JPH07303981A - Composition of solder - Google Patents

Composition of solder

Info

Publication number
JPH07303981A
JPH07303981A JP6098797A JP9879794A JPH07303981A JP H07303981 A JPH07303981 A JP H07303981A JP 6098797 A JP6098797 A JP 6098797A JP 9879794 A JP9879794 A JP 9879794A JP H07303981 A JPH07303981 A JP H07303981A
Authority
JP
Japan
Prior art keywords
solder
powder
copper alloy
content
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6098797A
Other languages
Japanese (ja)
Inventor
Akira Otani
章 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6098797A priority Critical patent/JPH07303981A/en
Publication of JPH07303981A publication Critical patent/JPH07303981A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide the solder which is low in the flowability in the heated soldering and excellent in the shapeability by consisting the solder of the powder of silver and copper alloy having the region where the silver content of the surface is larger than the average content, and the silver content is gradually increased from the inner part to the surface, and the solder particles. CONSTITUTION:The solder composition is the powder of copper alloy which contains the fine powder of metal and the solder, and where the fine powder of metal is expressed by the average composition AgxCu1-x (where, 0.01<=x<=0.4, x is the atomic ratio). The solder has the region where the silver content of the surface of the copper alloy powder is larger than the average silver content, and the silver content is gradually increased from the inner part to the surface, and the volumetric content of the copper alloy powder to the total metal content is >=2% and <=30%. The shapeability is excellent in the heated soldering, the deterioration of the shapeability after the thermal cycle test of the soldered structure is low, and the shapeability after the high temperature exposure test is excellent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱はんだ付け時の流
動性が低く、形状保持性に優れたはんだ組成物に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder composition having low fluidity during heating and soldering and excellent shape retention.

【0002】[0002]

【従来の技術】はんだと合金化しない絶縁層ギャップを
介したはんだ接続、あるいはプラスチック中に分散させ
たはんだを加熱して接続を得て導電性を持たせる等の目
的のため、加熱溶融時の流動性を抑え、加熱前の形状を
保持したいという要求がある。この用途に関しては、非
共晶の高温はんだを用いる方法、はんだの溶融温度以下
で加熱を行う方法があるが、厳密な温度管理が必要であ
るという問題点がある。また、特開平4−17994号
公報には、はんだ付け温度においてはんだに固溶しない
金属粒を混合したはんだ組成物が記載されている。
2. Description of the Related Art For the purpose of soldering through an insulating layer gap that does not alloy with solder, or by heating solder dispersed in plastic to obtain a connection and make it conductive, for example, when heating and melting There is a demand for suppressing fluidity and maintaining the shape before heating. Regarding this application, there are a method of using a non-eutectic high-temperature solder and a method of heating below the melting temperature of the solder, but there is a problem that strict temperature control is required. Further, JP-A-4-17994 describes a solder composition in which metal particles that do not form a solid solution with solder at a soldering temperature are mixed.

【0003】[0003]

【発明が解決しようとする課題】はんだによる接続は接
続信頼性が高い方法として広く用いられているが、溶融
はんだの表面張力が大であるため、加熱し接続合金化の
際に流動性が高く、形状保持性が悪いという問題があ
る。金属粒子を混合し流動性を制御する方法の場合に
は、金属粒子として、はんだの濡れ性の良い金属、その
合金、金属メッキされた粒子が用いられる。この場合、
加熱による初期接続の際の流動性調整はうまくおこなえ
ても、再加熱条件、あるいは、高温での使用といった高
温にさらされる条件では、形状保持性が低いという問題
がある。
The connection by solder is widely used as a method with high connection reliability, but since the surface tension of molten solder is large, it has a high fluidity when it is heated to form a connection alloy. However, there is a problem that shape retention is poor. In the case of the method of mixing the metal particles to control the fluidity, a metal having good solder wettability, an alloy thereof, or a metal-plated particle is used as the metal particle. in this case,
Even if the fluidity can be adjusted successfully during the initial connection by heating, there is a problem that the shape retention is low under reheating conditions or conditions that are exposed to high temperatures such as use at high temperatures.

【0004】[0004]

【課題を解決するための手段】本発明者らは、これらの
点に鑑み、はんだ接続部の高温さらし時の形状保持性に
優れたはんだ組成物を得るべく種々検討を加えた結果、
すべての特性を満足することのできるはんだ組成物を提
供できることを見いだし、本発明に到達したものであ
る。
In view of these points, the present inventors have made various studies in order to obtain a solder composition having excellent shape-retaining property at the time of exposing a solder joint to a high temperature.
The inventors have found that a solder composition that can satisfy all the properties can be provided, and have reached the present invention.

