JPH07305723A - Passive magnetic bearing device - Google Patents

Passive magnetic bearing device

Info

Publication number
JPH07305723A
JPH07305723A JP12062694A JP12062694A JPH07305723A JP H07305723 A JPH07305723 A JP H07305723A JP 12062694 A JP12062694 A JP 12062694A JP 12062694 A JP12062694 A JP 12062694A JP H07305723 A JPH07305723 A JP H07305723A
Authority
JP
Japan
Prior art keywords
magnet
rotating
magnetic bearing
bearing device
flux coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12062694A
Other languages
Japanese (ja)
Inventor
Tsutomu Murakami
力 村上
Kazuki Sato
一樹 佐藤
Yuji Shirao
祐司 白尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP12062694A priority Critical patent/JPH07305723A/en
Publication of JPH07305723A publication Critical patent/JPH07305723A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To make the control of the all five degree of freedom possible except for the rotation at a constant speed or more by providing a magnet train of a fixed unit or a rotating unit and a null flux coil train of the rotating unit or a fixed unit so as to correspond to the magnet train in a compensating means for correcting the axial displacement of the rotating unit. CONSTITUTION:Radial direction of a rotating unit 1 is passively supported freely to be rotated without a contact by the magnetic attracting force of a magnet 1-1 provided at the predetermined position of the rotating unit 1 and a magnet 2-1 provided at the predetermined position of a fixed unit 2 or the reaction force thereof. The axial displacement of the rotating unit l is passively compensated by the induced current generated by crossing the magnetic flux from magnet trains 11-1, 11-2 and the induced electromagnetic force generated by the work of the magnetic flux. Consequently, a passive magnetic bearing device, of which five shafts can be supported by a passive magnetic bearing, with the high safety can be obtained. Furthermore, energy consumption and heating is reduced, and the structure is simplified so as to facilitate the maintenance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転部を固定部に対し
て非接触状態にて支持する磁気軸受装置に関するもの
で、特に、磁気発生手段として永久磁石又は超電導磁石
を使用した受動型磁気軸受装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device for supporting a rotating part in a non-contact state with a fixed part, and more particularly to a passive magnetic device using a permanent magnet or a superconducting magnet as a magnetism generating means. The present invention relates to a bearing device.

【0002】[0002]

【従来技術】最近、半導体設備のように非常に清浄な環
境が要求される分野及び、宇宙技術等のように真空環境
下で使用される回転機器では回転する部材(回転部)を
非接触状態で支持することが要求されている。この要求
に応えるため、電磁石或いは永久磁石の吸引力や反発力
(磁気力)を使用する磁気軸受が各種提案されている。
2. Description of the Related Art Recently, in a field requiring a very clean environment such as semiconductor equipment, and in rotating equipment used in a vacuum environment such as space technology, a rotating member (rotating part) is in a non-contact state. Is required to support. In order to meet this demand, various magnetic bearings that use the attractive force or repulsive force (magnetic force) of an electromagnet or a permanent magnet have been proposed.

【0003】従来この種の磁気軸受装置としては、特開
平1−279116号公報に開示されたものがある。図
12はこの磁気軸受装置の構成を示す図である。重心軸
受21と安定化軸受22は軸受ケース23に固定され、
軸受ケース23には回転軸26の軸方向の位置を検出す
るセンサ24が設けられている。該センサ24の出力は
制御増幅器25に入力され、制御増幅器25の出力電流
は安定化軸受22の偏向コイルに印加され、回転軸26
は目標位置から軸方向にずれた場合、そのずれに対応し
た逆作用力を回転軸26に機械部分27(例えばはずみ
車)が固定されてなるロータ28に与える。これにより
ロータ28(回転軸26)は目標位置に維持される。
A conventional magnetic bearing device of this type is disclosed in Japanese Patent Application Laid-Open No. 1-279116. FIG. 12 is a diagram showing the structure of this magnetic bearing device. The center of gravity bearing 21 and the stabilizing bearing 22 are fixed to the bearing case 23,
The bearing case 23 is provided with a sensor 24 that detects the axial position of the rotating shaft 26. The output of the sensor 24 is input to the control amplifier 25, the output current of the control amplifier 25 is applied to the deflection coil of the stabilizing bearing 22, and the rotating shaft 26
When the axial position is deviated from the target position, a reverse acting force corresponding to the deviated position is applied to the rotor 28 in which a mechanical portion 27 (for example, a flywheel) is fixed to the rotating shaft 26. As a result, the rotor 28 (rotating shaft 26) is maintained at the target position.

【0004】上記安定化軸受22はセンサ24の出力が
制御増幅器25で増幅され、その偏向コイルに入力され
る能動型磁気軸受である。このように従来の磁気軸受装
置は、ロータ28を安定に支持するための軸受として、
能動型磁気軸受が用いられる場合が多い。更に回転部の
回転以外の5自由度(X・Y軸まわり、X・Y軸方向及
び回転軸方向)の制御を全て能動型磁気軸受で行なう所
謂5軸制御方式の磁気軸受装置も提案されている。
The stabilizing bearing 22 is an active magnetic bearing in which the output of the sensor 24 is amplified by the control amplifier 25 and is input to the deflection coil thereof. As described above, the conventional magnetic bearing device serves as a bearing for stably supporting the rotor 28.
Active magnetic bearings are often used. Furthermore, a so-called five-axis control type magnetic bearing device has been proposed in which all control of five degrees of freedom (around the X and Y axes, the X and Y axis directions, and the rotation axis direction) other than the rotation of the rotating portion is controlled by the active magnetic bearing. There is.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電磁石
を用いた能動型磁気軸受の場合には、磁気力を発生する
ため、電流を供給する必要があり、その分だけエネルギ
ーの消費量が増大するという問題があった。
However, in the case of an active magnetic bearing using an electromagnet, since a magnetic force is generated, it is necessary to supply an electric current, and the amount of energy consumption is increased accordingly. There was a problem.

【0006】また、能動型磁気軸受による制御は回転部
の位置検出や供給するべき電流値の計算等の複雑な制御
を必要とするので、その構造が複雑化し、製造コストが
嵩み、更に、制御の為の回路の信頼性や停電対策、保守
性に難点が生じると云う問題があった。
Further, the control by the active magnetic bearing requires complicated control such as position detection of the rotating portion and calculation of the current value to be supplied, so that the structure is complicated and the manufacturing cost is increased. There was a problem that the reliability of the control circuit, measures against power outages, and maintainability suffered.

【0007】また、宇宙空間等の様な真空環境下におい
ては、供給した電流に起因する熱が蓄積され温度が上昇
し、装置全体の誤動作の要因となってしまう。これに対
して、電流の供給を必要としない永久磁石を用いた受動
型磁気軸受も提案されている。しかし、永久磁石の場合
は磁気力の調節が困難なため、前記回転以外の5自由度
の制御を全て受動型磁気軸受で行なうことは従来の技術
では困難であった。
Further, in a vacuum environment such as outer space, heat caused by the supplied current is accumulated and the temperature rises, which causes malfunction of the entire apparatus. On the other hand, a passive magnetic bearing using a permanent magnet that does not require current supply has been proposed. However, in the case of a permanent magnet, it is difficult to adjust the magnetic force. Therefore, it has been difficult for the conventional technique to perform control of all five degrees of freedom other than the rotation by the passive magnetic bearing.

