JPH0730906A - Picture element defect correction device - Google Patents

Picture element defect correction device

Info

Publication number
JPH0730906A
JPH0730906A JP5166849A JP16684993A JPH0730906A JP H0730906 A JPH0730906 A JP H0730906A JP 5166849 A JP5166849 A JP 5166849A JP 16684993 A JP16684993 A JP 16684993A JP H0730906 A JPH0730906 A JP H0730906A
Authority
JP
Japan
Prior art keywords
pixel
detection circuit
correlation
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5166849A
Other languages
Japanese (ja)
Other versions
JP2903956B2 (en
Inventor
Juichi Hitomi
寿一 人見
Takahiro Kobayashi
隆宏 小林
Keizo Matsumoto
恵三 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5166849A priority Critical patent/JP2903956B2/en
Publication of JPH0730906A publication Critical patent/JPH0730906A/en
Application granted granted Critical
Publication of JP2903956B2 publication Critical patent/JP2903956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To obtain an excellent picture without deteriorating substantial picture quality by solving a problem of detecting and correcting a signal in mistake with a picture element defect and detecting and correcting the signal while correctly distinguishing the substantial signal from the picture element defect. CONSTITUTION:Detection circuits 11-13 detect projection from a picture element being an output of solid-state image pickup elements 1-3. A correlation detection circuit 17 detects the correlation of the outputs of the detection circuits 11-13. Then correction circuits 14-16 make correction when an output signal of the correlation detection circuit 17 is discriminated to have no correlation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCCD等の固体撮像素子
を用いた撮像装置において、固体撮像素子に存在する画
素欠陥を検出し補正する画素欠陥補正装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pixel defect correcting apparatus for detecting and correcting a pixel defect existing in a solid-state image sensor in an image sensor using a solid-state image sensor such as CCD.

【0002】[0002]

【従来の技術】一般にCCD等の半導体により形成され
た固体撮像素子においては、半導体の局部的な結晶欠陥
等により画質劣化を生じることが知られている。入射光
量に応じた撮像出力に常に一定のバイアス電圧が加算さ
れてしまう画像欠陥は、この画像欠陥信号がそのまま処
理されるとモニター画面上に高輝度の白い点として現れ
るので白キズと呼ばれている。また、光電感度の低いも
のは黒い点として現れるので黒キズと呼ばれている(以
後、画素欠陥をキズと称する)。
2. Description of the Related Art Generally, it is known that in a solid-state image pickup device formed of a semiconductor such as CCD, image quality is deteriorated due to local crystal defects of the semiconductor. An image defect in which a constant bias voltage is always added to the imaging output according to the amount of incident light appears as a high-intensity white dot on the monitor screen if this image defect signal is processed as it is. There is. In addition, those having low photosensitivity appear as black dots and are called black scratches (hereinafter, pixel defects are called scratches).

【0003】従来、上記のようなキズに対する検出に関
しては、例えば特開昭61−261974号公報に示さ
れている。この方法は注目画素が周辺の画素に対して一
定量以上大きいまたは小さい出力を持つ画素をキズとし
て検出する方法であり、横方向および縦方向に隣接画素
間の差を取り、周辺の画素と異なる出力を持つ画素を検
出するものである。
Conventionally, the detection of scratches as described above is disclosed in, for example, Japanese Patent Laid-Open No. 61-261974. This method is a method of detecting a pixel in which the pixel of interest has an output larger or smaller than a peripheral pixel by a certain amount or more as a flaw. The difference between adjacent pixels in the horizontal direction and the vertical direction is obtained, and the pixel is different from the peripheral pixels. It detects a pixel having an output.

【0004】以下、CCDの水平方向における白キズの
検出の場合について説明を行うものとする。また、本発
明は、複数のCCDを用いており、ここではそれに対応
し、3個のCCDを用い、R,G,B光信号がこれら3
個のCCDに入力される、いわゆる3板の場合におい
て、従来の画素欠陥補正装置をそのまま適用した場合に
ついて具体的に説明を行う。白キズは、周辺の画素に対
して、通常1画素のみ突出している。例えば、注目画素
とその前後の画素の関係は図9の(a)のG入力のよう
に表される。このため、注目画素とその隣接する前後の
画素と比較し、注目画素が一定レベル以上前後の画素よ
り大きい場合キズと見なすことができる。
The case of detecting a white defect in the horizontal direction of the CCD will be described below. In addition, the present invention uses a plurality of CCDs, and correspondingly, three CCDs are used here, and R, G, and B optical signals are used for these three CCDs.
In the case of a so-called three-plate input to one CCD, a case where the conventional pixel defect correction device is applied as it is will be specifically described. The white flaw normally projects only one pixel with respect to the surrounding pixels. For example, the relationship between the pixel of interest and the pixels before and after it is represented as G input in FIG. Therefore, when the pixel of interest is compared with the adjacent pixels before and after it, the pixel of interest can be regarded as a flaw if it is larger than the pixels of a certain level or more.

