JPH0730429B2 - Dispersion-strengthened sintered alloy steel die for Zn and Zn alloy die casting - Google Patents

Dispersion-strengthened sintered alloy steel die for Zn and Zn alloy die casting

Info

Publication number
JPH0730429B2
JPH0730429B2 JP29914786A JP29914786A JPH0730429B2 JP H0730429 B2 JPH0730429 B2 JP H0730429B2 JP 29914786 A JP29914786 A JP 29914786A JP 29914786 A JP29914786 A JP 29914786A JP H0730429 B2 JPH0730429 B2 JP H0730429B2
Authority
JP
Japan
Prior art keywords
alloy steel
die
alloy
dispersion
die casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29914786A
Other languages
Japanese (ja)
Other versions
JPS63153245A (en
Inventor
正之 叶沢
啓一 若島
博和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP29914786A priority Critical patent/JPH0730429B2/en
Publication of JPS63153245A publication Critical patent/JPS63153245A/en
Publication of JPH0730429B2 publication Critical patent/JPH0730429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2209Selection of die materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、すぐれた耐熱衝撃性と耐熱疲労性を有し、
したがつて高い寸法精度での長期に亘る使用を可能とす
る分散強化型焼結合金鋼製ZnおよびZn合金ダイカスト用
金型に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has excellent thermal shock resistance and thermal fatigue resistance,
Therefore, the present invention relates to a dispersion-strengthened sintered alloy steel made of Zn and a die for Zn alloy die casting, which enables long-term use with high dimensional accuracy.

〔従来の技術〕[Conventional technology]

従来、ZnおよびZn合金ダイカスト用金型として、重量%
で(以下%は重量%を示す)、 C:0.3〜0.5%、Mn:0.1〜0.5%、 Cr:3〜6%、Si:0.5〜1.5%、 Mo:1〜1.5%、V:0.5〜1.5%、 W:0.5〜1.5%、 を含有し、残りがFeと不可避不純物からなる組成を有す
る焼結合金鋼製のものが広く知られ、実用に供されてい
る。
Conventionally, as a die for Zn and Zn alloy die casting, weight%
(The following% indicates% by weight) C: 0.3 to 0.5%, Mn: 0.1 to 0.5%, Cr: 3 to 6%, Si: 0.5 to 1.5%, Mo: 1 to 1.5%, V: 0.5 to A sintered alloy steel containing 1.5%, W: 0.5 to 1.5% and the balance of Fe and inevitable impurities is widely known and put to practical use.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記の従来焼結合金鋼製ZnおよびZn合金ダイカ
スト用金型においては、特に耐熱衝撃性および耐熱疲労
性不足が原因で、比較的短時間でダイカスト鋳物の寸法
精度が低下するようになることから、長期に亘る使用は
困難であるのが現状である。