【0008】本発明は上述の点に鑑みてなされたもの
で、上記問題点を除去し、或る一定回転数以上になれば
回転以外の5自由度の制御を全て受動型磁気軸受で行な
うことが出来る受動型磁気軸受装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned problems, and eliminates the above-mentioned problems and performs control of all five degrees of freedom other than rotation by a passive magnetic bearing when the rotation speed exceeds a certain fixed number. It is an object of the present invention to provide a passive magnetic bearing device capable of performing the above.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
本願発明は図1に示すように、回転部(1)と固定部
(2)を有し、回転部(1)の所定位置に設けられた磁
石(永久磁石、超電動磁石、励磁電流の一定な電磁石)
(1−1)と該磁石(1−1)に対応して固定部(2)
の所定位置に設けられた磁石(2−1)の磁気吸引力又
は反発力で回転部(1)のラジアル方向を非接触で回転
自在に支持する受動型磁気軸受を具備する受動型磁気軸
受装置において、回転部(1)の軸方向のずれを修正し
安定に支持する補償手段(10)を設け、該補償手段
(10)は図2乃至図6に示すように固定部(2)又は
回転部(1)に設けられた磁石列(11−1,11−
2)と該磁石列に対向して回転部(1)又は固定部
(2)に設けられたヌルフラックスコイル列(15)を
具備し、回転部の軸方向のずれを該磁石列(11−1,
11−2)とヌルフラックスコイル列(15)の間に相
互作用する誘導電磁力で補償する。
In order to solve the above problems, the present invention has a rotating part (1) and a fixed part (2) as shown in FIG. 1, and is provided at a predetermined position of the rotating part (1). Magnets (permanent magnets, super-electric magnets, electromagnets with a constant exciting current)
(1-1) and fixing part (2) corresponding to the magnet (1-1)
Type magnetic bearing device including a passive type magnetic bearing that rotatably supports the radial direction of the rotating part (1) in a non-contact manner by a magnetic attraction force or a repulsive force of a magnet (2-1) provided at a predetermined position In the above, a compensating means (10) for correcting the axial displacement of the rotating part (1) and stably supporting it is provided, and the compensating means (10) is fixed part (2) or rotating as shown in FIGS. The magnet rows (11-1, 11-) provided in the section (1)
2) and a null flux coil array (15) provided in the rotating part (1) or the fixed part (2) so as to face the magnet array, and the axial displacement of the rotating part is prevented by the magnet array (11-). 1,
11-2) and the null flux coil array (15) are compensated by the induced electromagnetic force interacting with each other.

【0010】また、回転部(1)は固定部(2)の内側
で回転する構造であり、補償手段(10)は、磁石列
(11−1,11−2)を固定部(2)に、ヌルフラッ
クスコイル(15)列を回転部(1)に設け、該磁石列
(11−1,11−2)はリング状継鉄(12−1,1
2−2)の内周面にN極及びS極を交互に着磁してなる
磁石(13)を配置し、ヌルフラックスコイル(15)
列は該磁石列(11−1,11−2)の内周面に所定の
間隙を設けて対向して回転部(1)に配置されたことを
特徴とする。
Further, the rotating part (1) is structured to rotate inside the fixed part (2), and the compensating means (10) connects the magnet array (11-1, 11-2) to the fixed part (2). , A null flux coil (15) row is provided in the rotating part (1), and the magnet rows (11-1, 11-2) are ring-shaped yokes (12-1, 1).
A magnet (13) formed by alternately magnetizing N and S poles is arranged on the inner peripheral surface of 2-2), and a null flux coil (15) is provided.
The rows are arranged in the rotating portion (1) so as to face each other with a predetermined gap provided on the inner peripheral surfaces of the magnet rows (11-1, 11-2).

【0011】また、回転部(1)は固定部(2)の外側
で回転する構造であり、補償手段(10)は、磁石列
(11−1,11−2)を固定部(2)に、ヌルフラッ
クスコイル(15)列を回転部(1)に設け、該磁石列
はリング状継鉄(12−1,12−2)の外周面にN極
及びS極を交互に着磁してなる磁石(13)を配置し、
ヌルフラックスコイル(15)列は該磁石列(11−
1,11−2)の外周面に所定の間隙を設けて対向して
回転部(1)に配置されたことを特徴とする。
Further, the rotating part (1) is structured to rotate outside the fixed part (2), and the compensating means (10) connects the magnet array (11-1, 11-2) to the fixed part (2). , A null flux coil (15) row is provided in the rotating part (1), and the magnet row is obtained by alternately magnetizing N poles and S poles on the outer peripheral surface of the ring yoke (12-1, 12-2). Place the magnet (13)
The null flux coil (15) row is the magnet row (11-
1, 11-2) are provided in the rotating part (1) so as to face each other with a predetermined gap provided on the outer peripheral surfaces thereof.

【0012】また、回転部(1)は固定部(2)の内側
で回転する構造であり、補償手段(10)は、磁石列
(11−1,11−2)を回転部(1)に、ヌルフラッ
クスコイル(15)列を固定部(2)に設け、該磁石列
はリング状継鉄(12−1,12−2)の外周面にN極
及びS極を交互に着磁してなる磁石(13)を配置し、
ヌルフラックスコイル(15)列は該磁石の外周面に所
定の間隙を設けて対向して固定部に配置されたことを特
徴とする。
Further, the rotating part (1) is constructed so as to rotate inside the fixed part (2), and the compensating means (10) causes the magnet array (11-1, 11-2) to move to the rotating part (1). , A null flux coil (15) row is provided on the fixed part (2), and the magnet row is obtained by alternately magnetizing N poles and S poles on the outer peripheral surface of the ring yoke (12-1, 12-2). Place the magnet (13)
The null flux coil (15) row is characterized in that it is arranged in the fixed portion so as to face each other with a predetermined gap provided on the outer peripheral surface of the magnet.

【0013】また、回転部(1)は固定部(2)の外側
で回転する構造であり、補償手段(10)は、磁石列
(11−1,11−2)を固定部(2)に、ヌルフラッ
クスコイル(15)列を回転部(1)に設け、該磁石列
(11−1,11−2)はリング状継鉄(12−1,1
2−2)の外周面にN極及びS極を交互に着磁してなる
磁石(13)を配置し、ヌルフラックスコイル(15)
列は該磁石列(11−1,11−2)の外周面に所定の
間隙を設けて対向して回転部(1)に配置されたことを
特徴とする。
Further, the rotating part (1) is structured to rotate outside the fixed part (2), and the compensating means (10) connects the magnet array (11-1, 11-2) to the fixed part (2). , A null flux coil (15) row is provided in the rotating part (1), and the magnet rows (11-1, 11-2) are ring-shaped yokes (12-1, 1).
A magnet (13) formed by alternately magnetizing N and S poles is arranged on the outer peripheral surface of 2-2), and a null flux coil (15) is provided.
The rows are arranged in the rotating portion (1) so as to face each other with a predetermined gap provided on the outer peripheral surface of the magnet rows (11-1, 11-2).

【0014】また、補償手段(10)のヌルフラックス
コイル(15)列の回転部(1)の磁石列(11−1,
11−2)又は固定部の磁石列(11−1,11−2)
の反対側面にリング状の継鉄(14−1,14−2)を
配置したことを特徴とする。
Further, the magnet array (11-1, 1) of the rotating part (1) of the null flux coil (15) array of the compensating means (10).
11-2) or the magnet row of the fixed part (11-1, 11-2)
The ring-shaped yoke (14-1, 14-2) is arranged on the side opposite to the above.

【0015】[0015]

【作用】本発明は、回転部(1)のラジアル方向は回転
部(1)の所定位置に設けられた磁石(1−1)と固定
部(2)の所定位置に設けられた磁石(2−1)の磁気
吸引力又は反発力で受動的に非接触で回転自在に支持す
ると共に、回転部(1)の軸方向のずれは回転部(1)
の回転により、補償手段(10)のヌルフラックスコイ
ル(15)が磁石列(11−1,11−2)からの磁束
を横切ることにより発生する誘導電流と該磁束の作用に
より発生する誘導電磁力で受動的に補償する。従って、
本発明は5軸を全て受動型磁気軸受で支持する安全性の
高い受動型磁気軸受装置となる。
According to the present invention, in the radial direction of the rotating part (1), the magnet (1-1) provided at a predetermined position of the rotating part (1) and the magnet (2 provided at a predetermined position of the fixed part (2). -1) is rotatably supported in a non-contact manner passively by the magnetic attraction force or repulsive force of -1), and the axial displacement of the rotating unit (1) is
The rotation of the coil causes the null flux coil (15) of the compensating means (10) to cross the magnetic flux from the magnet arrays (11-1, 11-2), and the induced electromagnetic force generated by the action of the magnetic flux. To compensate passively. Therefore,
The present invention provides a highly safe passive magnetic bearing device in which all five axes are supported by passive magnetic bearings.