【0005】上記内容を実現するブロック図を図8に示
す。R,G,B光信号がそれぞれ入力されたCCDの出
力信号は、補正回路14,15,16を経由して出力さ
れると共に、検出回路11,12,13に入力され、こ
れらの検出回路の出力により、対応する補正回路14,
15,16を制御する。
A block diagram for realizing the above contents is shown in FIG. The output signals of the CCD to which the R, G, and B optical signals are respectively input are output via the correction circuits 14, 15, and 16 and are input to the detection circuits 11, 12, and 13 to detect these detection circuits. Depending on the output, the corresponding correction circuit 14,
15 and 16 are controlled.

【0006】検出回路の一例のブロック図を図11に示
す。入力された信号は複数のフリップフロップ(以下F
Fと略す)21,22を通り、順次送られてきた注目画
素値とその前後の画素値、yn-1,yn,yn+1を得る。
これ以後、信号を、r,g,bをyで代表し表記する。
これらの信号に対して、加算器23,24、比較回路2
5,26、AND回路27により下記の演算を行ってい
る。
A block diagram of an example of the detection circuit is shown in FIG. The input signal is a plurality of flip-flops (hereinafter F
The pixel value of interest and the pixel values before and after it, which are sequentially sent, are passed through 21 and 22 (abbreviated as F), y n-1 , y n , and y n + 1 .
Hereinafter, the signal will be represented by representing r, g, and b by y.
For these signals, the adders 23 and 24, the comparison circuit 2
5, 26 and the AND circuit 27 perform the following calculation.

【0007】 yn-1−yn>a1n+1−yn>a21,a2は、ynのyn-1,yn+1に対する突出量のしき
い値であり、ここではa1=a2=a(>0)として考え
る。
[0007] y n-1 -y n> a 1 y n + 1 -y n> a 2 a 1, a 2 is the amount of projection of the threshold for y n-1, y n + 1 of the y n Therefore, it is assumed here that a 1 = a 2 = a (> 0).

【0008】以上により、注目する画素の値がその周辺
の画素の値に対して一定レベル以上突出している場合は
キズとみなし「1」を出力し、それ以外の場合「0」を
出力する。補正回路は、その検出出力により制御され
る。
As described above, when the value of the pixel of interest is more than a certain level above the values of the surrounding pixels, it is regarded as a flaw and "1" is output, otherwise "0" is output. The correction circuit is controlled by its detection output.

【0009】画素欠陥の補正に関しては、特開昭62−
8666号公報にいくつかの方法が示されている。例え
ば、1画素もしくは2画素前の画素で置換する方法、前
後の画素値の平均で置換する方法、または同様に垂直方
向で考え、1つ上の画素で置換する方法、上下の画素値
の平均で置換する方法などがある。
Regarding the correction of pixel defects, Japanese Patent Laid-Open No. 62-
Several methods are shown in the 8666 publication. For example, a method of substituting one pixel or two pixels before, a method of substituting the average of previous and next pixel values, or a method of thinking in the vertical direction and substituting by one pixel above, an average of upper and lower pixel values There is a method of replacing with.

【0010】補正回路の一例のブロック図は図12に示
す。ここでは、補正回路は前後の画素値の平均で置換す
るものとし、動作は以下の通りである。入力された信号
はFF41,42を通り、中央の注目画素の値とその前
後の画素値を抽出する。注目画素の前後の画素値からこ
れらの平均値を求め補正信号としている。検出回路の検
出信号に従い、通常は中央の注目画素の値を、キズと判
定した場合は補正信号を出力する。
A block diagram of an example of the correction circuit is shown in FIG. Here, the correction circuit replaces the average of the pixel values before and after, and the operation is as follows. The input signal passes through the FFs 41 and 42 to extract the value of the pixel of interest in the center and the pixel values before and after it. An average value of these pixel values before and after the pixel of interest is calculated and used as a correction signal. According to the detection signal of the detection circuit, the value of the pixel of interest in the center is normally output, and when it is determined that there is a flaw, a correction signal is output.

【0011】以上より、R,G,Bの各経路において、
周辺の画素の値に対して一定レベル以上突出している画
素に対してはキズとして検出でき、目立たないよう補正
することができる。
From the above, in each route of R, G, B,
Pixels that project by a certain level or more with respect to the values of surrounding pixels can be detected as flaws, and can be corrected so as not to be noticeable.

【0012】従来の画素欠陥補正装置における第1の信
号波形例を図9に示す。図9の(a)にGのキズが補正
される様子を示す。
FIG. 9 shows a first signal waveform example in the conventional pixel defect correcting device. FIG. 9A shows how the flaw of G is corrected.

【0013】以上の画素欠陥補正の動作は、3個のCC
Dが、例えば、Gに対しR,Bが半画素ずれているよう
な画素ずらしを行っていても同様な回路で行うことがで
きる。
The above pixel defect correction operation is performed by using three CCs.
A similar circuit can be used even if the pixel shift is performed such that D is shifted from G by R and B by half a pixel.

【0014】従来の画素欠陥補正装置ににおける第2の
信号波形例を図10に示す。図10の(a)にGのキズ
が補正される様子を示す。
FIG. 10 shows a second signal waveform example in the conventional pixel defect correction device. FIG. 10A shows how the G flaw is corrected.