【0005】すなわち、本発明は金属微粉末とはんだと
を含み、前記金属微粉末が平均組成Agx Cu1-x (た
だし、0.01≦x≦0.4、xは原子比を表す)で表
される銅合金粉末であり、銅合金粉末表面の銀濃度が平
均の銀濃度より大きく、かつ内部から表面に向けて、銀
濃度が次第に増加する領域を有し、かつ全金属成分に対
する銅合金粉末の体積含有率が2%以上かつ30%以下
であるはんだ組成物である。
That is, the present invention contains fine metal powder and solder, and the fine metal powder has an average composition of Ag x Cu 1-x (where 0.01 ≦ x ≦ 0.4, where x represents an atomic ratio). The copper alloy powder represented by, the silver concentration on the surface of the copper alloy powder is higher than the average silver concentration, and has a region where the silver concentration gradually increases from the inside to the surface, and copper for all metal components The solder composition has a volume content of alloy powder of 2% or more and 30% or less.

【0006】本発明に用いる金属微粉末は、本出願人ら
により既に出願されている米国特許第5、091、11
4号に開示されている銅合金粉末を用いることができ
る。中でも、不活性ガスアトマイズ法により作製される
銅合金粉末が特に好ましい。本発明で用いられる金属粉
末の平均粒子径は、200μm以下であるが、150μ
m以下が好ましく、100μm以下が最も好ましい。2
00μmを越える場合には、はんだ組成物の印刷、塗布
性が低下する。また金属微粉末の形状は、印刷性が低下
しない範囲で球状から変形させても差し支えない。本発
明において粒径の測定には走査型電子顕微鏡を用い、視
野中の100個の粉末の測定値の平均値を用いた。
The fine metal powder used in the present invention is the same as US Pat. No. 5,091,11 already filed by the present applicants.
The copper alloy powder disclosed in No. 4 can be used. Among them, copper alloy powder produced by the inert gas atomizing method is particularly preferable. The average particle size of the metal powder used in the present invention is 200 μm or less,
m or less is preferable, and 100 μm or less is most preferable. Two
If it exceeds 00 μm, the printing and coating properties of the solder composition deteriorate. The shape of the fine metal powder may be changed from spherical to the extent that the printability is not deteriorated. In the present invention, the particle size was measured by using a scanning electron microscope, and the average value of the measured values of 100 powders in the visual field was used.

【0007】本発明に用いる銅合金粉末の金属全成分に
対する体積含有率は2%以上かつ30%以下である。体
積含有率が2%未満の場合、流動性抑制効果が低く、3
0%を越える場合は加熱溶融後の接続部中にボイドが生
じ易くなる。本発明に適用されるはんだは、銅合金粉末
と合金を形成可能であれば共晶系、非共晶系はんだのい
ずれでも差し支えないが、すず、鉛を含む合金が好まし
く、すず、鉛、銀を含む合金が特に好ましい。本発明の
はんだ組成物がペーストの形態であるとき、はんだ粒の
粒径は、200μm以下が好ましく、100μm以下が
特に好ましい。
The volume content of the copper alloy powder used in the present invention is 2% or more and 30% or less with respect to all the metal components. When the volume content is less than 2%, the fluidity suppressing effect is low, and 3
If it exceeds 0%, voids are likely to occur in the joint after heating and melting. The solder applied to the present invention may be either eutectic or non-eutectic solder as long as it can form an alloy with a copper alloy powder, but tin, an alloy containing lead is preferable, tin, lead, silver. Alloys containing are particularly preferred. When the solder composition of the present invention is in the form of a paste, the particle size of the solder particles is preferably 200 μm or less, particularly preferably 100 μm or less.

【0008】本発明のはんだ組成物中には、はんだ及び
銅合金粉末以外に、溶剤、フラックス等の添加物を含ん
でも差し支えない。組成物中のフラックスは、リフロー
したはんだ粒間およびはんだ粒−銅合金粉末間の合金化
を起こすのに充分な成分、量であれば公知のものを用い
ることができる。例えば、ロジン系樹脂、変性ロジン系
樹脂、フェノール樹脂変性樹脂、水溶性界面活性剤樹脂
を主成分として用いることができる。その添加量として
は、はんだ組成物中のはんだの含有量の3重量%以上、
好ましくは10重量%以上、更に好ましくは15重量%
以上30重量%以下である。フラックス含有量が3重量
%未満の場合、はんだ粒子表面の酸化物を充分に除去で
きず、30重量%を超える場合では未反応のフラックス
残査が残ってしまいブローホールの原因となる。またフ
ラックスの効果を上げるために活性剤を用いることがで
きる。活性剤には、無機系及び有機系の活性剤を用いる
ことができ、その中でもアミン塩酸塩が好ましい。
The solder composition of the present invention may contain additives such as a solvent and a flux in addition to the solder and the copper alloy powder. As the flux in the composition, known components can be used as long as they are components and amounts sufficient to cause alloying between the reflowed solder particles and between the solder particles and the copper alloy powder. For example, a rosin-based resin, a modified rosin-based resin, a phenol resin-modified resin, or a water-soluble surfactant resin can be used as a main component. The amount added is 3% by weight or more of the content of solder in the solder composition,
Preferably 10% by weight or more, more preferably 15% by weight
It is above 30% by weight. If the flux content is less than 3% by weight, the oxide on the surface of the solder particles cannot be sufficiently removed, and if it exceeds 30% by weight, unreacted flux residue remains and causes blowholes. Also, an activator can be used to enhance the effect of the flux. Inorganic and organic activators can be used as the activator, and among them, amine hydrochloride is preferable.

【0009】有機溶剤は、カルビトール系、エーテル系
のものが用いられる。はんだの加熱は、用いるはんだ粒
の固相線以上の温度で行うが、固相線プラス20℃以上
の温度で行うことが好ましく、固相線プラス30℃以上
80℃以下の温度で行うことが更に好ましい。固相線プ
ラス20℃より低い温度でははんだ粒の合金化が充分に
行われず、固相線プラス80℃を超える温度では流動性
の制御が困難である。
As the organic solvent, carbitol type and ether type solvents are used. The heating of the solder is carried out at a temperature above the solidus of the solder particles to be used, but it is preferably carried out at a temperature above the solidus plus 20 ° C. and more preferably above the solidus plus 30 ° C. and below 80 ° C. More preferable. At temperatures below the solidus plus 20 ° C., solder particles are not sufficiently alloyed, and at temperatures above the solidus plus 80 ° C., it is difficult to control the fluidity.

【0010】はんだの加熱方法は、前記温度に到達でき
る方法であれば公知の方法を用いることができる。例え
ば、熱風加熱、赤外加熱、ベーパーフェーズ加熱、レー
ザー加熱、ホットプレート加熱である。好ましくは前記
加熱を用いたリフロー方法である。均一の加熱が得られ
るので、熱風加熱、赤外加熱のリフロー方法が特に好ま
しい。
As a method of heating the solder, a known method can be used as long as it can reach the above temperature. For example, hot air heating, infrared heating, vapor phase heating, laser heating, hot plate heating. A reflow method using the heating is preferable. Reflow methods of hot air heating and infrared heating are particularly preferable because uniform heating can be obtained.

【0011】本発明は、形状保持性の良いはんだ接続用
に特に有用な発明であり、他の応用分野、例えば、多層
プリント配線板のスルーホール、多層配線板の内層のビ
アホール、プリント配線板間の接合部、端子接続部、各
種部品実装、固定、さらには段差あるいは、ギャップを
介した電極接続、プラスチックへ練り込み導電性プラス
チック形成にも応用可能である。
The present invention is a particularly useful invention for solder connection with good shape retention, and is used in other fields of application, for example, through holes in a multilayer printed wiring board, via holes in an inner layer of a multilayer wiring board, and between printed wiring boards. The present invention can be applied to the joint part, the terminal connection part, mounting of various parts, fixing, further electrode connection through a step or a gap, and kneading into plastic to form conductive plastic.

【0012】[0012]

【実施例】以下、実施例と比較例によって本発明を具体
的に説明する。なお実施例記載の各種試験は次のように
行った。 (1)形状保持性試験 ガラスエポキシ基板上に一辺2mmの正方形の銅張り電
極を1mm間隔で形成した試験基板を作製し、試験基板
の両電極間にまたがるように幅2mm長さ3mmのパタ
ーンに厚み500μmのメタルマスクスクリーンを用い
て、試験はんだ組成物をスクリーン印刷する。同様なサ
ンプルを50個作製し、はんだの固相線プラス30℃の
温度で赤外線リフロー加熱を30秒行い試験試料とす
る。その後導電性を4端子法で測定する。断線が生じて
いるかどうかで判断する。 (2)冷熱サイクル試験 (1)と同様にして試験試料を作製し、これを−55℃
で30分、固相線マイナス10℃の温度で30分のサイ
クルに100サイクルさらす。その後に導電性を4端子
法で測定し、断線が生じるかどうかで判断する。 (3)高温さらし試験 (1)と同様にして試験試料を作製し、これを固相線マ
イナス5℃の温度に100時間放置した後、導電性を4
端子法で測定し、断線が生じるかどうかで判断する。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples. Various tests described in the examples were carried out as follows. (1) Shape retention test A test board was prepared by forming square copper-clad electrodes with a side length of 2 mm at 1 mm intervals on a glass epoxy board, and forming a pattern with a width of 2 mm and a length of 3 mm so as to extend between both electrodes of the test board. The test solder composition is screen printed using a metal mask screen with a thickness of 500 μm. Fifty similar samples are prepared, and infrared reflow heating is performed for 30 seconds at the solidus line of the solder plus a temperature of 30 ° C. to obtain a test sample. After that, the conductivity is measured by the four-terminal method. Judge whether there is a break. (2) Cold-heat cycle test A test sample was prepared in the same manner as (1), and this was -55 ° C.
100 cycles of 30 minutes at a solidus minus 10 ° C for 30 minutes. After that, the conductivity is measured by the four-terminal method, and it is judged whether or not a wire breakage occurs. (3) High-temperature exposure test A test sample was prepared in the same manner as in (1), left at a solidus line minus 5 ° C for 100 hours, and then subjected to conductivity 4
It is measured by the terminal method, and it is judged whether a wire breakage occurs.

【0013】[0013]

【実施例1】銅粉(純度99.9%、)630g、銀粉
(純度99.9%)216gを混合し、黒鉛るつぼ(窒
化ホウ素製ノズル付き)に入れ、アルゴン雰囲気中で高
周波誘導加熱により溶融し、1600℃まで加熱した。
この融液をアルゴン大気圧下でノズルより30秒間で噴
出した。同時に、ボンベ入りアルゴンガス(ボンベ圧力
150気圧)4.2NTPm3 を噴出する融液に向かっ
て周囲のノズルより噴出した。この時、ガス質量速度/
融液質量速度比は8.56であった。
Example 1 630 g of copper powder (purity 99.9%) and 216 g of silver powder (purity 99.9%) were mixed and put in a graphite crucible (with a boron nitride nozzle) and subjected to high frequency induction heating in an argon atmosphere. Melted and heated to 1600 ° C.
This melt was jetted from the nozzle for 30 seconds under argon atmospheric pressure. At the same time, argon gas containing a cylinder (cylinder pressure of 150 atm) 4.2NTPm 3 was ejected from the surrounding nozzles toward the ejected melt. At this time, gas mass velocity /
The melt mass velocity ratio was 8.56.

【0014】得られた粉末を走査型電子顕微鏡で観察し
たところ球状(平均粒径18.5μm)であった。この
粉末をXPSを用いて分析した。測定値Ag/(Ag+
Cu)(原子比)は、表面より内部に向かって0.6
5、0.55、0.44、0.37、0.33であり、
定義により最初の2つの平均値0.62であった。ま
た、濃硝酸に粒子の一部を溶解し、ICP(原子吸光
法)により平均の銀濃度を測定したところ、Ag/(A
g+Cu)(原子比)xは0.168であった。粉末表
面の銀濃度は、平均の銀濃度の3.75倍であった。銅
合金粉末のうち直径10μm以下の粉末を銅合金粉末と
して用いた。該銅合金粉末を用いた下記組成のはんだペ
ースト(a)を作製し前記(1)記載の試験基板にメタ
ルマスクを用いてスクリーン印刷した。その後、213
℃の温度で30秒間赤外線リフロー加熱し、形状保持性
試験サンプルを作製した。 はんだペースト(a)の組成 はんだ粒材質 錫/鉛=63/37 はんだ粒径 300メッシュ 金属粒 銅合金粉末 金属粒径 <10μm フラックス 弱活性ロジン 溶剤 ジエチレングリコールモノブチル
エーテル 混合比(体積比) はんだ粒:金属粒:フラックス=95:5:100 形状保持性試験サンプルは50個すべて断線しておら
ず、良好な形状保持性であった。同様にして作製した試
験試料を前記(2)の冷熱サイクル試験にかけたとこ
ろ、50個のうち断線は起こらなかった。更に、同様に
して作製した試験試料を173℃の温度に100時間放
置した後に導通を測定したところ、断線は起こらなかっ
た。以下、同様にして実施例2〜7を作製した。
When the powder obtained was observed with a scanning electron microscope, it was spherical (average particle size 18.5 μm). The powder was analyzed using XPS. Measured value Ag / (Ag +
Cu) (atomic ratio) is 0.6 from the surface toward the inside.
5, 0.55, 0.44, 0.37, 0.33,
By definition, the average of the first two was 0.62. Further, when a part of the particles was dissolved in concentrated nitric acid and the average silver concentration was measured by ICP (atomic absorption method), Ag / (A
g + Cu) (atomic ratio) x was 0.168. The silver concentration on the powder surface was 3.75 times the average silver concentration. Of the copper alloy powder, a powder having a diameter of 10 μm or less was used as the copper alloy powder. A solder paste (a) having the following composition was prepared using the copper alloy powder, and screen-printed on the test substrate described in (1) above using a metal mask. Then 213
Infrared reflow heating was performed at a temperature of 30 ° C. for 30 seconds to prepare a shape retention test sample. Composition of solder paste (a) Solder grain material Tin / lead = 63/37 Solder grain size 300 mesh Metal grain Copper alloy powder Metal grain size <10 μm Flux Weakly active rosin Solvent Diethylene glycol monobutyl ether Mix ratio (volume ratio) Solder grain: Metal Grain: Flux = 95: 5: 100 All 50 shape retention test samples were not broken, and had good shape retention. When the test sample prepared in the same manner was subjected to the thermal cycle test of (2) above, no disconnection occurred among the 50 samples. Furthermore, when a test sample produced in the same manner was left at a temperature of 173 ° C. for 100 hours and then the continuity was measured, no disconnection occurred. Hereinafter, Examples 2 to 7 were manufactured in the same manner.

【0015】[0015]

【比較例1】銅合金粉末を含まず、すべての金属成分が
はんだ粒である以外は実施例1と全く同様にしてはんだ
ペーストを作製し、形状保持性試験を行ったところ、形
状保持性試験サンプルは50個すべてが断線してしまっ
た。
[Comparative Example 1] A solder paste was prepared in the same manner as in Example 1 except that the copper alloy powder was not included and all the metal components were solder particles, and a shape retention test was conducted. All 50 samples were broken.

【0016】[0016]

【比較例2】銅合金粉末の替わりに粒径15μmの銀メ
ッキ銅粉を用いる以外は実施例1と全く同様にしてはん
だペーストを作製し、形状保持性試験を行ったところ、
形状保持性試験サンプル50個のうち、12個が断線し
た。同様にして作製した試験試料のうち断線していない
もの50個を冷熱サイクル試験にかけたところ、29個
が断線した。また、同様にして作製した試験試料のうち
断線していないもの50個を173℃の温度に100時
間放置した後に導通を測定したところ27個が断線し
た。
Comparative Example 2 A solder paste was prepared in the same manner as in Example 1 except that a silver-plated copper powder having a particle diameter of 15 μm was used instead of the copper alloy powder, and a shape retention test was conducted.
Of the 50 shape retention test samples, 12 were broken. Of the test samples prepared in the same manner, 50 pieces which were not broken were subjected to a thermal cycle test, and 29 pieces were broken. Further, among the test samples prepared in the same manner, 50 pieces which were not broken were left at a temperature of 173 ° C. for 100 hours, and the conduction was measured. As a result, 27 pieces were broken.

【0017】[0017]

【比較例3】銅合金粉末の替わりに粒径10μmのニッ
ケルメッキ銅粉を用いる以外は実施例1と全く同様にし
て、はんだペーストを作製し、形状保持性試験を行った
ところ、形状保持性試験サンプル50個のうち、21個
が断線した。同様にして作製した試験試料のうち断線し
ていないもの50個を冷熱サイクル試験にかけたとこ
ろ、39個が断線した。また、同様にして作製した試験
試料のうち断線していないもの50個を173℃の温度
に100時間放置した後に導通を測定したところ35個
が断線した。
Comparative Example 3 A solder paste was prepared in the same manner as in Example 1 except that nickel-plated copper powder having a particle size of 10 μm was used in place of the copper alloy powder, and a shape retention test was conducted. Of the 50 test samples, 21 were broken. Of the test samples produced in the same manner, 50 pieces which were not broken were subjected to a thermal cycle test, and 39 pieces were broken. Further, among the test samples prepared in the same manner, 50 pieces which were not broken were left at a temperature of 173 ° C. for 100 hours, and the conduction was measured. As a result, 35 pieces were broken.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】表1から明らかなように、本発明のはんだ
組成物は、非常に優れた形状保持性、形状保持性の安定
性を示す。
As is clear from Table 1, the solder composition of the present invention exhibits extremely excellent shape retention and stability of shape retention.