【0016】[0016]

【実施例】以下本発明の一実施例を図面に基づいて詳細
に説明する。図1は本発明の受動型磁気軸受装置の概略
構成例を示す図である。図示するように、本受動型磁気
軸受装置は回転部1と固定部2を具備し、回転部1の上
下(又は左右)両端の外周上には永久磁石1−1が配置
され、それに対向して固定部2には永久磁石1−2が配
置されている。該永久磁石(又は超電導磁石)1−1と
永久磁石1−2は互いに反発し合う磁力を発生する。上
下両端の永久磁石1−1,1−1の間及び永久磁石1−
2,1−2の間には回転部1が軸方向にずれるのを防止
する為の補償手段10が設けられている。なお、図1で
は回転部1を回転させる回転駆動部は省略してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration example of a passive magnetic bearing device of the present invention. As shown in the figure, the passive magnetic bearing device includes a rotating portion 1 and a fixed portion 2, and permanent magnets 1-1 are arranged on the outer circumferences of the upper and lower (or left and right) ends of the rotating portion 1 and face each other. The permanent magnet 1-2 is arranged on the fixed portion 2. The permanent magnet (or superconducting magnet) 1-1 and the permanent magnet 1-2 generate magnetic forces that repel each other. Between the upper and lower permanent magnets 1-1 and 1-1 and between the permanent magnets 1-
A compensating means 10 is provided between 2, 1-2 for preventing the rotating part 1 from being displaced in the axial direction. In FIG. 1, the rotary drive unit that rotates the rotary unit 1 is omitted.

【0017】上記のように回転部1の上下の永久磁石1
−1と固定部2の上下の永久磁石2−1は互いに反発し
あう磁力を発生するので、回転部1は静止時及び回転時
において、ラジアル方向に対して非接触で回転自在に支
持されている。そして回転部1の軸方向のずれは補償手
段10で補償される。なお、図中、4は回転中の回転部
1の振れ回りを減衰させるための渦電流ダンパーであ
り、永久磁石2−1の表面を覆い銅等の電気導電体で構
成され、回転部1の回転により該渦電流ダンパー4に渦
電流を発生させ、該渦電流と永久磁石1−1の磁束との
作用により、回転部1の振れ回りを減衰させる。
As described above, the permanent magnets 1 above and below the rotary unit 1
-1 and the upper and lower permanent magnets 2-1 of the fixed portion 2 generate magnetic forces that repel each other, so that the rotating portion 1 is rotatably supported in the radial direction in a non-contact manner at rest and during rotation. There is. The axial displacement of the rotating part 1 is compensated by the compensating means 10. In the figure, reference numeral 4 denotes an eddy current damper for damping whirling of the rotating portion 1 during rotation, which covers the surface of the permanent magnet 2-1 and is made of an electric conductor such as copper. An eddy current is generated in the eddy current damper 4 by the rotation, and the whirling of the rotating part 1 is attenuated by the action of the eddy current and the magnetic flux of the permanent magnet 1-1.

【0018】図2は図1に示す補償手段10の固定部1
0−2の構造例を示す図である。図示するように、補償
手段10の固定部10−2は上下2列の磁石列11−
1、11−2からなり、各磁石列11−1、11−2は
永久磁石13をリング状の継鉄12−1,12−2の内
周にN極とS極と交互に並べて配置した構成である。そ
して磁石列11−1と磁石列11−2は、磁石列11−
1の永久磁石13のN極が磁石列11−2の永久磁石1
3のS極に対応するように配置されている。
FIG. 2 shows the fixing portion 1 of the compensating means 10 shown in FIG.
It is a figure which shows the constructional example of 0-2. As shown in the figure, the fixed portion 10-2 of the compensating means 10 includes two upper and lower magnet rows 11-.
Each of the magnet rows 11-1 and 11-2 has the permanent magnets 13 arranged alternately on the inner circumference of the ring-shaped yokes 12-1 and 12-2 with the N pole and the S pole. It is a composition. And the magnet row 11-1 and the magnet row 11-2 are the magnet row 11-
The N pole of the permanent magnet 13 of No. 1 is the permanent magnet 1 of the magnet array 11-2.
It is arranged so as to correspond to the S pole of No. 3.

【0019】図3は図1に示す補償手段10の構成例を
示す図で、同図(A)は平断面図、同図(B)はその一
部拡大斜視図である。図示するように、補償手段10の
固定部10−2の磁石列11−1、11−2に面した回
転部1の外周上にはリング状の継鉄14−1、14−2
が配設され、該継鉄14−1、14−2の外周面上には
ヌルフラックスコイル15が配設されて補償手段10の
回転部10−1が構成されている。各磁石列11−1の
N極の永久磁石13からの磁束aは継鉄14−1を通っ
て隣接するS極の永久磁石13に入る磁路を形成する。
また、同じく各磁石列11−2のN極の永久磁石13か
らの磁束は継鉄14−2を通って隣接するS極の永久磁
石13に入る磁路を形成する。ここで継鉄14−1、1
4−2は磁束a、bが通る磁路を形成するため磁気材料
が使用されている。
FIG. 3 is a diagram showing an example of the configuration of the compensating means 10 shown in FIG. 1. FIG. 3A is a plan sectional view and FIG. 3B is a partially enlarged perspective view thereof. As shown in the drawing, ring-shaped yokes 14-1 and 14-2 are provided on the outer circumference of the rotating portion 1 facing the magnet rows 11-1 and 11-2 of the fixed portion 10-2 of the compensating means 10.
Is arranged, and the null flux coil 15 is arranged on the outer peripheral surfaces of the yokes 14-1 and 14-2 to form the rotating portion 10-1 of the compensating means 10. The magnetic flux a from the N-pole permanent magnet 13 of each magnet row 11-1 forms a magnetic path through the yoke 14-1 and into the adjacent S-pole permanent magnet 13.
Similarly, the magnetic flux from the N-pole permanent magnet 13 of each magnet array 11-2 forms a magnetic path through the yoke 14-2 and into the adjacent S-pole permanent magnet 13. Yoke iron 14-1, 1
4-2 uses a magnetic material to form a magnetic path through which the magnetic fluxes a and b pass.

【0020】上記構成の補償手段10において、回転部
1が回転すると、該補償手段10の回転部10−1の外
周に配置された各ヌルフラックスコイル15は磁石列1
1−1の永久磁石13からの磁束a及び磁石列11−2
から生じる磁束bを横切る。そして回転部1の軸方向が
正常な位置(目標位置)にあれば磁束aと磁束bは方向
が逆で強さが同じに設定されているのでヌルフラックス
コイル15には互いに打ち消し合う起電力が生じ電流は
流れない。
In the compensating means 10 having the above structure, when the rotating part 1 rotates, each null flux coil 15 arranged on the outer periphery of the rotating part 10-1 of the compensating means 10 causes the magnet array 1 to move.
Magnetic flux a from permanent magnet 13 of 1-1 and magnet array 11-2
Traverse the magnetic flux b generated by If the axial direction of the rotating unit 1 is at a normal position (target position), the magnetic flux a and the magnetic flux b are set in opposite directions and have the same strength, so that the null flux coils 15 have electromotive forces that cancel each other out. The resulting current does not flow.