【0015】[0015]

【発明が解決しようとする問題点】しかしながら、上記
の方法によれば、点光源のような信号に対しては、信号
であるにも関わらず突出していることからキズと誤って
判定する。例えば、周囲が暗い中で1点のみ明るい図9
の(b)のような信号が入力された場合、その中心の信
号はキズと誤って判定され、誤補正されてしまう。これ
により、図9の(b)の左に示す出力のように、本来あ
るべき信号がなくなってしまう。このように点光源のよ
うな信号がある場合には画質を劣化させ、良好な画像を
得ることができないという問題があった。
However, according to the above-mentioned method, a signal such as a point light source is erroneously determined as a flaw because it is projected even though it is a signal. For example, in the dark surroundings, only one point is bright.
When a signal such as (b) is input, the center signal is erroneously determined as a flaw and is erroneously corrected. As a result, there should be no signals as they should be, such as the output shown on the left side of FIG. 9B. As described above, when there is a signal such as a point light source, there is a problem that the image quality is deteriorated and a good image cannot be obtained.

【0016】また、3個のCCDが、例えば、Gに対し
R,Bが半画素ずれているような画素ずらしを行ってい
ても同様な問題を生じる。例えば、周囲が暗い中で1点
のみ明るい図10の(b)のような信号が入力された場
合、その中心の信号はキズと誤って判定され、誤補正さ
れてしまう。これにより、図10の(b)の左に示す出
力のように、本来あるべき信号がなくなってしまう。
The same problem arises even if the three CCDs perform pixel shifting such that R and B are displaced by half a pixel with respect to G, for example. For example, when a signal such as that shown in FIG. 10B in which only one point is bright in the dark surroundings is input, the signal at the center is erroneously determined as a flaw and is erroneously corrected. As a result, there should be no signal as it should be, such as the output shown on the left side of FIG.

【0017】このように、点光源のような信号がある場
合には画質を劣化させ、良好な画像を得ることができな
いという問題があった。
As described above, when there is a signal such as a point light source, there is a problem that the image quality is deteriorated and a good image cannot be obtained.

【0018】本発明はこのような従来の問題点を解決す
るものであり、簡単な構成で信号とキズを精度良く判別
し、キズについてのみ補正を行い、点光源のような信号
を含む画像においても、本来の画質を劣化させることな
く、良好な画像を得ることができる画素欠陥補正装置を
提供するものである。
The present invention solves the above-mentioned conventional problems. In an image including a signal such as a point light source, a signal and a flaw are accurately discriminated with a simple structure and only the flaw is corrected. Also, the present invention provides a pixel defect correction device capable of obtaining a good image without deteriorating the original image quality.

【0019】[0019]

【課題を解決するための手段】本発明の画素欠陥補正装
置は、複数の固体撮像素子と、これら固体撮像素子より
出力された前記固体撮像素子の画素の値より突出を検出
する検出回路と、これらの検出回路の出力の相関を検出
する相関検出回路と、この相関検出回路の出力信号によ
り制御される補正回路とからなる。
A pixel defect correction apparatus according to the present invention comprises a plurality of solid-state image pickup devices, and a detection circuit for detecting protrusion from the pixel values of the solid-state image pickup devices output from the solid-state image pickup devices. It comprises a correlation detection circuit for detecting the correlation of the outputs of these detection circuits, and a correction circuit controlled by the output signal of this correlation detection circuit.

【0020】また、本発明の画素欠陥補正装置は、第1
の固体撮像素子に対し第2の固体撮像素子が半画素ずれ
た位置に配置された複数の固体撮像素子と、第1の固体
撮像素子の第1の画素およびその前後の画素の値より突
出を検出する第1の検出回路と、第1の固体撮像素子の
第1の画素の半画素前後の第2の固体撮像素子の第2,
第3の画素の値およびその前後の画素の値より第2,第
3の画素の値の突出を検出する第2の検出回路と、第
1,第2の検出回路の出力の相関を検出する相関検出回
路と、この相関検出回路の出力信号により制御される補
正回路とからなる。
The pixel defect correcting device of the present invention is the first
Of the plurality of solid-state image pickup elements in which the second solid-state image pickup element is displaced by a half pixel from the solid-state image pickup element, and the values of the first pixel of the first solid-state image pickup element and the pixels before and after it. A first detection circuit for detecting, and a second solid-state image sensor including a second solid-state image sensor before and after a half pixel of the first pixel of the first solid-state image sensor.
The correlation between the outputs of the first and second detection circuits and the second detection circuit that detects the protrusion of the values of the second and third pixels from the value of the third pixel and the values of the pixels before and after it is detected. It is composed of a correlation detection circuit and a correction circuit controlled by an output signal of the correlation detection circuit.

【0021】[0021]

【作用】本発明によれば、点光源のような信号において
も従来のように誤検出、誤補正を行わず、信号とキズを
区別し、キズを精度良く検出できるため、キズについて
のみ補正を行い、本来の画質を劣化させることなく、良
好な画像を得ることができる。
According to the present invention, even if a signal such as a point light source is not erroneously detected or erroneously corrected as in the prior art, the signal and the flaw can be distinguished and the flaw can be accurately detected. Therefore, only the flaw is corrected. By doing so, a good image can be obtained without deteriorating the original image quality.