【0021】[0021]

【発明の効果】本発明は、加熱はんだ付け時に非常に優
れた形状保持性をもち、はんだ付けした構造物の冷熱サ
イクル試験後の形状保持性劣化が低く、高温さらし試験
後の形状保持性が優れているはんだ組成物を供するもの
である。
INDUSTRIAL APPLICABILITY The present invention has a very excellent shape retention during heat soldering, has a low deterioration in shape retention after a thermal cycle test of a soldered structure, and has a good shape retention after a high temperature exposure test. It provides an excellent solder composition.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも金属微粉末とはんだとを含
み、前記金属微粉末が平均組成Agx Cu1-x (ただ
し、0.01≦x≦0.4、xは原子比を表す)で表さ
れる銅合金粉末であり、銅合金粉末表面の銀濃度が平均
の銀濃度より大きく、かつ内部から表面に向けて、銀濃
度が次第に増加する領域を有し、かつ全金属成分に対す
る銅合金粉末の体積含有率が2%以上かつ30%以下で
あるはんだ組成物。
1. At least metal fine powder and solder, wherein the metal fine powder is represented by an average composition Ag x Cu 1-x (where 0.01 ≦ x ≦ 0.4, x represents an atomic ratio). A copper alloy powder having a silver concentration on the surface of the copper alloy powder higher than the average silver concentration, and having a region where the silver concentration gradually increases from the inside toward the surface, and the copper alloy powder for all metal components A solder composition having a volume content of 2% or more and 30% or less.
JP6098797A 1994-05-12 1994-05-12 Composition of solder Withdrawn JPH07303981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6098797A JPH07303981A (en) 1994-05-12 1994-05-12 Composition of solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098797A JPH07303981A (en) 1994-05-12 1994-05-12 Composition of solder

Publications (1)

Publication Number Publication Date
JPH07303981A true JPH07303981A (en) 1995-11-21

Family

ID=14229353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098797A Withdrawn JPH07303981A (en) 1994-05-12 1994-05-12 Composition of solder

Country Status (1)

Country Link
JP (1) JPH07303981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511279A (en) * 2011-02-28 2014-05-15 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Paste for joining parts of electronic module, and system and method for applying paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014511279A (en) * 2011-02-28 2014-05-15 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー Paste for joining parts of electronic module, and system and method for applying paste

Similar Documents

Publication Publication Date Title
JP4667455B2 (en) Conductive filler and solder material
US7686982B2 (en) Conductive filler
JP2005319470A (en) Lead-free solder material, electronic circuit board and their production method
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
JPWO2006080247A1 (en) Conductive paste
JP4667103B2 (en) Conductive filler and low-temperature solder material
EP1598142A1 (en) Lead-free solder alloy and preparation thereof
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
JP2002224880A (en) Solder paste and electronic device
KR100645241B1 (en) Mixed alloy lead-free solder paste
JP2013163185A (en) Filler metal, solder paste, and connecting structure
JP5724088B2 (en) Metal filler and lead-free solder containing the same
JPH07303981A (en) Composition of solder
JP4811661B2 (en) Au-Sn alloy solder paste with less void generation
JP2004167569A (en) Lead-free solder paste composition and soldering method
JP4662483B2 (en) Conductive filler and medium temperature solder material
JP5652689B2 (en) Manufacturing method of electronic component bonded structure and electronic component bonded structure obtained by the manufacturing method
JP2004095907A (en) Solder joint structure and solder paste
US20220274212A1 (en) Preformed solder and solder bonded body formed by using said preformed solder
JP2011062752A (en) Conductive filler, and low-temperature solder material
JP2012250239A (en) Metal filler, solder paste, and connected structure
CN117754178A (en) SnBi lead-free solder, preparation method and application thereof
KR20170097283A (en) Lead-free solder composition and its manufacturing method
JPH07263827A (en) Through-hole interconnection board

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731