【0021】回転部1の軸方向の位置が正常位置(目標
位置)からずれた場合、各ヌルフラックスコイル15が
横切る磁束は磁束a又は磁束bの何れかが強くなり、そ
の差に応じた誘導電流が各ヌルフラックスコイル15に
流れる。この電流と磁束a又は磁束bによりヌルフラッ
クスコイル15は電流の変化を妨げる方向(電流が減る
方向)に誘導電磁力(復元力)を受ける。即ち、回転部
1はヌルフラックスコイル15が横切る磁束a及び磁束
bがバランスした位置で回転することになる。なお、図
ではヌルフラックスコイル15の幅を1個の永久磁石1
3の幅に対応して形成されているがこれに限定されるも
のではなく、これより大きくても小さくともよい。
When the axial position of the rotating part 1 is deviated from the normal position (target position), either the magnetic flux a or the magnetic flux b becomes stronger in the magnetic flux traversed by each null flux coil 15, and the induction depending on the difference. A current flows through each null flux coil 15. Due to the current and the magnetic flux a or the magnetic flux b, the null flux coil 15 receives an induction electromagnetic force (restoring force) in a direction in which a change in the current is impeded (a direction in which the current decreases). That is, the rotating unit 1 rotates at a position where the magnetic flux a and the magnetic flux b which the null flux coil 15 crosses are balanced. In the figure, the width of the null flux coil 15 is set to one permanent magnet 1
Although it is formed corresponding to the width of 3, it is not limited to this and may be larger or smaller than this.

【0022】図4は図1に示す補償手段10の他の構成
例を示す図で、同図(A)は平断面図、(B)はその一
部拡大斜視図である。なお、同図において図2及び図3
と同一符号を付した部分は同一又は相当部分を示す。以
下、図5及び図6においても同様とする。本補償手段1
0は図示するように、図3に示すヌルフラックスコイル
15をそのコイル面を回転部の半径方向と一致させて円
周方向に並べたものである。
FIG. 4 is a diagram showing another example of the configuration of the compensating means 10 shown in FIG. 1, in which FIG. 4A is a plan sectional view and FIG. 4B is a partially enlarged perspective view thereof. In addition, in FIG.
The parts to which the same reference numerals are given indicate the same or corresponding parts. Hereinafter, the same applies to FIGS. 5 and 6. This compensation means 1
As shown in FIG. 0, the null flux coil 15 shown in FIG. 3 is arranged in the circumferential direction with its coil surface aligned with the radial direction of the rotating portion.

【0023】図4に示す構成の補償手段10において、
回転部1が回転すると、補償手段10の回転部10−1
のヌルフラックスコイル15は磁石列11−1のN極の
永久磁石13から隣接するS極の永久磁石13に入る磁
束a及び磁石列11−2のN極の永久磁石13から隣接
するS極の永久磁石13に入る磁束bを横切る。そして
回転部1の軸方向が正常な位置にあれば磁束aと磁束b
は方向が逆で強さが同じに設定されているのでヌルフラ
ックスコイル15には互いに打ち消し合う起電力が生じ
電流は流れない。
In the compensating means 10 having the structure shown in FIG.
When the rotating unit 1 rotates, the rotating unit 10-1 of the compensating means 10
The null flux coil 15 of the magnetic flux a entering the adjacent S-pole permanent magnet 13 from the N-pole permanent magnet 13 of the magnet array 11-1 and the adjacent S-pole of the N-pole permanent magnet 13 of the magnet array 11-2. The magnetic flux b entering the permanent magnet 13 is crossed. If the axial direction of the rotating part 1 is in the normal position, the magnetic flux a and the magnetic flux b
Since the directions are opposite to each other and the strengths are set to the same, electromotive forces cancel each other out in the null flux coil 15 and no current flows.

【0024】回転部1の軸方向の位置が正常位置(目標
位置)からずれた場合、回転部1は図3の場合と同様ず
れを無くす方向に復元力を受ける。即ち、回転部1はヌ
ルフラックスコイル15が横切る磁束a及び磁束bがバ
ランスした位置で回転することになる。本補償手段10
は、図3の場合に比較し、ヌルフラックスコイル15の
数が多くなるのでそれに応じて復元力が強くなり安定性
は向上する。
When the axial position of the rotary unit 1 deviates from the normal position (target position), the rotary unit 1 receives a restoring force in the direction of eliminating the misalignment as in the case of FIG. That is, the rotating unit 1 rotates at a position where the magnetic flux a and the magnetic flux b which the null flux coil 15 crosses are balanced. Main compensation means 10
In comparison with the case of FIG. 3, since the number of the null flux coils 15 is increased, the restoring force becomes stronger accordingly and the stability is improved.

【0025】図5は図1に示す補償手段10の他の構成
例を示す図で、同図(A)は平断面図、同図(B)は一
部拡大斜視図である。本補償手段10は図示するよう
に、固定部2に1列の磁石列11−1を配設し、該磁石
列11−1に対応して回転部1の外周に半回転捻った形
状の8字型のヌルフラックスコイル15を配設したもの
である。
FIG. 5 is a diagram showing another example of the configuration of the compensating means 10 shown in FIG. 1. FIG. 5A is a plan sectional view and FIG. 5B is a partially enlarged perspective view. As shown in the figure, the compensating means 10 has one row of magnets 11-1 arranged in the fixed part 2 and has a shape of a half-turn twisted around the outer circumference of the rotating part 1 corresponding to the magnets 11-1. The character-shaped null flux coil 15 is arranged.

【0026】上記構成の補償手段10において、回転部
1が回転すると各ヌルフラックスコイル15は磁石列2
−1のN極から隣接するS極に入る磁束aを横切る。回
転部1の軸方向が正常な位置にあれば、ヌルフラックス
コイル15の上部環状部15−1と下部環状部15−2
では同じ強さの磁束aを平衡して横切るので、起電力は
上部環状部15−1と下部環状部15−2で逆向きとな
り電流は流れない。
In the compensating means 10 having the above-described structure, when the rotating part 1 rotates, each null flux coil 15 causes the magnet array 2 to move.
It traverses the magnetic flux a from the -1 N pole to the adjacent S pole. If the axial direction of the rotating part 1 is in a normal position, the upper annular part 15-1 and the lower annular part 15-2 of the null flux coil 15 are arranged.
Then, since the magnetic flux a of the same strength is balanced and crossed, the electromotive force becomes opposite in the upper annular portion 15-1 and the lower annular portion 15-2, and no current flows.

【0027】回転部1が正常位置から軸方向にずれた場
合、各ヌルフラックスコイル15が横切る磁束は上部環
状部15−1又は下部環状部15−2の何れかが強くな
りヌルフラックスコイル15にその差に応じた電流が流
れる。この電流と磁束aの相互作用により、ヌルフラッ
クスコイル15は電流の変化を妨げる方向(電流が減る
方向)に誘導電磁力(復元力)を受ける。即ち、回転部
1は8字型のヌルフラックスコイル15が磁気的にバラ
ンスした軸方向の位置で回転することになる。
When the rotating portion 1 is displaced from the normal position in the axial direction, the magnetic flux traversed by each null flux coil 15 becomes strong in either the upper annular portion 15-1 or the lower annular portion 15-2, and the null flux coil 15 becomes stronger. A current flows according to the difference. Due to the interaction between the current and the magnetic flux a, the null flux coil 15 receives an induction electromagnetic force (restoring force) in a direction in which a change in the current is impeded (a direction in which the current decreases). That is, the rotating unit 1 rotates at the axial position where the 8-shaped null flux coil 15 is magnetically balanced.