【0022】[0022]

【実施例】以下、本発明の第1の実施例について図面を
参照して説明する。本発明の第1の実施例のブロック図
を図1に示す。R,G,B光信号がそれぞれ入力された
CCD1,2,3の出力信号は、補正回路14,15,
16を経由して出力されると共に、検出回路11,1
2,13に入力され、これらの検出回路の出力により、
対応する補正回路を制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. A block diagram of the first embodiment of the present invention is shown in FIG. The output signals of the CCDs 1, 2, 3 to which the R, G, B optical signals are respectively input are corrected by the correction circuits 14, 15,
16 and the detection circuits 11 and 1
2, 13 and the output of these detection circuits,
Control the corresponding correction circuit.

【0023】検出回路の一例は図11に示したブロック
図と同じである。すなわち、入力された信号は複数のフ
リップフロップ(以下FFと略す)21,22を通り、
順次送られてきた注目画素値とその前後の画素値、y
n-1、yn、 yn+1を得る。これ以後、信号を、r,g,
bをyで代表し表記する。これらの信号に対して、加算
器23,24、比較回路25,26、AND回路27に
より下記の演算を行っている。
An example of the detection circuit is the same as the block diagram shown in FIG. That is, the input signal passes through a plurality of flip-flops (hereinafter abbreviated as FF) 21 and 22,
The pixel value of interest sent in sequence and the pixel values before and after it, y
Obtain n-1 , y n , and y n + 1 . After this, the signals are changed to r, g,
b is represented by y. The following operations are performed on these signals by the adders 23 and 24, the comparison circuits 25 and 26, and the AND circuit 27.

【0024】 yn-1−yn>a1n+1−yn>a21,a2はynのyn-1,yn+1に対する突出量のしきい
値であり、ここでは、a1=a2=a(>0)として考え
る。
[0024] y n-1 -y n> a 1 y n + 1 -y n> a 2 a 1, a 2 is an amount of protrusion of the threshold for y n-1, y n + 1 of the y n , Here, it is considered that a 1 = a 2 = a (> 0).

【0025】以上により、注目する画素の値がその周辺
の画素の値に対して一定レベル以上突出している場合は
キズとみなし「1」を出力し、それ以外の場合「0」を
出力する。
As described above, when the value of the pixel of interest is more than a certain level above the values of the surrounding pixels, it is regarded as a flaw and "1" is output, and otherwise "0" is output.

【0026】相関検出回路の一例の回路図を図2に示
す。この回路の動作をGの経路を中心にして述べる。こ
の相関検出回路のG出力は、G入力が「1」で、かつ
R,Bの両方が「0」の場合には、Gと他の信号と相関
がないとみなし、キズの可能性が高いと判断し、「1」
を出力する。また、G入力が「1」でも、かつR,Bの
両方または一方が「1」の場合には、Gと他の信号と相
関があるとみなし、点光源の可能性が高いと判断し、
「0」を出力する。
A circuit diagram of an example of the correlation detection circuit is shown in FIG. The operation of this circuit will be described centering on the G path. When the G input is "1" and both R and B are "0", the G output of the correlation detection circuit is considered to have no correlation with G and other signals, and is likely to be damaged. Judge that, "1"
Is output. Further, when the G input is "1" and both or one of R and B is "1", it is considered that there is a correlation with G and other signals, and it is determined that the possibility of the point light source is high.
Outputs "0".

【0027】補正回路の一例のブロック図は図12に示
す。補正回路は、相関検出出力により制御される。補正
動作は従来例と同様、キズと判定された場合、前後の画
素値の平均で置換するものとする。すなわち、入力され
た信号はFF31,32を通り、中央の注目画素の値と
その前後の画素値を抽出し、注目画素の前後の画素値か
らこれらの平均値を求め補正信号としている。相関検出
回路17の検出信号に従い、通常は中央の注目画素の値
を、キズと判定した場合は補正信号を出力する。
A block diagram of an example of the correction circuit is shown in FIG. The correction circuit is controlled by the correlation detection output. As in the case of the conventional example, the correction operation replaces with the average of the pixel values before and after when it is determined that there is a flaw. That is, the input signal passes through the FFs 31 and 32 to extract the value of the pixel of interest in the center and the pixel values before and after it, and obtains the average value of these pixel values before and after the pixel of interest as a correction signal. According to the detection signal of the correlation detection circuit 17, the value of the pixel of interest in the center is normally output, and when it is determined that there is a flaw, a correction signal is output.

【0028】本発明の第1の実施例における信号波形を
図3に示す。以上の回路における、キズの場合と点光源
の場合のR,G,Bの入力と出力の関係を示す。以上の
回路における、キズの場合と点光源の場合のR,G,B
の入力と出力の関係を示す。この例のようにGにキズが
ある場合、Gのみ突出し、補正される。通常の白の点光
源の場合は、R,G,B間に相関があるため信号と判断
され、誤って補正されず、本来の信号が出力される。
A signal waveform in the first embodiment of the present invention is shown in FIG. The relationship between the input and output of R, G, and B in the case of a scratch and the case of a point light source in the above circuit is shown. In the above circuit, R, G, B in case of scratch and in case of point light source
Shows the relationship between the input and output of. If G has a flaw as in this example, only G is projected and corrected. In the case of an ordinary white point light source, there is a correlation among R, G, and B, so that it is judged as a signal and is not corrected by mistake, and the original signal is output.

