JPH07305605A - Control device for reducing pressure and temperature of turbine bypass steam - Google Patents

Control device for reducing pressure and temperature of turbine bypass steam

Info

Publication number
JPH07305605A
JPH07305605A JP9596894A JP9596894A JPH07305605A JP H07305605 A JPH07305605 A JP H07305605A JP 9596894 A JP9596894 A JP 9596894A JP 9596894 A JP9596894 A JP 9596894A JP H07305605 A JPH07305605 A JP H07305605A
Authority
JP
Japan
Prior art keywords
signal
steam
flow rate
turbine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9596894A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
晃 高橋
Haruhiko Uno
晴彦 宇野
Hideki Fujishima
英樹 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP9596894A priority Critical patent/JPH07305605A/en
Publication of JPH07305605A publication Critical patent/JPH07305605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To always secure process steam which proper pressure and temperature even when abrupt load fluctuation occurs at a plant side. CONSTITUTION:A flow rate in a process steam pipe 14 is detected by a flow rate detector 35. A process steam flow rate signal detected by a flow rate transmitter 36 is input to a pressure reduction control device 30. When a turbine trip signal is supplied to the pressure and temperature reduction control device 30, a steam conversion valve rapid opening signal equivalent to the process steam flow rate before turbine trip is output to a steam conversion valve 16. In addition, a cooling water adjusting valve rapid opening signal is output to a cooling water adjusting valve 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はタ―ビンバイパス減圧減
温装置を有する発電プラント等において、工場プロセス
側へ導く蒸気を減圧・減温させるためのタ―ビンバイパ
ス蒸気減圧減温制御装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine bypass steam depressurization / temperature reduction control device for depressurizing / cooling steam introduced to a factory process side in a power plant or the like having a turbine bypass depressurization / temperature reduction device. Regarding improvement.

【0002】[0002]

【従来の技術】一般にタビンバイパス減圧減温装置は図
7に示すように構成されている。ボイラ11により発生し
た蒸気は主蒸気管12を介し蒸気タ―ビン13へ流入する。
蒸気タ―ビン13から抽出される蒸気はプロセス蒸気管14
から工場内の各設備に供給される。
2. Description of the Related Art Generally, a tabine bypass decompression / temperature reducing device is constructed as shown in FIG. The steam generated by the boiler 11 flows into the steam turbine 13 through the main steam pipe 12.
The steam extracted from the steam turbine 13 is the process steam pipe 14
Supplied to each facility in the factory.

【0003】通常蒸気タ―ビン13が休止又は不具合によ
りトリップした場合でも工場内の各設備への蒸気を確保
するように主蒸気管12とプロセス蒸気管14とを結ぶタ―
ビンバイパス蒸気管15が設置されている。
The normal steam turbine 13 connects the main steam pipe 12 and the process steam pipe 14 so as to secure steam for each facility in the factory even if the steam turbine 13 trips due to a break or malfunction.
A bin bypass steam pipe 15 is installed.

【0004】このタ―ビンバイパス蒸気管15には蒸気変
換弁16が設置されており、プロセス蒸気管14に取付けら
れた圧力検出器17からのプロセス蒸気圧力信号を入力し
ている圧力調節計18からの制御信号によって蒸気変換弁
4から供給されるプロセス蒸気圧力を一定に保つように
している。
A steam conversion valve 16 is installed in the turbine bypass steam pipe 15, and a pressure controller 18 is input with a process steam pressure signal from a pressure detector 17 mounted in the process steam pipe 14. The process steam pressure supplied from the steam conversion valve 4 is kept constant by the control signal from the.

【0005】一方、プロセス蒸気管14に取付けられた温
度検出器19からのプロセス蒸気温度信号を入力している
温度調節計20からの制御信号によって冷却水調節弁21が
蒸気変換弁16に送る冷却水量を調節してプロセス蒸気温
度を一定に保つようにしている。
On the other hand, the cooling water control valve 21 sends cooling to the steam conversion valve 16 by a control signal from a temperature controller 20 which inputs a process steam temperature signal from a temperature detector 19 attached to the process steam pipe 14. The amount of water is adjusted to keep the process steam temperature constant.