【0028】図6は図1に示す補償手段10の他の構成
例を示す図で、同図(A)は平断面図、同図(B)はそ
の一部拡大斜視図を示す。本補償手段10の固定部2は
円筒状の継鉄12−1の内周面に多数段の磁石列11−
1,11−2,11−3,11−4,・・・・・を配設
した構成であり、補償手段10の固定部10−2はリン
グ状の継鉄12−1の内周面に前記磁石列11−1,1
1−2,11−3,11−4,・・・・・に対応してヌ
ルフラックスコイル15を配設した構成である。
FIG. 6 is a diagram showing another example of the configuration of the compensating means 10 shown in FIG. 1. FIG. 6A is a plan sectional view and FIG. 6B is a partially enlarged perspective view thereof. The fixed part 2 of the compensating means 10 has a multi-stage magnet array 11- on the inner peripheral surface of a cylindrical yoke 12-1.
1, 11-2, 11-3, 11-4, ... are arranged, and the fixed portion 10-2 of the compensating means 10 is provided on the inner peripheral surface of the ring-shaped yoke 12-1. The magnet rows 11-1, 1
The null flux coil 15 is arranged corresponding to 1-2, 11-3, 11-4, ....

【0029】上記構成の補償手段10の原理は、矩形状
のヌルフラックスコイル15の軸方向の中点で2等分し
て想定した2個のコ字形が発生する起電力を考えれば図
5の8字形のヌルフラックスコイル15の場合と全く等
しいので、説明は省略する。なお、磁石列11−1,1
1−2,11−3,11−4,・・・・・に対向するリ
ング状の継鉄12−1及び継鉄14−1は該磁石列と同
数にして(1列の場合も)対向させることが望ましい。
The principle of the compensating means 10 having the above-mentioned structure is shown in FIG. 5 in consideration of an electromotive force which generates two U-shaped portions which are assumed to be equally divided into two at the midpoint in the axial direction of the rectangular null flux coil 15. Since it is exactly the same as the case of the 8-shaped null flux coil 15, the description thereof will be omitted. In addition, the magnet rows 11-1, 1
The ring-shaped yokes 12-1 and yokes 14-1 facing 1-2, 11-3, 11-4, and so on face each other in the same number as that of the magnet rows (even in the case of one row). It is desirable to let

【0030】なお、図2乃至図6において、補償手段1
0は回転部10−1が固定部10−2の内側に位置し、
回転するように構成されているが、補償手段10の構成
はこれに限定されるものではなく、回転部10−1が固
定部10−2の外側に位置し、回転するように構成して
もよい。また、磁石列11−1,11−2を固定部10
−2に配置し、ヌルフラックスコイル15を回転部10
−1に配置したが、これに限定されるものではなく、磁
石列11−1,11−2を回転部10−1に配置し、ヌ
ルフラックスコイル15を固定部10−2に配置しても
よい。
2 to 6, the compensating means 1
In 0, the rotating part 10-1 is located inside the fixed part 10-2,
Although it is configured to rotate, the configuration of the compensating means 10 is not limited to this, and the rotating unit 10-1 may be located outside the fixed unit 10-2 and configured to rotate. Good. In addition, the magnet rows 11-1 and 11-2 are attached to the fixed portion 10
-2, the null flux coil 15 is placed in the rotating unit 10.
However, the arrangement is not limited to this, and the magnet rows 11-1 and 11-2 may be arranged in the rotating portion 10-1 and the null flux coil 15 may be arranged in the fixed portion 10-2. Good.

【0031】また、磁石列11−1,11−2を構成す
る永久磁石13は、永久磁石に限定されるものではな
く、超伝導磁石、或いは場合によっては励磁電流が一定
な電磁石であってもよい。
Further, the permanent magnets 13 constituting the magnet arrays 11-1 and 11-2 are not limited to permanent magnets, and may be superconducting magnets or electromagnets having a constant exciting current in some cases. Good.

【0032】上記のように本磁気軸受装置は、ラジアル
剛性を図1に示す回転部1の上下端の永久磁石1−1と
固定部2の上下端の永久磁石1−2の磁気反発力により
受動的に支持する受動型磁気軸受でカバーし、軸方向の
不安定性のみを図2乃至図6に示す構成のいずれかの補
償手段10で支持することにより、5自由度全てを受動
型磁気軸受で構成した磁気軸受装置となる。しかも軸方
向の不安定性のみを回転部1の回転による誘導電磁力で
相殺することで更に高い安定化を実現できる。
As described above, the present magnetic bearing device has radial rigidity due to the magnetic repulsive force of the permanent magnets 1-1 at the upper and lower ends of the rotating portion 1 and the permanent magnets 1-2 at the upper and lower ends of the fixed portion 2 shown in FIG. By covering with passive magnetic bearings that are passively supported and only the axial instability is supported by the compensating means 10 having any of the configurations shown in FIGS. 2 to 6, all five degrees of freedom are passive magnetic bearings. The magnetic bearing device is composed of. Moreover, even higher instability can be realized by offsetting only the axial instability by the induced electromagnetic force generated by the rotation of the rotating portion 1.

【0033】図7は本発明の受動型磁気軸受装置の他の
概略構成例を示す図である。本受動型磁気軸受装置は回
転軸3の上部及び下部には永久磁石1−2を配設し、対
応する固定部2には該永久磁石1−2と互いに吸引し合
う永久磁石2−2を空隙を設けて配設している。回転軸
3の中央部に図2乃至図6に示す構成のいずれかの補償
手段10を配設している。
FIG. 7 is a view showing another schematic configuration example of the passive magnetic bearing device of the present invention. In this passive magnetic bearing device, permanent magnets 1-2 are arranged on the upper and lower parts of a rotary shaft 3, and corresponding permanent magnets 2 are provided with permanent magnets 2-2 that attract each other. It is provided with a gap. The compensating means 10 having any one of the configurations shown in FIGS. 2 to 6 is arranged at the center of the rotary shaft 3.

【0034】受動型磁気軸受装置を図7に示すように構
成することにより、ラジアル方向は回転軸3の永久磁石
1−2を永久磁石2−2で吸引することにより支持し、
軸方向は上記補償手段10で支持することにより、図1
の場合と同様、安定性の高い、5自由度全てを受動型磁
気軸受で構成した軸受装置となる。
By constructing the passive magnetic bearing device as shown in FIG. 7, the permanent magnet 1-2 of the rotary shaft 3 is supported by being attracted by the permanent magnet 2-2 in the radial direction,
By supporting the compensating means 10 in the axial direction, as shown in FIG.
Similar to the above case, the bearing device is highly stable and has all five degrees of freedom formed by passive magnetic bearings.

【0035】図8は本発明の受動型磁気軸受装置の他の
概略構成例を示す図である。本受動型磁気軸受装置は、
回転軸3の上部に永久磁石1−2を配設し、該永久磁石
1−2に対応して固定部2に互いに吸引する永久磁石2
−2を配設している。回転軸3の下部にフランジ3−1
を取付け、その周囲に永久磁石1−3を配設し、該永久
磁石1−3に対応して固定部2に互いに吸引する永久磁
石2−3を配設している。回転軸3の中央部に図2乃至
図6に示す構成のいずれかの補償手段10を配設してい
る。
FIG. 8 is a view showing another schematic configuration example of the passive magnetic bearing device of the present invention. This passive magnetic bearing device is
The permanent magnet 1-2 is arranged on the upper part of the rotating shaft 3, and the permanent magnet 2 attracts each other to the fixed portion 2 corresponding to the permanent magnet 1-2.
-2 is provided. Flange 3-1 on the bottom of rotating shaft 3
Is attached, a permanent magnet 1-3 is arranged around it, and a permanent magnet 2-3 for attracting each other is arranged in the fixed portion 2 corresponding to the permanent magnet 1-3. The compensating means 10 having any one of the configurations shown in FIGS. 2 to 6 is arranged at the center of the rotary shaft 3.