【0029】以下、本発明の第2の実施例について図面
を参照して説明する。本発明の第2の実施例のブロック
図を図4に示す。この図は、簡単のため、G,Rの2経
路について検出および補正する場合について図示してあ
る。以下、この2経路について検出および補正する場合
について述べる。
A second embodiment of the present invention will be described below with reference to the drawings. A block diagram of the second embodiment of the present invention is shown in FIG. For simplification, this figure shows a case where two paths G and R are detected and corrected. The case of detecting and correcting these two paths will be described below.

【0030】ここで、GのCCD1に対しR,BのCC
D2,3は半画素ずれた位置に配置されている。
Here, for the CCD 1 for G, the CC for R, B
D2 and D3 are arranged at positions shifted by half a pixel.

【0031】G,Rの光信号が入力されたCCD1,2
の出力信号は、補正回路14,15を経由して出力され
ると共に、検出回路11と検出回路61,検出回路62
と検出回路12に入力される。ここでは、検出回路11
と検出回路62、検出回路61と検出回路12は同一回
路である。
CCDs 1 and 2 to which G and R optical signals are input
Is output via the correction circuits 14 and 15, and the detection circuit 11 and the detection circuit 61 and the detection circuit 62 are output.
Is input to the detection circuit 12. Here, the detection circuit 11
The detection circuit 62 and the detection circuit 61 and the detection circuit 12 are the same circuit.

【0032】検出回路11と検出回路12の出力が相関
検出回路18に入力され、相関検出回路18の出力によ
りG経路の補正回路14が制御される。
The outputs of the detection circuits 11 and 12 are input to the correlation detection circuit 18, and the output of the correlation detection circuit 18 controls the correction circuit 14 for the G path.

【0033】検出回路61と検出回路62の出力が相関
検出回路19に入力され、相関検出回路19の出力によ
りR経路の補正回路15が制御される。
The outputs of the detection circuits 61 and 62 are input to the correlation detection circuit 19, and the output of the correlation detection circuit 19 controls the correction circuit 15 of the R path.

【0034】以下、G信号について検出および補正する
場合について、つまり、検出回路11と検出回路12の
出力が相関検出回路18に入力され、相関検出回路18
によりG経路の補正回路14が制御される場合について
述べることにする。
Hereinafter, in the case of detecting and correcting the G signal, that is, the outputs of the detection circuits 11 and 12 are input to the correlation detection circuit 18, and the correlation detection circuit 18
A case will be described in which the G path correction circuit 14 is controlled by.

【0035】検出回路の一例は図11に示したブロック
図と同じである。この動作は第1の実施例において述べ
た内容と基本的には同じである。順次送られてきた注目
画素値とその前後の画素値gn-1,gn,gn+1に下記の
演算を行っている。
An example of the detection circuit is the same as the block diagram shown in FIG. This operation is basically the same as the contents described in the first embodiment. Pixel value g n-1 sequentially sent the value of the pixel of interest has its front and rear, g n, and performs the calculation of the following to g n + 1.

【0036】 gn-1−gn>a gn+1−gn>a aはgnのgn-1,gn+1に対する突出量のしきい値であ
る。この演算によりgnのgn-1,gn+1に対する突出を
検出し、一定レベル以上突出している場合は「1」を出
力し、それ以外の場合「0」を出力する。
[0036] g n-1 -g n> a g n + 1 -g n> a a is the amount of projection of the threshold for g n-1, g n + 1 of g n. Detecting a projected against g n-1, g n + 1 of g n This operation, if projecting a certain level or higher outputs "1", and outputs the otherwise "0".

【0037】検出回路の一例のブロック図を図5に示
す。検出回路12は検出回路11に対し、Gのキズを検
出するに当たって補助的な動作を行う。通常の白の点光
源で、中心がgnの場合、光学LPFの影響で点光源が
広がりをもち、gnに加え、周辺の画素つまり、r
n-0.5,rn-0.5に相当する部分にも光があたり、信号が
発生する。キズの場合は、gnのみ突出し、他の経路に
は突出は発生しない。このため検出回路12により、周
辺の画素の値つまり、rn-0.5,rn-0.5の前後の画素の
値に対する突出を検出することにより、点光源かキズか
の判別ができる。
A block diagram of an example of the detection circuit is shown in FIG. The detection circuit 12 performs an auxiliary operation for the detection circuit 11 in detecting a flaw of G. When a normal white point light source has a center of g n , the point light source has a spread due to the influence of the optical LPF, and in addition to g n , peripheral pixels, that is, r
The light also hits the portions corresponding to n - 0.5 and rn - 0.5 , and a signal is generated. For scratches, protrudes only g n, the other paths protruding does not occur. Therefore, the detection circuit 12 can detect whether the light source is a point light source or a flaw by detecting the protrusion of the peripheral pixel values, that is, the pixel values before and after r n - 0.5 and r n- 0.5. .

