 smoothly enters the outer ring 7 when the outer ring 7 moves in the axial direction.

【0020】また、両軌道面17、18の軸方向の長さ
は、円筒ころ8の軸方向長さよりも若干大きく形成さ
れ、外輪7が軸方向のストローク限界まで移動した時、
円筒ろ8の表面全体が各軌道面17、18に当接するよ
うになっている。
Further, the axial lengths of both raceway surfaces 17 and 18 are formed to be slightly larger than the axial length of the cylindrical roller 8, and when the outer ring 7 moves to the axial stroke limit,
The entire surface of the cylindrical filter 8 comes into contact with the respective raceway surfaces 17, 18.

【0021】上記スリーブ16の外径面とスピンドル外
筒1の内径面との間には、圧力室20が形成され、その
圧力室20に、スリーブ16から環状に突出したフラン
ジ21が軸方向に摺動可能に嵌まり込んでいる。
A pressure chamber 20 is formed between the outer diameter surface of the sleeve 16 and the inner diameter surface of the spindle outer cylinder 1, and a flange 21 annularly protruding from the sleeve 16 is axially formed in the pressure chamber 20. It is slidably fitted.

【0022】また、上記圧力室20の両側面には、軸方
向に向き合う流体供給孔22、23が形成され、その各
供給孔22、23に連なる流体通路24、25が、スピ
ンドル外筒1と蓋部材2の内部に形成されている。さら
に、上記流体通路24、25には、図1に示すように、
外輪を移動させる駆動手段としての流体供給装置26が
接続されている。この流体供給装置26には、圧力油又
は圧力空気などを発生する圧力源27と、回路中の流体
の流れを切換える電磁式の方向切換弁28とが設けら
れ、その方向切換弁28が各流体通路24、25に対す
る流体の供給と排出の方向を切換えるようになってい
る。
Further, fluid supply holes 22 and 23 facing each other in the axial direction are formed on both side surfaces of the pressure chamber 20, and fluid passages 24 and 25 connected to the supply holes 22 and 23 are connected to the spindle outer cylinder 1. It is formed inside the lid member 2. Further, in the fluid passages 24 and 25, as shown in FIG.
A fluid supply device 26 is connected as a drive means for moving the outer ring. The fluid supply device 26 is provided with a pressure source 27 that generates pressure oil or pressure air, and an electromagnetic directional switching valve 28 that switches the flow of fluid in the circuit. The direction of supplying and discharging the fluid to and from the passages 24 and 25 is switched.

【0023】また、スリーブ16の内径面には、図2及
び図4に示すように、円筒ころ軸受5の外輪7が軸方向
の両側部を間座29、30で挾み付けた状態で組込まれ
ており、その各間座29、30に、それぞれ外輪7の両
側から軸受内部へエアオイルを吹き出すノズル31、3
2が形成されている。また、スリーブ16の内部には、
上記各ノズル31、32に連通する潤滑剤通路33、3
4が形成され、一方、スリーブ16の軸方向の移動を止
める凹所15の両側面には、スリーブ16が軸方向に移
動した時にその各潤滑剤通路33、34と交互に接続す
るエアオイル供給孔35、36が形成されている。
Further, as shown in FIGS. 2 and 4, the outer ring 7 of the cylindrical roller bearing 5 is mounted on the inner diameter surface of the sleeve 16 in a state where both axial side portions are sandwiched by spacers 29 and 30. Nozzles 31, 3 for blowing air oil into the bearings from both sides of the outer ring 7 on the spacers 29, 30 respectively.
2 is formed. Also, inside the sleeve 16,
Lubricant passages 33, 3 communicating with the nozzles 31, 32
4 is formed, and on the other hand, on both side surfaces of the recess 15 for stopping the axial movement of the sleeve 16, air-oil supply holes which are alternately connected to the respective lubricant passages 33, 34 when the sleeve 16 moves in the axial direction. 35 and 36 are formed.

【0024】さらに、スピンドル外筒1と蓋部材2の内
部には、上記各供給孔35、36に連なるエアオイルの
導入路37、38が形成され、その各導入路37、38
にエアオイルの供給装置39が接続している。
Further, inside the spindle outer cylinder 1 and the lid member 2, air-oil introducing passages 37 and 38 are formed which are continuous with the supply holes 35 and 36, and the introducing passages 37 and 38 are formed.
An air-oil supply device 39 is connected to.

【0025】このエアオイル供給装置39は、エアオイ
ルを発生する発生ユニット40と、電磁式の方向切換弁
41を備えており、方向切換弁41は、図4の(a)
(b)に示すようにスリーブ16が軸方向に移動した時
に、そのスリーブ16の各潤滑剤通路33、34と接続
する導入路37、38に自動的にエアオイルを送り込む
ように制御されている。
The air-oil supply device 39 is provided with a generating unit 40 for generating air-oil and an electromagnetic directional switching valve 41. The directional switching valve 41 is shown in FIG.
As shown in (b), when the sleeve 16 moves in the axial direction, air oil is automatically fed into the introduction passages 37 and 38 connected to the lubricant passages 33 and 34 of the sleeve 16.

【0026】この実施例のスピンドル装置は上記のよう
な構造であり、次にその作用を説明する。
The spindle device of this embodiment has the above-mentioned structure, and its operation will be described below.

【0027】図3(a)は、低速域で高剛性が必要な場
合の運転状態を示しており、この場合は、蓋部材2の流
体供給孔22から圧力流体を圧力室20に供給し、スリ
ーブ16を図面右方向に移動させる。これにより、円筒
ころ軸受5の外輪7が円筒ころ8に対して右方向に偏位
し、小径側の軌道面17と内輪6との間に円筒ころ8が
嵌まり込むため、軸受の内部すきまがセロ又はマイナス
の値になる。このため、軸受5内部の予圧量が増大し、
主軸剛性が増大する。
FIG. 3 (a) shows an operating state when high rigidity is required in the low speed region. In this case, pressure fluid is supplied to the pressure chamber 20 from the fluid supply hole 22 of the lid member 2, The sleeve 16 is moved rightward in the drawing. As a result, the outer ring 7 of the cylindrical roller bearing 5 is offset to the right with respect to the cylindrical roller 8 and the cylindrical roller 8 fits between the raceway surface 17 on the smaller diameter side and the inner ring 6, so that the internal clearance of the bearing is increased. Becomes cello or a negative value. Therefore, the amount of preload inside the bearing 5 increases,
Spindle rigidity increases.

【0028】一方、主軸3を高速回転させて使用する場
合は、図3(b)に示すように、スピンドル外筒1側の
流体供給孔23から圧力室20内に圧力流体を導入し、
スリーブ16を図面左方向に移動させ、円筒ころ軸受5
の外輪7を左方向に偏位させる。これにより、外輪7の
大径側の軌道面18と円筒ころ8が向き合い、軸受5の
内部すきまが大きくなるため、高速回転によって内輪6
が膨張等をしても、円筒ころに対する軸受すきまが適正
に保たれる。
On the other hand, when the main shaft 3 is rotated at a high speed and used, as shown in FIG. 3B, pressure fluid is introduced into the pressure chamber 20 from the fluid supply hole 23 on the spindle outer cylinder 1 side,
Move the sleeve 16 to the left in the drawing to move the cylindrical roller bearing 5
The outer ring 7 of is displaced to the left. As a result, the raceway surface 18 on the large diameter side of the outer ring 7 faces the cylindrical roller 8, and the internal clearance of the bearing 5 increases, so that the inner ring 6 is rotated by the high speed rotation.
The bearing clearance with respect to the cylindrical roller can be properly maintained even if is expanded.

【0029】このような軸受すきまの切換え制御は、軸
受の必要初期剛性と主軸の最高回転数に基づいて行なわ
れる。
Such switching control of the bearing clearance is performed based on the required initial rigidity of the bearing and the maximum rotation speed of the main shaft.

【0030】図5は、実施例の円筒ころ軸受5を使用し
た場合の軸受すきまと転動体荷重の変化を、回転数との
関係で概念的に示したものである。図に示すように、回
転数が上昇すると、内輪の膨張等により軸受すきまが減
少し、それに反比例して転動体荷重が増大する。
FIG. 5 conceptually shows changes in the bearing clearance and the rolling element load when the cylindrical roller bearing 5 of the embodiment is used, in relation to the rotational speed. As shown in the figure, when the rotation speed increases, the bearing clearance decreases due to expansion of the inner ring and the like, and the rolling element load increases in inverse proportion to it.

【0031】ここで、主軸の支持構造の最適な設計を行
なうためには、外輪7における小径側の軌道面17を、
低速使用域で高い剛性が得られるように軸受すきまを小
さくする大きさにする必要がある。いま、必要軸受剛性
から決まる軸受初期すきまを−δ1 とすると、主軸3に
内輪6を組込んだ状態のころ外接円径に対して、−δ1
のすきまとなるように軌道面17の径寸法を設定する。
この場合、軌道面17と円筒ころ8を係合させた状態の
回転数の上昇限界は、回転数上昇に伴なう転動体荷重の
上限からn1 となる。
Here, in order to optimally design the support structure of the main shaft, the raceway surface 17 on the small diameter side of the outer ring 7 is
It is necessary to reduce the bearing clearance so that high rigidity can be obtained at low speeds. Now, the bearing initial gap determined by the required bearing stiffness When - [delta 1, relative to the roller circumscribed circle diameter of the state incorporating the inner ring 6 on the main shaft 3, - [delta 1
The diameter dimension of the raceway surface 17 is set so that the clearance becomes.
In this case, the upper limit of the rotation speed when the raceway surface 17 and the cylindrical roller 8 are engaged is n 1 from the upper limit of the rolling element load accompanying the increase in the rotation speed.

【0032】一方、大径側の軌道面18の径寸法は、主
軸3の最高回転数から決定される。すなわち、主軸3の
最高回転数をn2 とした場合、そのn2 の回転数のとき
に転動体荷重限界となるような軸受初期すきまをδ2
すると、軌道面18の径寸法は、δ2 の内部すきまが生
じるような寸法に設定する。
On the other hand, the diameter of the raceway surface 18 on the large diameter side is determined from the maximum rotation speed of the main shaft 3. That is, when the maximum rotation speed of the main shaft 3 is n 2, and the bearing initial clearance that causes the rolling element load limit at the rotation speed of n 2 is δ 2 , the diameter dimension of the raceway surface 18 is δ. Set the dimensions so that the internal clearance of 2 is generated.

【0033】この実施例の装置では、上記のような軸受
すきまの切換えと同時に、図4(a)(b)に示すよう
に、スリーブ16と外輪7の移動に応じてエアオイル供
給装置39からスピンドル外筒1と蓋部材2の各導入路
37、38にエアオイルが導入され、間座29、30の
各ノズル31、32を介して軸受5内部に供給される。
この場合、圧力室20に対する流体供給方向の切換えタ
イミングに合せて、各導入路37、38へのエアオイル
供給を切換えることにより、移動方向側の軸受の端部か
らエアオイルが軸受内に導入されるため、常に外輪7と
円筒ころ8の接触部に向かってエアオイルが供給される
ことになり、安定した軸受の潤滑を行なうことができ
る。
In the apparatus of this embodiment, at the same time when the bearing clearance is changed as described above, as shown in FIGS. Air oil is introduced into the introduction passages 37 and 38 of the outer cylinder 1 and the lid member 2, and is supplied into the bearing 5 through the nozzles 31 and 32 of the spacers 29 and 30.
In this case, air oil is introduced into the bearing from the end of the bearing on the moving direction side by switching the air oil supply to each of the introduction passages 37 and 38 in accordance with the switching timing of the fluid supply direction to the pressure chamber 20. As a result, air oil is always supplied toward the contact portion between the outer ring 7 and the cylindrical roller 8, and stable lubrication of the bearing can be performed.

【0034】なお、上記の実施例では、外輪7に2個の
軌道面17、18を設けたが、径寸法の異なる3個以上
の軌道面を外輪の内径面に形成し、その各軌道面の位置
で円筒ころが係合するように外輪を駆動する構造をとれ
ば、軸受すきまを多段に切換えることができ、よりきめ
の細かいすきまの調整を行なうことができる。
Although the outer race 7 is provided with the two raceway surfaces 17 and 18 in the above embodiment, three or more raceway surfaces having different diameters are formed on the inner diameter surface of the outer race, and each raceway surface is formed. If the structure is such that the outer ring is driven so that the cylindrical roller engages at the position, the bearing clearance can be switched in multiple stages, and a finer clearance can be adjusted.

【0035】[0035]

【効果】以上のように、この発明は、円筒ころ軸受の外
輪を軸方向に移動させることにより複数の軸受すきまを
選択できるため、低速高剛性の条件から高速回転までス
ピンドルの最適な使用回転領域を拡げることができる。
このため、従来は低速高剛性の仕様と高速仕様とでそれ
ぞれ別個のスピンドルを必要としていたのに対して、こ
の発明を用いれば、1本のスピンドルで両仕様を兼用す
ることができ、スピンドルの集約化と、加工の多様化に
応じた加工条件の設定範囲の拡大を実現できる効果があ
る。
As described above, according to the present invention, since a plurality of bearing clearances can be selected by moving the outer ring of the cylindrical roller bearing in the axial direction, the optimum rotation range of the spindle can be used from low speed and high rigidity conditions to high speed rotation. Can be expanded.
For this reason, in the past, separate spindles were required for low-speed high-rigidity specifications and high-speed specifications, but if the present invention is used, both specifications can be combined with a single spindle. There is an effect that integration can be achieved and the setting range of processing conditions can be expanded according to the diversification of processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のスピンドル装置を示す断面図FIG. 1 is a cross-sectional view showing a spindle device according to an embodiment.

【図2】同上の潤滑構造を示す断面図FIG. 2 is a cross-sectional view showing the same lubricating structure as above.

【図3】(a)(b)はそれぞれ軸受すきまの切換え作
用を示す断面図
3 (a) and 3 (b) are cross-sectional views showing the switching operation of the bearing clearance.

【図4】(a)(b)はそれぞれエアオイル潤滑の切換
え作用を示す断面図
4A and 4B are cross-sectional views showing the switching action of air-oil lubrication.

【図5】(a)は軸受すきまと回転数の関係を示す図
表、(b)は転動体荷重と回転数の関係を示す図表
5A is a chart showing a relationship between a bearing clearance and a rotation speed, and FIG. 5B is a chart showing a relationship between a rolling element load and a rotation speed.

【符号の説明】[Explanation of symbols]

1 スピンドル外筒 2 蓋部材 3 主軸 5 円筒ころ軸受 6 内輪 7 外輪 8 円筒ころ 13 軌道溝 15 凹所 16 スリーブ 17、18 軌道面 20 圧力室 24、25 流体通路 26 流体供給装置 29、30 間座 33、34 潤滑剤通路 37、38 導入路 39 エアオイル供給装置 DESCRIPTION OF SYMBOLS 1 Spindle outer cylinder 2 Lid member 3 Main shaft 5 Cylindrical roller bearing 6 Inner ring 7 Outer ring 8 Cylindrical roller 13 Raceway groove 15 Recess 16 Sleeve 17 and 18 Raceway surface 20 Pressure chamber 24 and 25 Fluid passage 26 Fluid supply device 29 and 30 Spacer 33, 34 Lubricant passage 37, 38 Introductory passage 39 Air-oil supply device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外輪の内径面の径寸法を軸方向に変化さ
せ、その外輪が内輪に保持された円筒ころに対して軸方
向に移動可能になっている円筒ころ軸受。
1. A cylindrical roller bearing in which the diameter of the inner diameter surface of the outer ring is changed in the axial direction so that the outer ring can move in the axial direction with respect to the cylindrical roller held by the inner ring.
【請求項2】 請求項1に記載の円筒ころ軸受の外輪
を、スピンドル外筒の内側に軸方向に移動可能に取付
け、上記円筒ころ軸受の内輪を、スピンドル外筒の内部
に挿入した主軸に固定し、上記スピンドル外筒に、上記
外輪を任意のタイミングで軸方向に移動させる駆動手段
を連結した円筒ころ軸受を用いたスピンドル装置。
2. The outer ring of the cylindrical roller bearing according to claim 1 is mounted movably in the axial direction inside a spindle outer cylinder, and the inner ring of the cylindrical roller bearing is attached to a spindle inserted inside the spindle outer cylinder. A spindle device using a cylindrical roller bearing, which is fixed, and to which the drive means for axially moving the outer ring at an arbitrary timing is connected to the spindle outer cylinder.
【請求項3】 上記円筒ころ軸受の外輪を、スピンドル
外筒の内側を軸方向に移動するスリーブに保持し、この
スリーブに、上記外輪の軸方向両側から軸受内部に潤滑
剤を供給する複数の潤滑剤通路を設け、上記スピンドル
外筒に、外輪が軸方向に移動した時にその移動方向側の
潤滑剤通路と交互に連通する潤滑剤の導入路を設けた請
求項2に記載の円筒ころ軸受を用いたスピンドル装置。
3. An outer ring of the cylindrical roller bearing is held by a sleeve that moves axially inside a spindle outer cylinder, and a plurality of lubricants are supplied to the sleeve from both axial sides of the outer ring. The cylindrical roller bearing according to claim 2, wherein a lubricant passage is provided, and the spindle outer cylinder is provided with a lubricant introduction passage that is in communication with the lubricant passage on the moving direction side when the outer ring moves in the axial direction. Spindle device using.
JP10363094A 1994-05-18 1994-05-18 Cylindrical roller bearing and spindle device using the bearing Pending JPH07310742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10363094A JPH07310742A (en) 1994-05-18 1994-05-18 Cylindrical roller bearing and spindle device using the bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10363094A JPH07310742A (en) 1994-05-18 1994-05-18 Cylindrical roller bearing and spindle device using the bearing

Publications (1)

Publication Number Publication Date
JPH07310742A true JPH07310742A (en) 1995-11-28

Family

ID=14359094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10363094A Pending JPH07310742A (en) 1994-05-18 1994-05-18 Cylindrical roller bearing and spindle device using the bearing

Country Status (1)

Country Link
JP (1) JPH07310742A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264526A (en) * 2008-04-28 2009-11-12 Toyota Motor Corp Bearing arrangement of supercharger
WO2013183516A1 (en) * 2012-06-08 2013-12-12 Kato Heizaburo Ball bearing
WO2013183518A1 (en) * 2012-06-08 2013-12-12 Kato Heizaburo Bearing device
JP2014028427A (en) * 2012-07-30 2014-02-13 Rohm & Haas Electronic Materials Cmp Holdings Inc Method for chemical mechanical polishing layer pre-texturing
WO2016143577A1 (en) * 2015-03-10 2016-09-15 Ntn株式会社 Main shaft device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264526A (en) * 2008-04-28 2009-11-12 Toyota Motor Corp Bearing arrangement of supercharger
WO2013183516A1 (en) * 2012-06-08 2013-12-12 Kato Heizaburo Ball bearing
WO2013183518A1 (en) * 2012-06-08 2013-12-12 Kato Heizaburo Bearing device
JP2014028427A (en) * 2012-07-30 2014-02-13 Rohm & Haas Electronic Materials Cmp Holdings Inc Method for chemical mechanical polishing layer pre-texturing
WO2016143577A1 (en) * 2015-03-10 2016-09-15 Ntn株式会社 Main shaft device
JP2016165780A (en) * 2015-03-10 2016-09-15 Ntn株式会社 Spindle device
EP3269476A4 (en) * 2015-03-10 2018-11-07 NTN Corporation Main shaft device

Similar Documents

Publication Publication Date Title
JPH10500469A (en) Fluid thin film bearing
US6394658B1 (en) Bearing systems having reduced noise and axial preload
JPH01246001A (en) Bearing device for high-speed rotary main shaft of machine tool, particularly, grinder
JPH07310742A (en) Cylindrical roller bearing and spindle device using the bearing
JP2005076858A (en) Rotary distribution valve and lubricating device
JP2602325B2 (en) Variable preload spindle unit
JPH08174306A (en) Variable pre-load bearing
JPH08177852A (en) Pre-load variable bearing unit
JPH11336767A (en) Cylindrical roller bearing
JP2001113402A (en) Spindle unit
JP2007177850A (en) Tapered roller bearing
JP3822098B2 (en) Automatic transmission bearing device
JPH0724604A (en) Variable pre-load type spindle unit and its control method
JPH06341431A (en) Variable pre-load device of rolling bearing
US3684333A (en) Hydrostatic bearings
KR100878119B1 (en) Aerostatic bearing device of high speed spindle for milling processing
JPH0751904A (en) Pre-load adjusting device for spindle bearing
JP2001162409A (en) Main shaft unit
JP2007177855A (en) Tapered roller bearing
JPS639722A (en) Spindle rotation supporting device
JPH0724603A (en) Variable pre-load type bearing unit
KR20010073316A (en) Thrust Movable Radial Ball Bearing
JP2008002480A (en) Variable pre-load type spindle unit
JP2007177856A (en) Tapered roller bearing
JPH05164127A (en) Prepressurizing device for bearing