However, in the above-mentioned conventional sintered alloy steel made of Zn and Zn alloy die casting mold, due to insufficient thermal shock resistance and thermal fatigue resistance in particular, the dimensional accuracy of the die cast casting will be reduced in a relatively short time. Therefore, it is currently difficult to use for a long period of time.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、上記の
従来焼結合金鋼製ZnおよびZn合金ダイカスト用金型に比
して、一段とすぐれた耐熱衝撃性と耐熱疲労性を有する
ZnおよびZn合金ダイカスト用金型を開発すべく研究を行
なつた結果、ZnおよびZn合金ダイカスト用金型を、 分散相として炭化バナジウム:2〜20%、 周期律表の4a,5a、および6a族金属の炭化物(ただし炭
化バナジウムを除く)、同4aおよび5a族金属の窒化物お
よび炭窒化物、並びにこれらの2種以上の固溶体(以
下、これらを総称して「金属の炭・窒化物」という)の
うちの1種または2種以上:2〜20%、 を含有し、残りが素地を形成する高合金鋼からなる組成
を有し、かつ前記高合金鋼が、 C:0.5〜5%、Cr:3〜10%、 V:1〜5%、Ni:0.5〜20%、 Co:5〜20%、 を含有し、さらに、 W:1〜10%、 Mo:2〜15%、 のうちの1種または2種を含有し、残りがFeと不可避不
純物からなる組成を有する分散強化型焼結合金鋼製とす
ると、この結果の分散強化型焼結合金鋼製ZnおよびZn合
金ダイカスト用金型においては、上記の分散相を構成す
る炭化バナジウムおよび金属の炭・窒化物によつてすぐ
れた耐熱疲労性が確保され、かつ上記の素地を構成する
高合金鋼によつてすぐれた耐熱衝撃性が確保されること
から、高い寸法精度での長期に亘る使用を可能にすると
いう知見を得たのである。
Therefore, the present inventors have, from the above-mentioned viewpoint, more excellent thermal shock resistance and thermal fatigue resistance than the conventional sintered alloy steel-made Zn and Zn alloy die casting molds.
As a result of research to develop a die for Zn and Zn alloy die casting, a die for Zn and Zn alloy die casting was found to contain vanadium carbide as a dispersed phase: 2 to 20%, 4a, 5a, and 6a of the periodic table. Carbides of group metals (excluding vanadium carbide), nitrides and carbonitrides of groups 4a and 5a, and solid solutions of two or more of these (hereinafter, these are collectively referred to as "metal carbon / nitride"). 1) or 2 or more of the above): 2 to 20%, and the rest is a high alloy steel that forms a base material, and the high alloy steel is C: 0.5 to 5%. , Cr: 3 to 10%, V: 1 to 5%, Ni: 0.5 to 20%, Co: 5 to 20%, and further, W: 1 to 10%, Mo: 2 to 15%, Assuming that a dispersion-strengthened sintered alloy steel containing one or two of these and the rest consisting of Fe and unavoidable impurities is used, the resulting dispersion-strengthened sintered alloy steel Z In the die for n and Zn alloy die casting, excellent heat fatigue resistance is ensured by vanadium carbide and metal carbon / nitride that compose the above dispersed phase, and in the high alloy steel that composes the above base material. Since the excellent thermal shock resistance is ensured, we have obtained the knowledge that it can be used for a long time with high dimensional accuracy.