【0038】検出回路12の動作を以下に述べる。入力
された信号は複数のフリップフロップ71〜74を通
り、順次送られてきた注目画素値とその前後の画素値r
n-1.5,rn-0.5,rn-0.5,rn+1.5を得る。これらの信
号に対して、加算器75〜77、比較回路78,79、
AND回路80により下記の演算を行っている。
The operation of the detection circuit 12 will be described below. The input signal passes through a plurality of flip-flops 71 to 74, and the pixel value of interest and the pixel values r before and after the pixel value of interest are sequentially transmitted.
n-1. 5, r n- 0 .5, r n- 0 .5, obtain r n + 1. 5. For these signals, adders 75 to 77, comparison circuits 78 and 79,
The AND circuit 80 performs the following calculation.

【0039】 (rn-0.5+rn-0.5)/2=rn' rn'−rn-1.5 >b1n'−rn+1.5 >b21,b2はrn'のrn-1.5,rn+1.5に対する突出量のし
きい値であり、ここではb1=b2=b(>0)として考
える。
[0039] (r n- 0 .5 + r n- 0 .5) / 2 = r n 'r n' -r n-1. 5> b 1 r n '-r n + 1. 5> b 2 b 1, b 2 is r n-1. 5, r n + 1. threshold amount of projection for 5 r n ', where b 1 = b 2 = considered as b (> 0).

【0040】以上により、注目する画素の値がその周辺
の画素の値に対して一定レベル以上突出している場合は
キズとみなし「1」を出力し、それ以外の場合「0」を
出力する。
As described above, when the value of the pixel of interest is more than a certain level above the values of the surrounding pixels, it is considered as a flaw and "1" is output, otherwise "0" is output.

【0041】検出回路11と検出回路12が相関検出回
路18に入力される。相関検出回路18の一例を図6に
示す。ここでは、相関検出回路18、相関検出回路19
は同一回路である。この相関検出回路18の出力は、G
入力が「1」で、R入力が「0」の場合には、G入力と
R入力と相関がないとみなし、キズの可能性が高いと判
断し、「1」を出力する。また、G入力が「1」でも、
かつR,Bの両方または一方が「1」の場合には、Gと
他の信号と相関があるとみなし、点光源の可能性が高い
と判断し、「0」を出力する。
The detection circuit 11 and the detection circuit 12 are input to the correlation detection circuit 18. An example of the correlation detection circuit 18 is shown in FIG. Here, the correlation detection circuit 18 and the correlation detection circuit 19
Are the same circuit. The output of this correlation detection circuit 18 is G
When the input is "1" and the R input is "0", it is considered that there is no correlation between the G input and the R input, it is determined that the possibility of a scratch is high, and "1" is output. Also, even if the G input is "1",
If both or one of R and B is "1", it is considered that there is a correlation with G and other signals, it is determined that the possibility of a point light source is high, and "0" is output.

【0042】補正回路の一例は図12のブロック図と同
じである。補正回路は、相関検出出力により制御され
る。補正動作は従来例と同様、キズと判定された場合、
前後の画素値の平均で置換するものとする。入力された
信号はFF41,42を通り、中央の注目画素の値とそ
の前後の画素値を抽出し、注目画素の前後の画素値から
これらの平均値を求め補正信号としている。相関検出回
路の検出信号に従い、通常は中央の注目画素の値を、キ
ズと判定した場合は補正信号を出力する。
An example of the correction circuit is the same as the block diagram of FIG. The correction circuit is controlled by the correlation detection output. The correction operation is similar to the conventional example, if it is determined as a scratch,
The average of the pixel values before and after is replaced. The input signal passes through the FFs 41 and 42, extracts the value of the pixel of interest in the center and the pixel values before and after it, and obtains the average value of these pixel values before and after the pixel of interest as a correction signal. In accordance with the detection signal of the correlation detection circuit, the value of the pixel of interest in the center is normally output, and when it is determined that there is a flaw, a correction signal is output.

【0043】本発明の第2の実施例における信号波形を
図7に示す。以上の回路における、キズの場合と点光源
の場合のR,G,Bの入力と出力の関係を示す。この例
のようにGにキズがある場合、Gのみ突出し、補正され
る。通常の白の点光源の場合は、R,G,B間に相関が
あるため信号と判断され、誤って補正されず、本来の信
号が出力される。この例ではG,Rの2経路についての
回路となっているためB信号は直接出力には寄与してい
ない。
FIG. 7 shows a signal waveform in the second embodiment of the present invention. The relationship between the input and output of R, G, and B in the case of a scratch and the case of a point light source in the above circuit is shown. If G has a flaw as in this example, only G is projected and corrected. In the case of an ordinary white point light source, there is a correlation among R, G, and B, so that it is judged as a signal and is not corrected by mistake, and the original signal is output. In this example, the B signal does not directly contribute to the output because the circuit has two paths G and R.