【0006】図8(a)(b)はプロセス蒸気圧力およ
び温度を制御する圧力調節計18および温度調節計20の詳
細を示している。圧力制御演算器22では、圧力設定器23
aと圧力検出器17からのプロセス蒸気圧力信号とが比較
演算される。この信号は上/下限リミッタ―24を介し上
限設定器25,下限設定器26の範囲内の信号とされた後で
自動/手動切換器27,電空変換器28を介して上記変換弁
16への制御信号として出力される。
FIGS. 8A and 8B show details of the pressure controller 18 and the temperature controller 20 for controlling the process steam pressure and temperature. In the pressure control calculator 22, the pressure setter 23
a and the process steam pressure signal from the pressure detector 17 are compared and calculated. This signal is made a signal within the range of the upper limit setter 25 and the lower limit setter 26 via the upper / lower limit limiter 24, and then the above conversion valve via the automatic / manual switch 27 and electropneumatic converter 28.
It is output as a control signal to 16.

【0007】また温度制御演算器29では、温度設定器23
bと温度検出器19からのプロセス蒸気温度信号とが比較
演算される。この信号は、圧力制御と同じように電空変
換器28を介して冷却水調節弁21への制御信号として出力
され、冷却水量が調節されるようになっている。
In the temperature control calculator 29, the temperature setting device 23
b and the process steam temperature signal from the temperature detector 19 are compared and calculated. This signal is output as a control signal to the cooling water control valve 21 via the electropneumatic converter 28 in the same manner as the pressure control, and the amount of cooling water is adjusted.

【0008】[0008]

【発明が解決しようとする課題】従来のタ―ビンバイパ
ス蒸気減圧、減温制御はプロセス蒸気圧力のに低下また
はプロセス蒸気温度の上昇が発生した場合に制御が開始
されるようになっている。
The conventional turbine bypass depressurization / temperature reduction control is started when the process steam pressure drops or the process steam temperature rises.

【0009】タ―ビンの負荷およびプロセス蒸気使用量
が一定である場合は蒸気変換弁16および冷却水調節弁22
が常に全閉にて待機している。このため、タ―ビントリ
ップ等が発生するとタ―ビンバイパス減圧減温制御の追
従が遅れ、適正な圧力温度のプロセス蒸気の確保ができ
なくなる虞がある。
When the turbine load and the amount of process steam used are constant, the steam conversion valve 16 and the cooling water control valve 22
Is always waiting in a fully closed position. Therefore, when a turbine trip or the like occurs, the follow-up of the turbine bypass depressurization / temperature reduction control may be delayed, and it may not be possible to secure process steam having an appropriate pressure temperature.

【0010】本発明の目的は、プラント側で急激な負荷
変動等が発生するときも、常に適正な圧力、温度のプロ
セス蒸気が確保されるようにした減温制御装置を提供す
ることにある。
It is an object of the present invention to provide a temperature reduction control device that always ensures process steam having an appropriate pressure and temperature even when a sudden load change or the like occurs on the plant side.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は検出されたプロセス蒸気圧力信号と設定圧力
信号とに基づいてプロセス蒸気圧力を保つ蒸気変換弁の
開度を決める制御信号を出力する圧力制御部と、検出さ
れたプロセス蒸気温度信号と設定温度信号とに基づいて
該蒸気変換弁への冷却水量を調節する冷却水調節弁の開
度を決める制御信号を出力する温度制御部と、タ―ビン
トリップ信号が与えられたとき、タ―ビントリップ前の
プロセス蒸気流量に相当する蒸気変換弁急速開信号およ
び冷却水調節弁急速開信号を蒸気変換弁および冷却水調
節弁に出力する急開制御部とを具備するものである。
In order to achieve the above object, the present invention provides a control signal for determining the opening degree of a steam conversion valve for maintaining a process steam pressure based on a detected process steam pressure signal and a set pressure signal. A pressure control section for outputting, and a temperature control section for outputting a control signal for determining the opening degree of the cooling water control valve for controlling the amount of cooling water to the steam conversion valve based on the detected process steam temperature signal and the set temperature signal. When the turbine trip signal is given, the steam converter valve rapid open signal and the cooling water control valve rapid open signal corresponding to the process steam flow rate before the turbine trip are output to the steam converter valve and the cooling water control valve. And a rapid opening control section for controlling the rapid opening.

【0012】[0012]

【作用】上述のように構成した本発明のタ―ビンバイパ
ス蒸気減圧減温制御装置においてはタ―ビントリップ等
の負荷変動が発生しても、常に適正な圧力、温度のプロ
セス蒸気を確保することができる。
In the turbine bypass steam decompression / temperature reduction control device of the present invention configured as described above, process steam having an appropriate pressure and temperature is always secured even if load fluctuations such as a turbine trip occur. be able to.

【0013】[0013]

【実施例】本発明の実施例を図面を参照して説明する。
図1においてプロセス蒸気管14内の流量を検出する。流
量検出器35と流量発信器36により検出されたプロセス蒸
気流量信号は減圧減温制御装置30へ入力されている。
Embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, the flow rate in the process steam pipe 14 is detected. The process steam flow rate signals detected by the flow rate detector 35 and the flow rate transmitter 36 are input to the decompression / temperature reduction control device 30.

【0014】図2は減圧減温制御装置30の構成を示して
いる。流量発信器36により検出されたプロセス蒸気流量
信号は関数発生器34へ送られ、プロセス蒸気流量に相当
する蒸気変換弁の開度信号を出力する。この開度信号は
切換器32へ送られ、ここでは信号設定器42のタ―ビンバ
イパス信号により関数発生器34からの開度信号と、信号
設定器33のタ―ビンバイパス信号との切替えを行なって
いる。高値優先器31では切換器32からの信号と圧力制御
演算器22からの信号の高値を選択して信号を出力してい
る。
FIG. 2 shows the construction of the decompression / temperature reduction control device 30. The process steam flow rate signal detected by the flow rate transmitter 36 is sent to the function generator 34, and the opening signal of the steam conversion valve corresponding to the process steam flow rate is output. This opening signal is sent to the switching unit 32, and here, the switching between the opening signal from the function generator 34 and the turbine bypass signal of the signal setting unit 33 is performed by the turbine bypass signal of the signal setting unit 42. I am doing it. The high value priority device 31 selects the high value of the signal from the switching device 32 and the signal from the pressure control calculator 22 and outputs the signal.

【0015】冷却水調節弁21への制御信号に対しても、
同様の演算処理が行なわれる。信号発生器41では圧力制
御信号がα%以上出力されたことを検出し、その信号を
切換器38へと送っている。この切換器38では上限設定器
39と、強制閉設定器40との信号の切替えを行ない、上/
下限リミッタ―24の上限設定として与えている。
Also for the control signal to the cooling water control valve 21,
Similar calculation processing is performed. The signal generator 41 detects that the pressure control signal is output by α% or more, and sends the signal to the switch 38. With this switch 38, the upper limit setting
The signal is switched between 39 and the forced close setting device 40, and
It is given as the upper limit setting of the lower limit limiter 24.

【0016】つまり、蒸気変換弁16が全閉している場合
は冷却水調節弁21を強制閉とするようになっている。こ
れは、配管や機器類の熱疲労を極力少なくするため、必
ず蒸気を流した後で冷却水を噴射することを考慮したも
のである。
That is, when the steam conversion valve 16 is fully closed, the cooling water control valve 21 is forcibly closed. This is to consider that the cooling water is sprayed after the steam is always passed in order to minimize the thermal fatigue of the pipes and equipment.

【0017】これらの機能を付加したことで、タ―ビン
トリップ時でも抽気相当分の流量を瞬時に確保すること
が可能になり、プロセス蒸気量の変動が大きくなるのを
防止することができる。
By adding these functions, it is possible to instantly secure the flow rate corresponding to the extraction air even during the turbine trip, and it is possible to prevent the fluctuation of the process vapor amount from increasing.

【0018】また、蒸気を流した後で冷却水を噴射する
ので、配管や機器類が熱疲労のために損傷するのを防止
することが可能である。また、上記は代表例として、タ
―ビントリップ時の動作を述べたものであるが、プロセ
ス側の急激な蒸気量の変動に対しても、その状態信号を
与えることで、同様の効果を得ることができる。
Further, since the cooling water is jetted after the steam has flowed, it is possible to prevent the pipes and equipment from being damaged due to thermal fatigue. Further, as a representative example, the operation at the time of the turbine trip is described, but the same effect can be obtained by giving the status signal to the rapid fluctuation of the steam amount on the process side. be able to.

【0019】本発明の他の実施例を図3を参照して説明
する。なお、図1に示したものと同一部分には同一符号
を付し、それらの説明を省略する。
Another embodiment of the present invention will be described with reference to FIG. The same parts as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0020】図1に示した実施例で説明したとおり、タ
―ビントリップ時において切換器32を動作させ、プロセ
ス蒸気流量に相当する蒸気変換弁の開度を関数発生器34
にて設定するが、この設定条件となるプロセス蒸気流量
を蒸気加減弁51に設けた蒸気加減弁開度計52からの開度
信号によりプロセス蒸気流量相当量を算出する開度流量
変換器53で発生させる。
As described in the embodiment shown in FIG. 1, the switching device 32 is operated during the turbine trip, and the opening of the steam conversion valve corresponding to the process steam flow rate is changed to the function generator 34.
The process flow rate that is the setting condition is set by the opening flow rate converter 53 that calculates the process steam flow rate equivalent amount from the opening signal from the steam control valve opening gauge 52 provided in the steam control valve 51. generate.

【0021】さらに、他の実施例を図4を参照して説明
する。なお、図1に示したものと同一部分には同一符号
を付しそれらの説明を省略する。
Further, another embodiment will be described with reference to FIG. The same parts as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.

【0022】図1に示した実施例で説明したとおり、タ
―ビントリップ時において、切換器32を動作させプロセ
ス蒸気流量要求信号に応じた開度信号を出力する関数発
生器61により関数発生器34を設定する。
As described in the embodiment shown in FIG. 1, during the turbine trip, the function generator 61 is operated by operating the switching device 32 and outputting the opening signal corresponding to the process steam flow rate request signal. Set to 34.

【0023】また、上記のものと異なる実施例を図5を
参照して説明する。なお、図1に示したものと同一部分
には同一符号を付し説明を省略する。図1に示した実施
例で説明したとおりタ―ビントリップ時において切換器
32を動作させるが、プロセス蒸気流量に相当する蒸気量
をタ―ビン負荷から算出する。蒸気量はタ―ビン負荷に
関連していることからタ―ビン負荷信号によりタ―ビン
負荷をプロセス蒸気流量相当量を算出する負荷流量変換
器71によって発生させる。
An embodiment different from the one described above will be described with reference to FIG. The same parts as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. As explained in the embodiment shown in FIG. 1, the switching device at the time of the turbine trip.
32 is operated, but the steam amount corresponding to the process steam flow rate is calculated from the turbine load. Since the steam amount is related to the turbine load, the turbine load is generated by the load flow converter 71 which calculates the process steam flow equivalent amount by the turbine load signal.

【0024】さらに、他の実施例を図6を参照して説明
する。なお、図1に示したものと同一部分には同一符号
を付し説明を省略する。本実施例もタ―ビントリップ時
に切換器32を動作させるが、本実施例はプロセス蒸気流
量に相当する蒸気量をタ―ビン排気圧力の変化により算
出するものである。プロセス蒸気量の変化によりタ―ビ
ン排気圧力が変化することからこのタ―ビン排気圧力を
タ―ビン排気圧力検出器81により検出し、プロセス蒸気
流量相当量にする圧力流量変換器82によってプロセス蒸
気流量を算出するものである。
Further, another embodiment will be described with reference to FIG. The same parts as those shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. In this embodiment as well, the switch 32 is operated at the time of the turbine trip, but in this embodiment, the steam amount corresponding to the process steam flow rate is calculated from the change in the turbine exhaust pressure. Since the turbine exhaust pressure changes due to the change in the process steam amount, this turbine exhaust pressure is detected by the turbine exhaust pressure detector 81, and the process steam is converted by the pressure / flow converter 82. The flow rate is calculated.

【0025】[0025]

【発明の効果】本発明に係るタ―ビンバイパス蒸気減圧
減温制御装置はプラント側で急激な負荷変動等が発生し
ても常に適正な圧力温度のプロセス蒸気を確保すること
ができ、プロセス側に及ぼす悪影響が殆どなく、正常な
運転を継続できるなどの効果を奏する。
The turbine bypass steam decompression / temperature reduction control device according to the present invention can always secure process steam having an appropriate pressure temperature even if a sudden load change occurs on the plant side. There is almost no adverse effect on, and the effect that normal operation can be continued.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるタ―ビンバイパス蒸気減圧減温制
御装置の一実施例を示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a turbine bypass vapor pressure reduction / temperature reduction control device according to the present invention.

【図2】図1に示した制御装置の機能ブロック図。FIG. 2 is a functional block diagram of the control device shown in FIG.

【図3】本発明の他の実施例を示す構成図。FIG. 3 is a configuration diagram showing another embodiment of the present invention.

【図4】本発明の他の実施例を示す構成図。FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す構成図。FIG. 5 is a configuration diagram showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す構成図。FIG. 6 is a configuration diagram showing another embodiment of the present invention.

【図7】従来のタ―ビンバイパス蒸気減圧減温制御装置
を示す構成図。
FIG. 7 is a configuration diagram showing a conventional turbine bypass vapor pressure reduction / temperature reduction control device.

【図8】図7に示した制御装置の機能ブロック図。8 is a functional block diagram of the control device shown in FIG.

【符号の説明】[Explanation of symbols]

14 プロセス蒸気管 15 タ―ビンバイパス蒸気管 16 蒸気変換弁 17 圧力検出器 19 温度検出器 30 減圧減温制御装置 35 流量検出器 52 蒸気加減弁開度計 61 プロセス蒸気流量設定器 71 負荷流量変換器 81 タ―ビン排気圧力検出器 14 Process steam pipe 15 Turbin bypass steam pipe 16 Steam conversion valve 17 Pressure detector 19 Temperature detector 30 Pressure reducing / decreasing temperature controller 35 Flow rate detector 52 Steam control valve opening gauge 61 Process steam flow rate setter 71 Load flow rate conversion 81 Turbine exhaust pressure detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤島 英樹 神奈川県横浜市鶴見区末広町2−4 株式 会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Fujishima 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Corporation Keihin Office

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 検出されたプロセス蒸気圧力信号と設定
圧力信号とに基づいてプロセス蒸気圧力を保つ蒸気変換
弁の開度を決める制御信号を出力する圧力制御部と、検
出されたプロセス蒸気温度信号と設定温度信号とに基づ
いて該蒸気変換弁への冷却水量を調節する冷却水調節弁
の開度を決める制御信号を出力する温度制御部と、タ―
ビントリップ信号が与えられたとき、タ―ビントリップ
前のプロセス蒸気流量に相当する蒸気変換弁急速開信号
および冷却水調節弁急速開信号を前記蒸気変換弁および
前記冷却水調節弁に出力する急開制御部とを具備してな
るタ―ビンバイパス蒸気減圧減温制御装置。
1. A pressure control unit that outputs a control signal that determines an opening of a steam conversion valve that maintains a process steam pressure based on the detected process steam pressure signal and a set pressure signal, and a detected process steam temperature signal. And a temperature control unit that outputs a control signal that determines the opening of the cooling water control valve that controls the amount of cooling water to the steam conversion valve based on the temperature setting signal and the set temperature signal.
When a bin trip signal is given, a rapid output signal of the steam conversion valve rapid opening signal and the cooling water control valve rapid opening signal corresponding to the process steam flow rate before the turbine trip is output to the steam conversion valve and the cooling water control valve. A turbine bypass vapor decompression / temperature reduction control device comprising an opening control unit.
【請求項2】 前記急開制御部が実プロセス蒸気流量信
号に応じた開度信号を出力する関数発生器を備えること
を特徴とする請求項1記載のタ―ビンバイパス蒸気減圧
減温制御装置。
2. The turbine bypass steam depressurization / temperature reduction control device according to claim 1, wherein the rapid opening control unit includes a function generator that outputs an opening signal according to an actual process steam flow rate signal. .
【請求項3】 前記急開制御部にタ―ビントリップ前の
プロセス蒸気流量相当信号として与えるように蒸気加減
弁の開度信号に基づいて流量相当信号に変換する演算器
を設けたことを特徴とする請求項1記載のタ―ビンバイ
パス蒸気減圧減温制御装置。
3. An arithmetic unit for converting into a flow rate equivalent signal based on the opening signal of the steam control valve so as to be given to the rapid opening control section as a process steam flow rate equivalent signal before the turbine trip. The turbine bypass vapor pressure reduction / temperature reduction control device according to claim 1.
【請求項4】 前記急開制御部にプロセス蒸気流量要求
信号に応じた開度信号を出力する関数発生器を備えるこ
とを特徴とする請求項1記載のタ―ビンバイパス蒸気減
圧減温制御装置。
4. The turbine bypass steam decompression / temperature reduction control device according to claim 1, wherein the rapid opening control section is provided with a function generator that outputs an opening signal in accordance with a process steam flow rate request signal. .
【請求項5】 前記急開制御部にタ―ビントリップ前の
プロセス蒸気流量相当信号として与えるようにタ―ビン
負荷信号に基づいて流量相当信号に変換する演算器を設
けたことを特徴とする請求項1記載のタ―ビンバイパス
蒸気減圧減温制御装置。
5. An arithmetic unit for converting into a flow rate equivalent signal based on a turbine load signal so as to be provided as a process vapor flow rate equivalent signal before a turbine trip to the rapid opening control section. The turbine bypass steam decompression / temperature reduction control device according to claim 1.
【請求項6】 前記急開制御部にタ―ビントリップ前の
流量相当信号として与えるようにタ―ビン排気圧力信号
に基づいて流量相当信号に変換する演算器を設けたこと
を特徴とする請求項1記載のタ―ビンバイパス蒸気減圧
減温制御装置。
6. An arithmetic unit for converting into a flow rate equivalent signal on the basis of the turbine exhaust pressure signal so as to be provided to the rapid opening control section as a flow rate equivalent signal before the turbine trip. Item 2. A turbine bypass vapor decompression / temperature reduction control device according to Item 1.
JP9596894A 1994-05-10 1994-05-10 Control device for reducing pressure and temperature of turbine bypass steam Pending JPH07305605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9596894A JPH07305605A (en) 1994-05-10 1994-05-10 Control device for reducing pressure and temperature of turbine bypass steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9596894A JPH07305605A (en) 1994-05-10 1994-05-10 Control device for reducing pressure and temperature of turbine bypass steam

Publications (1)

Publication Number Publication Date
JPH07305605A true JPH07305605A (en) 1995-11-21

Family

ID=14152000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9596894A Pending JPH07305605A (en) 1994-05-10 1994-05-10 Control device for reducing pressure and temperature of turbine bypass steam

Country Status (1)

Country Link
JP (1) JPH07305605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009200389B2 (en) * 2008-02-05 2011-02-10 Mitsubishi Heavy Industries, Ltd. Turbine bypass control apparatus and turbine bypass control method
CN111412388A (en) * 2020-03-23 2020-07-14 中国舰船研究设计中心 Novel nuclear power ship high-pressure steam automatic pressure reduction device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009200389B2 (en) * 2008-02-05 2011-02-10 Mitsubishi Heavy Industries, Ltd. Turbine bypass control apparatus and turbine bypass control method
US8160799B2 (en) 2008-02-05 2012-04-17 Mitsubishi Heavy Industries, Ltd. Turbine bypass control apparatus and turbine bypass control method
CN111412388A (en) * 2020-03-23 2020-07-14 中国舰船研究设计中心 Novel nuclear power ship high-pressure steam automatic pressure reduction device and method

Similar Documents

Publication Publication Date Title
US6912855B2 (en) Method for the primary control in a combined gas/steam turbine installation
JP4734184B2 (en) Steam turbine control device and steam turbine control method
JPH07305605A (en) Control device for reducing pressure and temperature of turbine bypass steam
JP2578328B2 (en) Output control method for back pressure turbine generator
JPH10141013A (en) Extra steam collecting device
JP2799046B2 (en) Drain water level control device for feed water heater
JPS6123365B2 (en)
JP3364341B2 (en) Turbine control device
JPH10141604A (en) Parallel boiler facility
JP2504939Y2 (en) Boiler level controller
JPH11350907A (en) Operation control method and unit for that in back pressure turbine system
JPH0821203A (en) Pressure controller
JPS60252107A (en) Turbine principal vapor pressure adjust method for constant pressure/variable pressure operation
JPH01257704A (en) Load controller for single shaft type compound cycle generating plant and method therefor
JPH06235795A (en) Steam turbine controller
JPH02298607A (en) Bypass control device for geothermal steam turbine
JPH04339105A (en) Load controlling device for power generating plant
JPH0587642B2 (en)
JPS6153528B2 (en)
JPH0688504A (en) Turbine high speed valve control device
JPS6032002B2 (en) Turbine control device
JPH05113294A (en) Vacuum degree controller in condenser of condensing apparatus and controlling method for vacuum degree in the same condenser
JPS59231111A (en) Pressure reducing device of steam
JPS6153527B2 (en)
JPS62162703A (en) Turbine control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Effective date: 20041102

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510