この発明は、上記知見にもとづいてなされたものであつ
て、以下に成分組成を上記の通りに限定した理由を説明
する。
The present invention has been made based on the above findings, and the reason why the component composition is limited as described above will be described below.

A.分散相の含有量 (a) 炭化バナジウム 炭化バナジウムには、金属の炭・窒化物との共存におい
て、耐熱疲労性を向上させるほか、それ自身マイクロビ
ツカース硬さで2940の高い硬さをもつので、耐摩耗性を
向上させる作用があるが、その含有量が2%未満では、
前記作用に所望の向上効果が得られず、一方その含有量
が20%を越えると、相対的に素地の割合が少なくなつて
耐熱衝撃性が急激に低下するようになることから、その
含有量を2〜20%と定めた。
A. Dispersed Phase Content (a) Vanadium Carbide Vanadium carbide improves thermal fatigue resistance in the presence of metal charcoal and nitride, and also has a high micro Vickers hardness of 2940. Since it has a function of improving wear resistance, if its content is less than 2%,
If the desired effect of improving the action is not obtained, and on the other hand, if the content exceeds 20%, the thermal shock resistance will drop sharply as the proportion of the matrix becomes relatively small, so its content Was defined as 2 to 20%.

(b) 金属の炭・窒化物 金属の炭・窒化物には、上記のように炭化バナジウムと
の共存において、耐熱疲労性を向上させるほか、炭化バ
ナジウムと同様に高硬度をもつので、耐摩耗性を向上さ
せ、さらに耐酸化性を向上させる作用があるが、その含
有量が2%未満では前記作用に所望の効果が得られず、
一方その含有量が20%を超えると、上記のように相対的
に高合金鋼で構成される素地の割合が少なくなりすぎて
耐熱衝撃性が低下するようになることから、その含有量
を2〜20%と定めた。
(B) Metal charcoal / nitride Metal charcoal / nitride improves thermal fatigue resistance in the coexistence with vanadium carbide as described above, and also has high hardness like vanadium carbide, so wear resistance Has the effect of improving the resistance and further improving the oxidation resistance, but if the content is less than 2%, the desired effect cannot be obtained for the above-mentioned effect.
On the other hand, if the content exceeds 20%, the proportion of the base material composed of the relatively high alloy steel becomes too small as described above, and the thermal shock resistance decreases. It was set at ~ 20%.

B.素地の成分組成 (a) C C成分には、素地に固溶して、これの硬さを高めるほ
か、Cr,V,W,およびMo成分と結合して、主にM6C型の炭化
物を析出形成し、もつて常温および高温強度を高めると
共に、耐摩耗性を向上させる作用があるが、その含有量
が0.5%未満では前記作用に所望の効果が得られず、一
方その含有量が5%を越えると靫性が低下するようにな
ることから、その含有量を0.5〜5%と定めた。
B. Component composition of the base material (a) The C component is a solid solution in the base material to increase its hardness, and is combined with the Cr, V, W, and Mo components to form mainly M 6 C type. Has the effect of precipitating and forming carbides, which in turn increases the normal temperature and high temperature strength, and improves the wear resistance, but if its content is less than 0.5%, the desired effect cannot be obtained for the above action, while If the amount exceeds 5%, the drossiness will decrease, so the content was defined as 0.5 to 5%.

(b) Cr Cr成分には、一部が素地に固溶して、これの耐食性と焼
入性を向上させ、残りの部分が上記のように炭化物を析
出形成して、耐摩耗性を向上させる作用があるが、その
含有量が3%未満では前記作用に所望の効果が得られ
ず、一方その含有量が10%を越えると靫性が低下するよ
うになることから、その含有量を3〜10%と定めた。
(B) Cr The Cr component partly dissolves in the base material to improve its corrosion resistance and hardenability, and the remaining part precipitates and forms carbides as described above to improve wear resistance. However, if the content is less than 3%, the desired effect cannot be obtained, and if the content exceeds 10%, the drossiness is deteriorated. It was set at 3-10%.

(c) V V成分には、上記のように炭化物を析出形成するほか、
焼戻し硬化性を高め、もつて耐摩耗性を向上させる作用
があるが、その含有量が1%未満では前記作用に所望の
効果が得られず、一方その含有量が5%を越えると靫性
が低下するようになることから、その含有量を1〜5%
と定めた。
(C) In the V V component, in addition to depositing carbide as described above,
Although it has the effect of increasing the tempering hardenability and thus improving the wear resistance, if the content is less than 1% the desired effect is not obtained, while if the content exceeds 5% the drossiness is reduced. The content will be 1-5%.
I decided.

(d) Ni Ni成分には、Co成分との共存において、耐熱衝撃性を向
上させ、かつ耐応力腐食性を向上させ、もつて耐肌荒性
を著しく改善する作用があるが、その含有量が0.5%未
満では前記作用に所望の効果が得られず、一方その含有
量が20%を越えると、耐摩耗性が劣化するようになるこ
とから、その含有量を0.5〜20%と定めた。
(D) Ni The Ni component, in the coexistence with the Co component, has the effects of improving the thermal shock resistance and the stress corrosion resistance, and thus significantly improving the surface roughening resistance. When the content is less than 0.5%, the desired effect cannot be obtained, and when the content exceeds 20%, the wear resistance is deteriorated, so the content is defined as 0.5 to 20%. .

(e) Co Co成分には、上記のようにNi成分との共存において、耐
熱衝撃性を向上させるほか、高温強度(高温クリープ抵
抗)を著しく向上させ、もつて耐欠損性を高める作用が
あるが、その含有量が5%未満では前記作用に所望の効
果が得られず、一方その含有量が20%を越えると耐摩耗
性が低下するようになることから、その含有量を5〜20
%と定めた。
(E) Co Co component, in the coexistence with Ni component as described above, not only improves thermal shock resistance but also significantly enhances high temperature strength (high temperature creep resistance) and thus enhances fracture resistance. However, if the content is less than 5%, the desired effects cannot be obtained, and if the content exceeds 20%, the wear resistance tends to decrease.
Defined as%.

(f) WおよびMo これらの成分には、一部が素地に固溶して、これの常温
および高温強度を高め、さらに上記のように炭化物を析
出形成して、耐摩耗性を向上させる作用があるが、その
含有量がそれぞれW:1%未満およびMo:2%未満では前記
作用に所望の効果が得られず、一方その含有量がそれぞ
れW:10%およびMo:15%を越えると靫性が低下するよう
になることから、その含有量をそれぞれW:1%〜10%、M
o:2〜15%と定めた。
(F) W and Mo These components act as a solid solution in the base material to increase the room temperature and high temperature strength of the base material, and to precipitate carbides as described above to improve wear resistance. However, if the content is less than W: 1% and Mo: less than 2%, the desired effect cannot be obtained, while if the content exceeds W: 10% and Mo: 15%, respectively. Since the drossiness will decrease, the content of W will be 1% to 10% and M, respectively.
o: Defined as 2 to 15%.

なお、この発明のZnおよびZn合金ダイカスト用金型は、
まず、原料粉末として用いられる素地形成のための高合
金鋼粉末を、 (a) Cr,V,Ni,Co,W,Mo,およびFeの酸化物粉末と、炭
素粉末とを、加熱還元後、所定の高合金鋼組成をもつよ
うに配合し、混合した後、この混合粉末を真空中または
水素気流中で加熱還元するか、あるいは、 (b) 所定の成分組成をもつた高合金鋼を溶製し、こ
の高合金鋼溶湯をアトマイズにて微粉化するか、のいず
れかの方法によつて調製し、ついでこれに同じく原料粉
末として用意した炭化バナジウム粉末と、金属の炭・窒
化物粉末のうちの1種または2種以上とを所定の配合組
成に配合し、これを湿式にて粉砕・混合した後、10〜30
Kg/mm2の圧力で所定の形状をもつた圧粉体にプレス成形
し、ついでこの圧粉体に、真空中または水素雰囲気中で
500〜900℃の温度に加熱の脱ガス焼鈍処理を施すか、あ
るいはこの脱ガス焼鈍処理を施さない状態で、真空中ま
たは水素雰囲気中、1200〜1300℃の温度に加熱保持の条
件で焼結を施し、引続いて、必要に応じて加熱温度:120
0〜1300℃、圧力:500〜2000気圧の条件で熱間静水圧プ
レスを施し、最終的にソルトバスを用い、焼入れ温度:1
180〜1240℃、焼戻し温度:560〜580℃の条件で熱処理を
施すことによつて製造することができる。
Incidentally, the mold for Zn and Zn alloy die casting of the present invention,
First, a high alloy steel powder for forming a base material used as a raw material powder is (a) oxide powder of Cr, V, Ni, Co, W, Mo, and Fe and carbon powder are heated and reduced, After mixing and mixing so as to have a predetermined high alloy steel composition, the mixed powder is heated and reduced in a vacuum or in a hydrogen stream, or (b) a high alloy steel having a predetermined component composition is melted. Manufactured, atomized this high-alloy steel melt by atomization, or prepared by either method, and then the same vanadium carbide powder prepared as a raw material powder, and metal carbon / nitride powder 10 to 30 after blending one or more of them with a predetermined blending composition and pulverizing and mixing them with a wet method
Press-formed into a green compact with a specified shape at a pressure of Kg / mm 2 , and then press this green compact in a vacuum or in a hydrogen atmosphere.
Sintered under a condition of heating at a temperature of 1200 to 1300 ° C in a vacuum or hydrogen atmosphere with or without degassing annealing by heating at a temperature of 500 to 900 ° C. Then, if necessary, heating temperature: 120
Hot isostatic pressing is performed under the conditions of 0 to 1300 ° C and pressure: 500 to 2000 atm, and finally using a salt bath, quenching temperature: 1
It can be manufactured by heat treatment under the conditions of 180 to 1240 ° C and tempering temperature of 560 to 580 ° C.

〔実施例〕〔Example〕

つぎに、この発明のZnおよびZn合金ダイカスト用金型を
実施例により具体的に説明する。
Next, the mold for Zn and Zn alloy die casting of the present invention will be specifically described by way of examples.

まず、素地形成のための高合金鋼粉末を製造する目的
で、いずれも0.2〜0.7μmの範囲内の平均粒径を有する
Cr,V,Ni,Co,W,MoおよびFeの酸化物粉末と、炭素粉末と
を用意し、これら粉末を所定の配合組成に配合し、混合
した後、水素気流中にて温度:1150℃に3時間保持の条
件で加熱還元することによつて、それぞれ第1表に示さ
れる成分組成を有し、かつ1〜10μmの範囲内の平均粒
径をもつた高合金鋼粉末a〜uを製造し、ついで、この
結果得られた各種の合金金鋼粉末と、分散相形成のため
の、いずれも3〜15μmの範 囲内の平均粒径を有するVC粉末と各種の金属の炭・窒化
物粉末とを原料粉末として用い、これら原料粉末をそれ
ぞれ第2表に示される配合組成に配合し、ボールミルに
て24時間湿式混合し、乾燥した後、水素雰囲気中、温
度:900℃に2時間保持の条件で還元焼鈍を施し、引続い
てこれを10Kg/mm2の圧力でプレス成形して所定形状の圧
粉体とし、この圧粉体に中間加工を施して所定寸法とし
た後、真空中または窒素雰囲気中、1250〜1280℃の範囲
内の所定温度に1時間保持の条件で焼結し、さらに温
度:1250℃、圧力:1000気圧の条件で熱間静水圧プレスを
施し、最終的に1180〜1240℃の範囲内の所定温度から焼
入れ後、560〜580℃の範囲内の所定温度に1時間保持の
焼戻し処理を3回繰り返すことからなる熱処理を施すこ
とによつて、実質的に配合組成と同一の成分組成を有
し、かつ最大長さ:50mm×最大幅:30mm×最大深さ:10mm
のキヤビテイ寸法を有する音響部品を製造するための本
発明Zn合金ダイカスト用金型1〜21をそれぞれ製造し
た。
First, for the purpose of producing a high alloy steel powder for forming a green body, each has an average particle size within the range of 0.2 to 0.7 μm.
Prepare oxide powders of Cr, V, Ni, Co, W, Mo and Fe, and carbon powder, blend these powders to a prescribed blending composition, mix, and then in a hydrogen stream, temperature: 1150 ° C. The high alloy steel powders a to u each having the component composition shown in Table 1 and having an average particle diameter in the range of 1 to 10 μm are obtained by heating and reducing the powder for 3 hours. Each of the various alloy gold steel powders obtained as a result of the production and then for the formation of the dispersed phase is in the range of 3 to 15 μm. VC powder having the average particle size in the range and carbon / nitride powders of various metals are used as raw material powders, and these raw material powders are blended to the blending composition shown in Table 2 and wet-mixed in a ball mill for 24 hours. Then, after drying, it is subjected to reduction annealing in a hydrogen atmosphere at a temperature of 900 ° C. for 2 hours, and subsequently, this is press-molded at a pressure of 10 kg / mm 2 to obtain a green compact having a predetermined shape, After subjecting this green compact to intermediate processing to a specified size, it is sintered in vacuum or in a nitrogen atmosphere at a specified temperature within the range of 1250 to 1280 ° C for 1 hour, and then at a temperature of 1250 ° C. Pressure: Hot isostatic pressing is performed under the condition of 1000 atm, and finally after quenching from the prescribed temperature within the range of 1180 to 1240 ° C, tempering treatment is held for 1 hour at the prescribed temperature within the range of 560 to 580 ° C. By applying a heat treatment consisting of repeating three times, the composition is substantially the same as the composition. It has a component composition and the maximum length: 50 mm × maximum width: 30 mm × maximum depth: 10 mm
The Zn alloy die casting dies 1 to 21 of the present invention for producing the acoustic component having the cavity size were manufactured.

つぎに、この結果得られた本発明Zn合金ダイカスト用金
型1〜21を用いて、Zn合金J(ZDC1)の音響部品をダイ
カストし、ダイカスト鋳物の最大長さにおける寸法誤差
が±0.05mmを越えたダイカスト鋳物が製造されるに至る
までのシヨツト回数を測定した。これらの測定結果を第
2表に示した。なお、第2表には、比較の目的で、C:0.
36%、Mn:0.26%、Cr:4.8%、Si:0.76%、Mo:1.3%、V:
0.9%、W:1.1%を含有し、残りがFeと不可避不純物から
なる組成をもつた従来焼結合金鋼製Zn合金ダイカスト用
金型の同一条件でのシヨツト回数を示した。
Next, using the resulting Zn alloy die casting dies 1 to 21 of the present invention, an acoustic component of Zn alloy J (ZDC1) is die cast, and the dimensional error in the maximum length of the die cast casting is ± 0.05 mm. The number of shots until the production of die castings that exceeded the limit was measured. The results of these measurements are shown in Table 2. In Table 2, C: 0.
36%, Mn: 0.26%, Cr: 4.8%, Si: 0.76%, Mo: 1.3%, V:
The number of shots under the same conditions was shown for the conventional die for die-casting Zn alloy made of sintered alloy steel containing 0.9%, W: 1.1% and the balance of Fe and inevitable impurities.

〔発明の効果〕 第2表に示される結果から、本発明Zn合金ダイカスト用
金型1〜21は、いずれも従来焼結合金鋼製Zn合金ダイカ
スト用金型に比して、これより一段とすぐれた耐熱衝撃
性と耐熱疲労性をもつので、相対的に著しく長い使用寿
命を示すことが明らかである。
[Effect of the Invention] From the results shown in Table 2, all of the Zn alloy die casting dies 1 to 21 of the present invention are superior to the conventional sintered alloy steel Zn alloy die casting dies. It also has excellent thermal shock resistance and thermal fatigue resistance, so it is clear that it exhibits a relatively long service life.

上述のように、この発明のZnおよびZn合金ダイカスト用
金型によれば、高い寸法精度での著しく長期に亘る使用
を可能とするものである。
As described above, according to the die for Zn and Zn alloy die casting of the present invention, it is possible to use the die with high dimensional accuracy for an extremely long period of time.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】分散相として炭化バナジウム:2〜20重量
%、 同じく分散相として周期律表の4a,5a、および6a族金属
の炭化物(ただし炭化バナジウムを除く)、同4aおよび
5a族金属の窒化物および炭窒化物、並びにこれらの2種
以上の固溶体のうちの1種また2種以上:2〜20重量%、
を含有し、残りが素地を形成する高合金鋼からなる組成
を有し、かつ前記高合金鋼が、重量%で、 C:0.5〜5%、Cr:3〜10%、 V:1〜5%、Ni:0.5〜20%、 Co:5〜20%、 を含有し、さらに、 W:1〜10%、Mo:2〜15%、 のうちの1種または2種、 を含有し、残りがFeと不可避不純物からなる組成を有す
る分散強化型焼結合金鋼で構成したことを特徴とする分
散強化型焼結合金鋼製ZnおよびZn合金ダイカスト用金
型。
1. Vanadium carbide: 2 to 20% by weight as a dispersed phase, and 4a, 5a, and 6a group metal carbides (excluding vanadium carbide) of the periodic table as a dispersed phase, 4a and
Group 5a metal nitrides and carbonitrides, and one or more solid solutions of two or more thereof: 2 to 20% by weight,
And a balance of the high alloy steel that forms the base material, and the high alloy steel is, by weight%, C: 0.5 to 5%, Cr: 3 to 10%, V: 1 to 5 %, Ni: 0.5 to 20%, Co: 5 to 20%, and W: 1 to 10%, Mo: 2 to 15%, one or two of, and the rest Dispersion-strengthened sintered alloy steel made of dispersion-strengthened sintered alloy steel having a composition of Fe and unavoidable impurities, and a die for die casting of Zn and Zn alloys.
JP29914786A 1986-12-16 1986-12-16 Dispersion-strengthened sintered alloy steel die for Zn and Zn alloy die casting Expired - Lifetime JPH0730429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29914786A JPH0730429B2 (en) 1986-12-16 1986-12-16 Dispersion-strengthened sintered alloy steel die for Zn and Zn alloy die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29914786A JPH0730429B2 (en) 1986-12-16 1986-12-16 Dispersion-strengthened sintered alloy steel die for Zn and Zn alloy die casting

Publications (2)

Publication Number Publication Date
JPS63153245A JPS63153245A (en) 1988-06-25
JPH0730429B2 true JPH0730429B2 (en) 1995-04-05

Family

ID=17868733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29914786A Expired - Lifetime JPH0730429B2 (en) 1986-12-16 1986-12-16 Dispersion-strengthened sintered alloy steel die for Zn and Zn alloy die casting

Country Status (1)

Country Link
JP (1) JPH0730429B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2797048B2 (en) * 1992-09-25 1998-09-17 山陽特殊製鋼株式会社 Melt erosion resistant material
US20120111526A1 (en) * 2010-11-05 2012-05-10 Bochiechio Mario P Die casting system and method utilizing high melting temperature materials

Also Published As

Publication number Publication date
JPS63153245A (en) 1988-06-25

Similar Documents

Publication Publication Date Title
CN108642402B (en) Aluminum nitride dispersion strengthening powder metallurgy aluminum high-speed steel and preparation method thereof
KR20040066937A (en) Sinterable metal powder mixture for the production of sintered components
CN111560564B (en) Resource-saving high-nitrogen duplex stainless steel and near-net forming method thereof
US4012230A (en) Tungsten-nickel-cobalt alloy and method of producing same
CN108085576A (en) A kind of preparation method of steel knot TiCN base cemented carbides
JPH0512424B2 (en)
JPH09263906A (en) Iron-nickel-chrome-alum. ferritic alloy and its production
US3809540A (en) Sintered steel bonded titanium carbide tool steel characterized by an improved combination of transverse rupture strength and resistance to thermal shock
JPH04325648A (en) Production of sintered aluminum alloy
JPH0730429B2 (en) Dispersion-strengthened sintered alloy steel die for Zn and Zn alloy die casting
JP2684736B2 (en) Powder cold work tool steel
JPS62278250A (en) Thread rolling dies made of dispersion-strengthened-type sintered alloy steel
US3715792A (en) Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy
JP2572053B2 (en) Manufacturing method of iron alloy moldings
JPH0578708A (en) Production of aluminum-based grain composite alloy
JPH0229736B2 (en) BUNSANKYOKAGATASHOKETSUGOKINKOSEINETSUKANTAIMAMOBUZAI
SU1647039A1 (en) Carbide-steel and method for preparation of it
CN108034881A (en) A kind of steel knot TiCN base cemented carbides and application
KR100316342B1 (en) high speed steel produced by powder metallurgy
TWI766454B (en) Steel for mold, and mold
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JPS601387B2 (en) Tungsten carbide-based cemented carbide with high strength and high oxidation resistance
WO2023082164A1 (en) Antibacterial and antiviral copper-containing stainless steel, and preparation method therefor and use thereof
Tracey et al. Sintered High-Temperature Alloys
JPS6335706B2 (en)