【0044】以上、G,Rの2経路について検出および
補正する場合について述べたが、Bが加わっても、G,
Rについての処理と同様、R,B、B,Gについても同
様な処理を行うことで実現できる。また、検出に当たっ
ては、例えば、Gにおいては、Gの検出回路出力とR,
B両方の検出回路出力の計3出力より相関検出回路にお
いて相関をとる方式も考えられる。
The case of detecting and correcting the two paths G and R has been described above. Even if B is added, G,
Similar to the processing for R, it can be realized by performing the same processing for R, B, B, and G. In the detection, for example, in G, the output of the G detection circuit and R,
A method in which correlation is obtained in the correlation detection circuit from a total of 3 outputs of both B detection circuits is also conceivable.

【0045】以上の第1,第2の実施例については、白
キズについてのみの説明を行っているが、黒キズについ
ても、キズの方向が反対であることを考慮し、a1,a2
の符号、不等号の向きを変更することにより、同様に検
出が可能である。
In the above first and second embodiments, only white scratches have been described, but with regard to black scratches as well, considering that the directions of the scratches are opposite, a 1 and a 2
Similarly, the detection can be performed by changing the sign of and the direction of the inequality sign.

【0046】また、以上の実施例については、水平方向
についてのみの説明を行っているが、垂直方向について
も同様であり、水平方向、垂直方向の両方を組み合わせ
た処理も可能である。
In the above embodiment, only the horizontal direction has been described, but the same applies to the vertical direction, and processing in which both the horizontal direction and the vertical direction are combined is also possible.

【0047】[0047]

【発明の効果】以上の説明より明らかなように、本発明
によれば、点光源のような信号においても従来のように
誤検出、誤補正を行わず、信号とキズを区別し、キズを
精度良く検出できるため、キズについてのみ補正を行
い、本来の画質を劣化させることなく、良好な画像を得
ることができる。
As is apparent from the above description, according to the present invention, even in the case of a signal such as a point light source, the signal and the flaw are distinguished from each other without the erroneous detection and correction as in the conventional case, and the flaw is detected. Since it can be detected with high accuracy, only a flaw is corrected, and a good image can be obtained without deteriorating the original image quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における画素欠陥補正装
置の構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of a pixel defect correction device according to a first embodiment of the present invention.

【図2】同第1の実施例における相関検出回路の内部構
成例を示すブロック図
FIG. 2 is a block diagram showing an internal configuration example of a correlation detection circuit according to the first embodiment.

【図3】同第1の実施例の動作を説明するための信号波
形図
FIG. 3 is a signal waveform diagram for explaining the operation of the first embodiment.

【図4】本発明の第2の実施例における画素欠陥補正装
置の構成を示すブロック図
FIG. 4 is a block diagram showing a configuration of a pixel defect correction device according to a second embodiment of the present invention.

【図5】同第2の実施例における検出回路の内部構成例
を示すブロック図
FIG. 5 is a block diagram showing an internal configuration example of a detection circuit according to the second embodiment.

【図6】同第2の実施例における相関検出回路の内部構
成例を示すブロック図
FIG. 6 is a block diagram showing an internal configuration example of a correlation detection circuit according to the second embodiment.

【図7】同第2の実施例の動作を説明するための信号波
形図
FIG. 7 is a signal waveform diagram for explaining the operation of the second embodiment.

【図8】従来の画素欠陥補正装置の構成を示すブロック
FIG. 8 is a block diagram showing a configuration of a conventional pixel defect correction device.

【図9】従来の画素欠陥補正装置の動作を説明するため
の信号波形図
FIG. 9 is a signal waveform diagram for explaining the operation of a conventional pixel defect correction device.

【図10】従来の画素欠陥補正装置の動作を説明するた
めの信号波形図
FIG. 10 is a signal waveform diagram for explaining the operation of a conventional pixel defect correction device.

【図11】同従来例おける検出回路の内部構成例を示す
ブロック図
FIG. 11 is a block diagram showing an internal configuration example of a detection circuit in the conventional example.

【図12】同従来例における補正回路の内部構成例を示
すブロック図
FIG. 12 is a block diagram showing an internal configuration example of a correction circuit in the conventional example.

【符号の説明】[Explanation of symbols]