【0036】受動型磁気軸受装置を図8に示すように構
成することにより、回転軸3の下部にフランジ3−1を
取付けるので、回転部1の重量が大きいものでも安定し
て支持することができる5自由度全てを受動型磁気軸受
で構成した軸受装置となる。
By constructing the passive magnetic bearing device as shown in FIG. 8, since the flange 3-1 is attached to the lower portion of the rotary shaft 3, it is possible to stably support the rotary part 1 having a large weight. The bearing device has all five possible degrees of freedom made up of passive magnetic bearings.

【0037】図9は本発明の受動型磁気軸受装置の他の
概略構成例を示す図である。本受動型磁気軸受装置は、
回転軸3の上部には外周上には永久磁石2−1が配置さ
れ、それに対向して固定部2には該永久磁石1−1と反
発しあう永久磁石2−1が配置されて、回転軸3の下部
にはフランジ3−1を取付け、その周囲に永久磁石1−
3を配設し、該永久磁石1−3に対応して固定部2に互
いに吸引する永久磁石2−3を配設している。そして回
転軸3の中央部に図2乃至図6に示す構成のいずれかの
補償手段10を配設している。
FIG. 9 is a diagram showing another schematic configuration example of the passive magnetic bearing device of the present invention. This passive magnetic bearing device is
A permanent magnet 2-1 is arranged on the outer periphery of the upper portion of the rotary shaft 3, and a permanent magnet 2-1 that repels the permanent magnet 1-1 is arranged on the fixed portion 2 so as to face the permanent magnet 2-1 and rotate. A flange 3-1 is attached to the lower part of the shaft 3, and a permanent magnet 1-
3 is provided, and a permanent magnet 2-3 that attracts each other is provided to the fixed portion 2 corresponding to the permanent magnet 1-3. The compensating means 10 having any one of the configurations shown in FIGS. 2 to 6 is arranged at the center of the rotary shaft 3.

【0038】受動型磁気軸受装置を図9に示すように構
成することにより、回転軸3を支持する面積が広くな
り、安定して回転体を支持することができる5自由度全
てを受動型磁気軸受で構成した軸受装置となる。
By constructing the passive magnetic bearing device as shown in FIG. 9, the area for supporting the rotary shaft 3 is widened, and the passive magnetic field has all five degrees of freedom capable of stably supporting the rotating body. The bearing device is composed of bearings.

【0039】図10は本発明の受動型軸受装置の他の概
略構成例を示す図である。本受動型軸受装置は、補償手
段10が回転部の上下に配置されている点で、図1と相
違するが他の部分は同一である。上下の補償手段10は
図2乃至図6に示す構成のいずれかの補償手段を用い
る。
FIG. 10 is a diagram showing another schematic configuration example of the passive bearing device of the present invention. The present passive bearing device is different from FIG. 1 in that the compensating means 10 is arranged above and below the rotating part, but the other parts are the same. As the upper and lower compensating means 10, any compensating means having the configuration shown in FIGS. 2 to 6 is used.

【0040】なお、図示は省略するが、回転軸の中央部
に受動型磁気軸受を設け、補償手段を2分割して回転軸
の両端部に設けることも可能である。この場合、補償手
段は比較的低い回転速度でダンパの役割もするが、高速
では不十分になることもあるので、渦電流ダンパなどを
更に設ける必要もある。
Although not shown, it is also possible to provide a passive magnetic bearing at the center of the rotary shaft and divide the compensating means into two parts to provide at both ends of the rotary shaft. In this case, the compensating means also acts as a damper at a relatively low rotation speed, but at a high speed it may be insufficient, so it is necessary to additionally provide an eddy current damper or the like.

【0041】図11は本発明の受動型磁気軸受装置の非
回転時のタッチダウンベアリングの構成例を示す図であ
る。本発明の受動型磁気軸受装置は非回転時には軸方向
に不安定なので、これを利用し、常にどちらか片方の軸
方向変位を、ピポット軸受5で接触的に支持する。常に
片方だけの接触にするためには、受動型磁気軸受と、補
償手段10(ヌルフラックスコイル系)の軸方向中立点
を一致させず、ほんの僅かずらしておけばよい。つまり
減速によりヌルフラックスコイル系の復元力が減少した
際に、受動型磁気軸受が軸方向のどちらの力を発生する
のかでタッチダウンベアリングの方向が決まる。
FIG. 11 is a diagram showing an example of the structure of the touchdown bearing when the passive magnetic bearing device of the present invention is not rotating. Since the passive magnetic bearing device of the present invention is unstable in the axial direction when it is not rotating, this is utilized to constantly support one of the axial displacements by the pivot bearing 5 in a contact manner. In order to always make contact with only one side, the passive magnetic bearing and the neutral point in the axial direction of the compensating means 10 (null flux coil system) do not coincide with each other, but may be slightly shifted. That is, when the restoring force of the null flux coil system decreases due to deceleration, the direction of the touchdown bearing is determined depending on which axial force the passive magnetic bearing generates.

【0042】ピポット軸受5は図11に示すように両端
に設けた場合は、受動型磁気軸受と、ヌルフラックスコ
イル系の軸方向中立点のずれを小さくし、非回転の場合
のタッチダウンの接触を小さくできるから、回転部の浮
上前の回転ドラク(抵抗)は小さくなり、浮上までの回
転トルクが小さくなる。ただしこの場合不測の事態に備
えてラジアル方向のタッチダウンベアリングを設ける必
要がある。なお、タッチダウンベアリングはピポット軸
受5に限定されるものではなく、ニードルベアリングで
もよい。
When the pivot bearings 5 are provided at both ends as shown in FIG. 11, the displacement between the passive magnetic bearing and the neutral point in the axial direction of the null flux coil system is made small, and touchdown contact is made in the case of non-rotation. Therefore, the rotating drag (resistance) of the rotating part before the floating becomes small, and the rotating torque to the floating becomes small. However, in this case, it is necessary to provide a touchdown bearing in the radial direction in case of an unexpected situation. The touchdown bearing is not limited to the pivot bearing 5, and may be a needle bearing.

【0043】上記のように本受動型磁気軸受装置の重要
な点は、ラジアル剛性を図1、図7、図8、図9及び図
10に示す構成の受動型磁気軸受でカバーし、軸方向の
不安定のみを補償手段10の回転部10−1の回転によ
る誘導電磁力で相殺し、さらに高い安定化を図ることに
ある。その際、回転部1の重量は、磁気軸受装置が横型
で使用する場合には当然受動型磁気軸受で支持しなけれ
ばならないが、縦型の場合には受動型磁気軸受の軸方向
の浮上力と釣り合う点を利用すべきである。この釣り合
う点は勿論不安定な平衡点であり、この不安定の剛性は
補償手段10のヌルフラックスコイル系が補償する。
As described above, the important point of the passive magnetic bearing device is that the radial rigidity is covered by the passive magnetic bearing having the structure shown in FIGS. 1, 7, 8, 9 and 10. The instability is only canceled by the induction electromagnetic force generated by the rotation of the rotating portion 10-1 of the compensating means 10 to achieve higher stability. At that time, the weight of the rotating portion 1 must be supported by the passive magnetic bearing when the magnetic bearing device is used horizontally, but in the case of the vertical type, the levitation force in the axial direction of the passive magnetic bearing is required. You should make use of the points that balance with. This point of equilibrium is of course an unstable equilibrium point, and the stiffness of this instability is compensated by the null flux coil system of the compensating means 10.

【0044】回転部1を回転させる手段は図示しなかっ
たが、モータ、風力、その他の手段で与えるが、モータ
の場合にはラジアル方向に不安定剛性を有する鉄心のあ
るものは不向きであり、コアレスモータが望ましい。
Although the means for rotating the rotating portion 1 is not shown, it is provided by a motor, wind force, or other means. However, in the case of a motor, an iron core having unstable rigidity in the radial direction is not suitable, Coreless motors are preferred.

【0045】図1、図7、図8、図9及び図10におい
ては、受動型の磁気軸受を構成する磁石として、永久磁
石を用いる例を示したが、永久磁石に限定されるもので
はなく、超伝導磁石、場合によっては励磁電流一定の電
磁石を用いてもよい。なお、図1、図7、図8及び図9
の受動型磁気軸受装置において、回転部と固定部が反対
になってもよい。
1, FIG. 7, FIG. 8, FIG. 9 and FIG. 10, an example in which a permanent magnet is used as the magnet constituting the passive magnetic bearing is shown, but the present invention is not limited to the permanent magnet. Alternatively, a superconducting magnet, or an electromagnet having a constant exciting current may be used. Note that FIG. 1, FIG. 7, FIG. 8 and FIG.
In the passive magnetic bearing device, the rotating portion and the fixed portion may be opposite to each other.

【0046】[0046]

【発明の効果】以上、詳細に説明したように本発明によ
れば、下記のような優れた効果が期待される。回転部の
ラジアル方向は回転部の所定位置に設けられた磁石と、
該磁石に対応して固定部の所定位置に設けられた磁石の
磁気吸引力又は反発力で受動的に非接触で回転自在に支
持すると共に、回転部の軸方向のずれを回転部の回転に
より、補償手段のヌルフラックスコイル列が磁石列から
の磁束を横切ることにより発生する誘導電流と、該磁束
の作用により発生する誘導電磁力で受動的に補償するの
で、従来の能動型磁気軸受に較べて安全性が極めて高
く、消費エネルギーや熱発生が少なく、且つ構造が簡単
で保守の容易な受動型磁気軸受装置が得られる。
As described in detail above, according to the present invention, the following excellent effects are expected. The radial direction of the rotating part is a magnet provided at a predetermined position of the rotating part,
The magnetic attraction force or repulsive force of a magnet provided at a predetermined position of the fixed portion corresponding to the magnet is passively supported rotatably in a non-contact manner, and the axial displacement of the rotary portion is caused by the rotation of the rotary portion. Since the null flux coil array of the compensating means passively compensates by the induced current generated by the magnetic flux from the magnet array and the induced electromagnetic force generated by the action of the magnetic flux, it is compared with the conventional active magnetic bearing. Thus, it is possible to obtain a passive magnetic bearing device which has extremely high safety, consumes less energy and generates less heat, has a simple structure, and is easy to maintain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の受動型磁気軸受装置の構成例を示す図
である。
FIG. 1 is a diagram showing a configuration example of a passive magnetic bearing device of the present invention.

【図2】本発明の受動型磁気軸受装置に用いる補償手段
の固定部の構成例を示す図である。
FIG. 2 is a diagram showing a configuration example of a fixing portion of compensating means used in the passive magnetic bearing device of the present invention.

【図3】本発明の受動型磁気軸受装置に用いる補償手段
の構成例を示す図で、同図(A)は平断面図、同図
(B)は一部拡大斜視図である。
3A and 3B are diagrams showing a configuration example of compensating means used in the passive magnetic bearing device of the present invention, wherein FIG. 3A is a plan sectional view and FIG. 3B is a partially enlarged perspective view.

【図4】本発明の受動型磁気軸受装置に用いる補償手段
の構成例を示す図で、同図(A)は平断面図、同図
(B)は一部拡大斜視図である。
4A and 4B are diagrams showing a configuration example of compensating means used in the passive magnetic bearing device of the present invention, FIG. 4A is a plan sectional view, and FIG. 4B is a partially enlarged perspective view.

【図5】本発明の受動型磁気軸受装置に用いる補償手段
の構成例を示す図で、同図(A)は平断面図、同図
(B)は一部拡大斜視図である。
5A and 5B are diagrams showing a configuration example of compensating means used in the passive magnetic bearing device of the present invention, wherein FIG. 5A is a plan sectional view and FIG. 5B is a partially enlarged perspective view.

【図6】本発明の受動型磁気軸受装置に用いる補償手段
の構成例を示す図で、同図(A)は平断面図、同図
(B)は一部拡大斜視図である。
6A and 6B are diagrams showing a configuration example of compensating means used in the passive magnetic bearing device of the present invention, FIG. 6A is a plan sectional view, and FIG. 6B is a partially enlarged perspective view.

【図7】本発明の受動型磁気軸受装置に用いる補償手段
の固定部の他の構成例を示す図である。
FIG. 7 is a diagram showing another configuration example of the fixing portion of the compensating means used in the passive magnetic bearing device of the present invention.

【図8】本発明の受動型磁気軸受装置に用いる補償手段
の固定部の他の構成例を示す図である。
FIG. 8 is a diagram showing another configuration example of the fixing portion of the compensating means used in the passive magnetic bearing device of the present invention.

【図9】本発明の受動型磁気軸受装置に用いる補償手段
の固定部の他の構成例を示す図である。
FIG. 9 is a diagram showing another configuration example of the fixing portion of the compensating means used in the passive magnetic bearing device of the present invention.

【図10】本発明の受動型磁気軸受装置に用いる補償手
段の固定部の他の構成例を示す図である。
FIG. 10 is a diagram showing another configuration example of the fixing portion of the compensating means used in the passive magnetic bearing device of the present invention.

【図11】本発明の受動型磁気軸受装置の非回転時のタ
ッチダウンベアリングの構成例を示す図である。
FIG. 11 is a diagram showing a configuration example of a touchdown bearing when the passive magnetic bearing device of the present invention is not rotating.

【図12】従来の磁気軸受装置の例を示す図である。FIG. 12 is a diagram showing an example of a conventional magnetic bearing device.

【符号の説明】[Explanation of symbols]

1 回転部 2 固定部 3 回転軸 4 渦電流ダンパー 5 ピポット軸受 1−1 永久磁石 1−2 永久磁石 1−3 永久磁石 2−1 永久磁石 2−2 永久磁石 2−3 永久磁石 3−1 フランジ 10 補償手段 10−1 補償手段の回転部 10−2 補償手段の固定部 11−1 磁石列 11−2 磁石列 11−3 磁石列 11−4 磁石列 12−1 継鉄 12−1 継鉄 13 永久磁石 14−1 継鉄 14−2 継鉄 15 ヌルフラックスコイル DESCRIPTION OF SYMBOLS 1 rotating part 2 fixed part 3 rotating shaft 4 eddy current damper 5 pivot bearing 1-1 permanent magnet 1-2 permanent magnet 1-3 permanent magnet 2-1 permanent magnet 2-2 permanent magnet 2-3 permanent magnet 3-1 flange 10 Compensation Means 10-1 Rotating Part of Compensation Means 10-2 Fixed Part of Compensation Means 11-1 Magnet Row 11-2 Magnet Row 11-3 Magnet Row 11-4 Magnet Row 12-1 Yoke 12-1 Yoke 13 Permanent magnet 14-1 Yoke 14-2 Yoke 15 Null flux coil

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 回転部と固定部を有し、回転部の所定位
置に設けられた磁石と該磁石に対応して固定部の所定位
置に設けられた磁石の磁気吸引力又は反発力で前記回転
部のラジアル方向を非接触で回転自在に支持する受動型
磁気軸受を具備する受動型磁気軸受装置において、 前記回転部の軸方向のずれを修正し安定に支持する補償
手段を設け、 前記補償手段は前記固定部又は回転部に設けられた磁石
列と該磁石列に対向して回転部又は固定部に設けられた
ヌルフラックスコイル列を具備し、回転部の軸方向のず
れを該磁石列とヌルフラックスコイル列の間に作用する
誘導電磁力で補償することを特徴とする受動型磁気軸受
装置。
1. A magnet having a rotating portion and a fixed portion, the magnet being provided at a predetermined position of the rotating portion, and the magnetic attraction force or repulsive force of a magnet provided at a predetermined position of the fixed portion corresponding to the magnet. A passive magnetic bearing device comprising a passive magnetic bearing for rotatably supporting a rotating portion in a radial direction in a non-contact manner, comprising a compensating means for correcting axial displacement of the rotating portion and stably supporting the rotating portion. The means includes a magnet array provided in the fixed part or the rotating part and a null flux coil array provided in the rotating part or the stationary part so as to face the magnet array, and a shift in the axial direction of the rotating part is caused by the magnet array. A passive magnetic bearing device characterized by compensating with an induced electromagnetic force acting between a null flux coil array and a null flux coil array.
【請求項2】 前記回転部は固定部の内側で回転する構
造であり、 前記補償手段は、磁石列を固定部に、ヌルフラックスコ
イル列を回転部に設け、該磁石列はリング状継鉄の内周
面にN極及びS極を交互に着磁してなる磁石を配置し、
ヌルフラックスコイル列は該磁石の内周面に所定の間隙
を設けて対向して回転部に配置されたことを特徴とする
請求項1に記載の受動型磁気軸受装置。
2. The rotating part has a structure that rotates inside a stationary part, and the compensating means comprises a magnet array on the stationary part and a null flux coil array on the rotating part, and the magnet array is a ring yoke. A magnet formed by alternately magnetizing N and S poles is arranged on the inner peripheral surface of
2. The passive magnetic bearing device according to claim 1, wherein the null flux coil array is arranged in the rotating portion so as to face the inner peripheral surface of the magnet with a predetermined gap.
【請求項3】 前記回転部は固定部の外側で回転する構
造であり、 前記補償手段は、磁石列を固定部に、ヌルフラックスコ
イル列を回転部に設け、該磁石列はリング状継鉄の外周
面にN極及びS極を交互に着磁石してなる磁石を配置
し、ヌルフラックスコイル列は該磁石の外周面に所定の
間隙を設けて対向して回転部に配置されたことを特徴と
する請求項1に記載の受動型磁気軸受装置。
3. The rotating part has a structure rotating on the outside of a fixed part, and the compensating means comprises a magnet row in the fixed part and a null flux coil row in the rotary part, and the magnet row is a ring yoke. A magnet having N and S poles alternately magnetized is arranged on the outer peripheral surface of the magnet, and the null flux coil array is arranged on the rotating portion so as to face each other with a predetermined gap provided on the outer peripheral surface of the magnet. The passive magnetic bearing device according to claim 1, which is characterized in that.
【請求項4】 前記回転部は固定部の内側で回転する構
造であり、 前記補償手段は、磁石列を回転部に、ヌルフラックスコ
イル列を固定部に設け、該磁石列はリング状継鉄の外周
面にN極及びS極を交互に着磁石してなる磁石を配置
し、ヌルフラックスコイル列は該磁石の外周面に所定の
間隙を設けて対向して固定部に配置されたことを特徴と
する請求項1に記載の受動型磁気軸受装置。
4. The rotating part has a structure that rotates inside a fixed part, and the compensating means includes a magnet row in the rotating part and a null flux coil row in the fixed part, and the magnet row is a ring-shaped yoke. A magnet having N-poles and S-poles alternately magnetized is arranged on the outer peripheral surface of the magnet, and the null flux coil array is arranged on the fixed portion so as to face the outer peripheral surface of the magnet with a predetermined gap therebetween. The passive magnetic bearing device according to claim 1, which is characterized in that.
【請求項5】 前記回転部は固定部の外側で回転する構
造であり、 前記補償手段は、磁石列を回転部に、ヌルフラックスコ
イル列を固定部に設け、該磁石列はリング状継鉄の内周
面にN極及びS極を交互に着磁石してなる磁石を配置
し、ヌルフラックスコイル列は該磁石の内周面に所定の
間隙を設けて対向して回転部に配置されたことを特徴と
する請求項1に記載の受動型磁気軸受装置。
5. The rotating part has a structure rotating on the outside of a fixed part, and the compensating means includes a magnet row in the rotating part and a null flux coil row in the fixed part, and the magnet row is a ring yoke. Magnets having N poles and S poles alternately magnetized are arranged on the inner peripheral surface of, and the null flux coil rows are arranged in the rotating portion so as to face each other with a predetermined gap provided on the inner peripheral surface of the magnets. The passive magnetic bearing device according to claim 1, wherein:
【請求項6】 前記補償手段のヌルフラックスコイル列
の前記回転部の磁石列又は固定部の磁石列の反対側面に
リング状の継鉄を配置したことを特徴とする請求項1乃
至5のいずれか1に記載の受動型磁気軸受装置。
6. The ring-shaped yoke is arranged on the opposite side of the magnet row of the rotating portion or the magnet row of the fixed portion of the null flux coil row of the compensating means. 1. A passive magnetic bearing device according to item 1.
JP12062694A 1994-05-10 1994-05-10 Passive magnetic bearing device Pending JPH07305723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12062694A JPH07305723A (en) 1994-05-10 1994-05-10 Passive magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12062694A JPH07305723A (en) 1994-05-10 1994-05-10 Passive magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH07305723A true JPH07305723A (en) 1995-11-21

Family

ID=14790888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12062694A Pending JPH07305723A (en) 1994-05-10 1994-05-10 Passive magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH07305723A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073312A (en) * 2003-08-26 2005-03-17 Kohei Minato Equipment for increasing momentum
KR101291577B1 (en) * 2011-11-23 2013-08-16 (주)대주기계 Magnet bearing system
WO2015024830A1 (en) * 2013-08-20 2015-02-26 Universite Catholique De Louvain Radial electrodynamic bearing
EP3255760A1 (en) * 2016-06-06 2017-12-13 Linz Center of Mechatronics GmbH Electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073312A (en) * 2003-08-26 2005-03-17 Kohei Minato Equipment for increasing momentum
JP4614641B2 (en) * 2003-08-26 2011-01-19 延江 湊 Momentum increasing device
KR101291577B1 (en) * 2011-11-23 2013-08-16 (주)대주기계 Magnet bearing system
WO2015024830A1 (en) * 2013-08-20 2015-02-26 Universite Catholique De Louvain Radial electrodynamic bearing
EP3255760A1 (en) * 2016-06-06 2017-12-13 Linz Center of Mechatronics GmbH Electric machine

Similar Documents

Publication Publication Date Title
US5237229A (en) Magnetic bearing device with a rotating magnetic field
JP2644374B2 (en) Magnetic bearing structure
US6359357B1 (en) Combination radial and thrust magnetic bearing
US6114788A (en) Motor/active magnetic bearing combination structure
US6268674B1 (en) Magnetic bearing apparatus
KR100403857B1 (en) Motor of magnetic lifting type
EP0875694B9 (en) Damper device and turbomolecular pump with damper device
US20030155829A1 (en) Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
US4983869A (en) Magnetic bearing
WO2002035108A1 (en) Magnetic suspension bearing
JP2008537872A (en) Method for stabilizing a magnetically levitated object
CN110848253A (en) Three-degree-of-freedom radial-axial integrated hybrid magnetic bearing
KR20060121355A (en) Bearingless step motor
JPS6146684B2 (en)
CN109229426B (en) Five-freedom-degree double-frame magnetic suspension control moment gyroscope
JPH0788850B2 (en) Magnetic levitation slide
JPH07305723A (en) Passive magnetic bearing device
JPS5937323A (en) Magnetic bearing device
CN112009728A (en) Induction type magnetic suspension momentum sphere device
JP3276012B2 (en) Passive type magnetic bearing device
US20050253473A1 (en) Alternative magnetic bearing
US5789838A (en) Three-axis force actuator for a magnetic bearing
JP2004316756A (en) Five-axis control magnetic bearing
Kurita et al. Proposal of a permanent magnet hybrid-type axial magnetically levitated motor
JPH04219494A (en) Structure of magnetic bearing for high speed rotary vacuum pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A02 Decision of refusal

Effective date: 20050111

Free format text: JAPANESE INTERMEDIATE CODE: A02