1〜3 CCD 11〜13 検出回路 14〜16 補正回路 17 相関検出回路 1 to 3 CCD 11 to 13 detection circuit 14 to 16 correction circuit 17 correlation detection circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の固体撮像素子と、 これらの固体撮像素子の出力の画素の値より突出を検出
する複数の検出回路と、 これらの検出回路の出力の相関を検出する相関検出回路
と、 この相関検出回路の出力信号により制御される補正回路
とからなることを特徴とする画素欠陥補正装置。
1. A plurality of solid-state image pickup devices, a plurality of detection circuits for detecting protrusions from pixel values of outputs of these solid-state image pickup devices, and a correlation detection circuit for detecting correlation of outputs of these detection circuits, A pixel defect correction device comprising a correction circuit controlled by an output signal of the correlation detection circuit.
【請求項2】 第1の固体撮像素子に対し第2の固体撮
像素子が半画素ずれた位置に配置された複数の固体撮像
素子と、 前記第1の固体撮像素子の第1の画素およびその前後の
画素の値より突出を検出する第1の検出回路と、 前記第1の固体撮像素子の第1の画素の半画素前後にあ
る前記第2の固体撮像素子の第2,第3の画素の値およ
びその前後の画素の値より第2,第3の画素の値の突出
を検出する第2の検出回路と、 第1,第2の検出回路の出力の相関を検出する相関検出
回路と、 前記相関検出回路の出力信号により制御される補正回路
とからなることを特徴とする画素欠陥補正装置。
2. A plurality of solid-state imaging devices in which a second solid-state imaging device is arranged at a position shifted by a half pixel with respect to the first solid-state imaging device, a first pixel of the first solid-state imaging device, and the first solid-state imaging device. A first detection circuit for detecting a protrusion from the values of the pixels before and after, and second and third pixels of the second solid-state image sensor that are located before and after a half pixel of the first pixel of the first solid-state image sensor A second detection circuit that detects the protrusion of the values of the second and third pixels based on the value of and the values of the pixels before and after that, and a correlation detection circuit that detects the correlation between the outputs of the first and second detection circuits. And a correction circuit controlled by an output signal of the correlation detection circuit.
JP5166849A 1993-07-06 1993-07-06 Pixel defect correction device Expired - Fee Related JP2903956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5166849A JP2903956B2 (en) 1993-07-06 1993-07-06 Pixel defect correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5166849A JP2903956B2 (en) 1993-07-06 1993-07-06 Pixel defect correction device

Publications (2)

Publication Number Publication Date
JPH0730906A true JPH0730906A (en) 1995-01-31
JP2903956B2 JP2903956B2 (en) 1999-06-14

Family

ID=15838795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5166849A Expired - Fee Related JP2903956B2 (en) 1993-07-06 1993-07-06 Pixel defect correction device

Country Status (1)

Country Link
JP (1) JP2903956B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1178676A1 (en) * 2000-07-31 2002-02-06 Hitachi Kokusai Electric Inc. Method and device for detecting defective pixels of a solid-state colour image-pickup apparatus
JP2003304548A (en) * 2002-04-10 2003-10-24 Canon Inc Imaging apparatus
US7106371B1 (en) 1998-09-08 2006-09-12 Sharp Kabushiki Kaisha Pixel defect detector for solid-state imaging device
JP2007174104A (en) * 2005-12-20 2007-07-05 Fujitsu Ltd Image processing circuit and image processing method
JP2009027252A (en) * 2007-07-17 2009-02-05 Canon Inc Image pickup device and imaging apparatus
JP2013258596A (en) * 2012-06-13 2013-12-26 Denso Corp Image pick-up device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7106371B1 (en) 1998-09-08 2006-09-12 Sharp Kabushiki Kaisha Pixel defect detector for solid-state imaging device
EP1178676A1 (en) * 2000-07-31 2002-02-06 Hitachi Kokusai Electric Inc. Method and device for detecting defective pixels of a solid-state colour image-pickup apparatus
US6950133B2 (en) 2000-07-31 2005-09-27 Hitachi Kokusai Electric Inc. Method of detecting defective pixels of a solid-state image-pickup device and image-pickup apparatus using the same
JP2003304548A (en) * 2002-04-10 2003-10-24 Canon Inc Imaging apparatus
JP2007174104A (en) * 2005-12-20 2007-07-05 Fujitsu Ltd Image processing circuit and image processing method
US7978383B2 (en) 2005-12-20 2011-07-12 Fujitsu Semiconductor Limited Image processing circuit and image processing method
JP2009027252A (en) * 2007-07-17 2009-02-05 Canon Inc Image pickup device and imaging apparatus
JP2013258596A (en) * 2012-06-13 2013-12-26 Denso Corp Image pick-up device

Also Published As

Publication number Publication date
JP2903956B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US7593569B2 (en) Pixel defect correction device
JP5311916B2 (en) Imaging device
US7024041B2 (en) Pattern inspection apparatus and method
JP2000092397A (en) Pixel defect detecting device for solid-state image pickup device
JP2002005846A (en) Defect inspecting apparatus
JP2903956B2 (en) Pixel defect correction device
JP2000059799A (en) Pixel defect correcting device and pixel defect correcting method
JPH077675A (en) Picture element defect correction device
JP3227815B2 (en) Solid-state imaging device
JP2882227B2 (en) Pixel defect correction device
JPH11257937A (en) Defect inspecting method
JP2004297267A (en) Pixel defect processor
JP2002271806A (en) Pixel defect signal correction circuit for ccd image pickup element
JP2000101924A (en) Defect detection correction device in image input device
JPH08265563A (en) Image reader
JP4130275B2 (en) Video signal processing device
JP2006148748A (en) Pixel defect correcting device and pixel defect correcting method
JPH06245148A (en) Picture element defect correction device
JPH0730905A (en) Picture element defect correction device
JPH06268922A (en) Smear correction device
JPH06245149A (en) Picture element defect correction device
JP2002330354A (en) Device, method and program for detecting and correcting defective pixel, and video signal processor
JP4319848B2 (en) Method and apparatus for determining noise components in a video signal and film scanner
JP4636714B2 (en) Signal processing method, image reading apparatus, program, and medium
JPH10243300A (en) Pixel defect detector and pixel defect corrector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees