JPH07303366A - Snubber energy regenerative circuit - Google Patents

Snubber energy regenerative circuit

Info

Publication number
JPH07303366A
JPH07303366A JP6094298A JP9429894A JPH07303366A JP H07303366 A JPH07303366 A JP H07303366A JP 6094298 A JP6094298 A JP 6094298A JP 9429894 A JP9429894 A JP 9429894A JP H07303366 A JPH07303366 A JP H07303366A
Authority
JP
Japan
Prior art keywords
circuit
self
extinguishing element
snubber
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6094298A
Other languages
Japanese (ja)
Inventor
Minoru Onabe
実 大辺
Tadashi Shibuya
忠士 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6094298A priority Critical patent/JPH07303366A/en
Publication of JPH07303366A publication Critical patent/JPH07303366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Power Conversion In General (AREA)

Abstract

PURPOSE:To make a snubber energy regenerative circuit usable at a high frequency by simultaneously turning on an auxiliary self-arc-extinguishing element with a main self-arc-extinguishing element by connecting the electric charge of a snubber capacitor in series with the former and an alternating device or reactor and, after completing regeneration, turning off the former before turning off the latter. CONSTITUTION:When a main GTO element G1 and auxiliary GTO element Gs1 are simultaneously turned on from turned-off states, the electric charge of a snubber capacitor C1 is discharged through a closed circuit of C1-G1-CT1-Gs1-C1 and a discharge current is generated. At the same time, a secondary current which regenerates the energy of the capacitor C1 to a DC power source side flows from the secondary side of a current transformer CT1. After the DC voltage across the snubber capacitor becomes zero, the primary current of the transformer CT1 forms a closed circuit of CT1-Gs1-D1-CT1 and a circulating current is generated by stored energy. When the main GTO element G1 is turned off thereafter, the resetting current of the transformer CT1 abruptly decreases and the resetting period of the transformer CT1 can be shortened, since the potentials at the transformer CT1 and capacitor C1 rise. Therefore, this snubber energy regenerative circuit can be applied to a high frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、GTO素子等の自己消
孤素子を主回路に使用した電力変換装置のスナバ回路の
コンデンサに充電されるエネルギを回生するスナバエネ
ルギ回生回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a snubber energy regenerating circuit that regenerates energy charged in a capacitor of a snubber circuit of a power converter using a self-extinguishing element such as a GTO element in a main circuit.

【0002】[0002]

【従来の技術】従来のスナバエネルギ回生回路の一例を
図10に示す。G1はインバータのアームを構成する主
GTO素子G1、SはG1と並列に接続されたダイオー
ドD1とスナバコンデンサC1からなるスナバ回路、L
1はGTO素子G1のアノード側に接続された電流変化
抑制用リアクトル、CT1はエネルギ回生用変流器で、
その1次巻線はダイオードD1とスナバコンデンサC1
との橋絡点と複数のダイオードを直列に接続した直列ダ
イオードDのアノード側に接続され、2次側はリアクト
ルL2と図示方向のダイオードD22を介して直流電源
PおよびNに接続されている。なお、ダイオードDのカ
ソード側はインバータのアームの電源Aに接続されてい
る。
2. Description of the Related Art An example of a conventional snubber energy regeneration circuit is shown in FIG. G1 is a main GTO element G1 forming an arm of the inverter, S is a snubber circuit composed of a diode D1 and a snubber capacitor C1 connected in parallel with G1, and L
Reference numeral 1 is a current change suppressing reactor connected to the anode side of the GTO element G1, and CT1 is a current transformer for energy regeneration.
The primary winding is a diode D1 and a snubber capacitor C1.
Is connected to the anode side of a series diode D in which a plurality of diodes are connected in series, and the secondary side is connected to DC power supplies P and N via a reactor L2 and a diode D22 in the illustrated direction. The cathode side of the diode D is connected to the power supply A of the inverter arm.

【0003】GTO素子G1がオフ時にスナバコンデン
サC1はリアクトルL1、ダイオードD1の回路で充電
される。GTO素子G1が点弧されオンすると、スナバ
コンデンサC1の電荷は図11(a)に示すようにスナ
バコンデンサC1→CT1→D→L1→G1→C1の閉
回路で放電し、電流(I1)を変流器CT1の1次側に
流す。スナバコンデンサC1にかかる電圧がほぼゼロと
なった後、図11(b)に示すようにCT1→D→L1
→D1→CT1の閉回路で電流が流れる。
When the GTO element G1 is off, the snubber capacitor C1 is charged by the circuit of the reactor L1 and the diode D1. When the GTO element G1 is ignited and turned on, the electric charge of the snubber capacitor C1 is discharged in the closed circuit of the snubber capacitor C1 → CT1 → D → L1 → G1 → C1 as shown in FIG. 11 (a), and the current (I1) is discharged. Flow to the primary side of the current transformer CT1. After the voltage applied to the snubber capacitor C1 becomes almost zero, CT1 → D → L1 as shown in FIG. 11 (b).
→ Current flows in the closed circuit of D1 → CT1.

【0004】変流器CT1の1次側電流(I1)および
2次側電流(I2)は図12に示すように流れる。この
ため、期間t1〜t3はエネルギが変流器CT1の2次
側から直流電源P、N間に回生される。
The primary side current (I1) and secondary side current (I2) of the current transformer CT1 flow as shown in FIG. Therefore, in the periods t1 to t3, energy is regenerated between the DC power supplies P and N from the secondary side of the current transformer CT1.

【0005】[0005]

【発明が解決しようとする課題】期間t3〜t4は変流
器CT1の残留磁束をリセットするための時間となり、
エネルギは回生されない。このリセット期間t3〜t4
は図11(c)に示すように、電流(I1)はCT1→
D→L1→D1→CT1の閉経路を流れる。
The period from t3 to t4 is the time for resetting the residual magnetic flux of the current transformer CT1.
Energy is not regenerated. This reset period t3 to t4
Shows the current (I1) is CT1 →
It flows through a closed path of D → L1 → D1 → CT1.

【0006】このリセット期間t3〜t4が長くリセッ
ト期間が終了しないうちにGTO素子G1がオンし、再
度回生すると変流器CT1が飽和し回生不能となる。こ
のため、この回生回路を用いた電力変換装置は高周波で
使用できなくなる。
When the reset period t3 to t4 is long and the GTO element G1 is turned on before the reset period is completed and the regeneration is performed again, the current transformer CT1 is saturated and the regeneration cannot be performed. For this reason, the power converter using this regenerative circuit cannot be used at high frequencies.

【0007】本発明は、従来のこのような問題点に鑑み
てなされたものであり、その目的とするところは、高周
波での使用を可能にするスナバエネルギ回生回路を提供
することにある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a snubber energy regenerating circuit which can be used at a high frequency.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明におけるスナバエネルギの回生回路は、主回
路に自己消孤素子を用いた電力変換回路におけるスナバ
回路コンデンサの電荷を回生用変流器の1次巻線あるい
はリアクトルに流し、その2次巻線あるいはリアクトル
の出力を整流して直流側に回生する回路において、スナ
バコンデンサと前記主回路の陽極側との間に前記変流器
あるいはリアクトルと直列に補助自己消弧素子を接続し
て主回路自己消弧素子素子と同時にオンし回生完了後、
主回路自己消弧素子のオフする前にオフさせることを特
徴とする。また、同様の目的で主回路自己消孤素子を用
いた電力変換回路におけるスナバコンデンサのエネルギ
をリアクトルに移しリアクトルのエネルギをダイオード
を介して直流電源に回生する回路において、前記スナバ
コンデンサのエネルギが前記リアクトルに移動完了後、
主回路自己消弧素子G1をオフする前に補助自己消弧素
子Gs1をオフすることを特徴とするスナバエネルギの
回生回路。
In order to achieve the above object, the snubber energy regenerating circuit according to the present invention uses a charge for regenerating the snubber circuit capacitor in a power conversion circuit using a self-extinguishing element in a main circuit. In a circuit in which a current is passed through a primary winding or a reactor of a current transformer and the output of the secondary winding or the reactor is rectified and regenerated to a DC side, the current transformer is provided between a snubber capacitor and the anode side of the main circuit. Or after connecting the auxiliary self-extinguishing element in series with the reactor and turning on at the same time as the main circuit self-extinguishing element element, after completion of regeneration,
It is characterized in that it is turned off before the main circuit self-extinguishing element is turned off. Further, for the same purpose, in the circuit for transferring the energy of the snubber capacitor in the power conversion circuit using the main circuit self-extinguishing element to the reactor and regenerating the energy of the reactor to the DC power source through the diode, the energy of the snubber capacitor is After moving to the reactor,
A snubber energy regenerative circuit characterized by turning off the auxiliary self-extinguishing element Gs1 before turning off the main circuit self-extinguishing element G1.

【0009】[0009]

【作用】主回路自己消弧素子のオンと同時に補助自己消
孤素子をオンさせるとスナバコンデンサの電荷は回生用
の変流器あるいはリアクトルに流れ、コンデンサのエネ
ルギは変流器あるいはリアクトルに蓄積される。コンデ
ンサのエネルギが変流器あるいはリアクトルに移動した
後、補助自己消孤素子をオフさせると変流器あるいはリ
アクトルに蓄積されたエネルギはダイオードを介して直
流電源に回生される。
[Function] When the main circuit self-extinguishing element is turned on and the auxiliary self-extinguishing element is turned on at the same time, the electric charge of the snubber capacitor flows to the current transformer or reactor for regeneration, and the energy of the capacitor is accumulated in the current transformer or reactor. It When the auxiliary self-extinguishing element is turned off after the energy of the capacitor moves to the current transformer or reactor, the energy stored in the current transformer or reactor is regenerated to the DC power source via the diode.

【0010】[0010]

【実施例】本発明の実施例を図面に基づいて説明する。
なお、各実施例において従来図12に示したものと同一
構成部分には同一符号を付してその重複する説明を省略
する。
Embodiments of the present invention will be described with reference to the drawings.
In each embodiment, the same components as those shown in FIG. 12 of the related art are designated by the same reference numerals, and the duplicated description will be omitted.

【0011】実施例1 図1は実施例1のインバータの1アーム分の回路を示
す。端子PおよびNはインバータの直流電源端子であ
り、一方、端子Uはアームの交流端子、Df1は補助ダ
イオードで変流器CT1の1次巻線と直列に接続され、
この直列回路は主GTO素子G1と逆並列に接続され
る。Gs1はスナバコンデンサC1の電荷を変流器を通
して放電させるための補助GTO素子でC1,D1の橋
絡点とDf1,CT1の1次巻線の橋絡点の間に接続さ
れる。なお、接続の極性方向はスナバ回路のC1とD1
の橋絡位置によって異なる。
First Embodiment FIG. 1 shows a circuit for one arm of the inverter of the first embodiment. The terminals P and N are the DC power supply terminals of the inverter, while the terminal U is the AC terminal of the arm and Df1 is an auxiliary diode connected in series with the primary winding of the current transformer CT1,
This series circuit is connected in anti-parallel with the main GTO element G1. Gs1 is an auxiliary GTO element for discharging the electric charge of the snubber capacitor C1 through a current transformer, and is connected between the bridge point of C1 and D1 and the bridge point of the primary winding of Df1 and CT1. The connection polarity direction is C1 and D1 of the snubber circuit.
It depends on the bridge position.

【0012】次に、この実施例1の動作を図2(a)〜
(d)および図3に基づいて説明する。まず、図2
(a)において主GTO素子G1および補助GTO素子
Gs1がオフの状態時には、スナバコンデンサC1は図
示した極性に充電されている。この状態でG1,Gs1
を図3のt1で同時にオンするとC1→G1→CT1→
Gs1→C1よる閉回路においてスナバコンデンサC1
の電荷が放電し放電電流(I1)を生じると同時に変流
器CT1の2次側からスナバコンデンサC1のエネルギ
ーを直流電源側に回生する2次電流が流れる。
Next, the operation of the first embodiment will be described with reference to FIGS.
A description will be given based on (d) and FIG. First, FIG.
In (a), when the main GTO element G1 and the auxiliary GTO element Gs1 are off, the snubber capacitor C1 is charged to the polarity shown. G1 and Gs1 in this state
3 are simultaneously turned on at t1 in FIG. 3, C1 → G1 → CT1 →
Snubber capacitor C1 in the closed circuit by Gs1 → C1
At the same time as the discharge of the electric current occurs to generate a discharge current (I1), a secondary current that regenerates the energy of the snubber capacitor C1 to the DC power source side flows from the secondary side of the current transformer CT1.

【0013】図3のt2において、スナバコンデンサC
1の直流電圧がゼロとなった後、図2(b)に示すよう
に変流器CT1の1次電流(I1)は、CT1→Gs1
→D1→CT1による閉回路を形成し変流器CT1で蓄
積されたエネルギにより、循環電流(I1)が流れる。
一方、図3のP点(t3)で変流器2次側電流はゼロと
なるが、1次電流のみが流れる。この電流(I1)は、
変流器CT1の残留磁束をリセットするための電流でリ
セット電流と称する。
At t2 in FIG. 3, the snubber capacitor C
After the DC voltage of 1 becomes zero, the primary current (I1) of the current transformer CT1 becomes CT1 → Gs1 as shown in FIG. 2 (b).
Circulating current (I1) flows due to the energy accumulated in the current transformer CT1 by forming a closed circuit by → D1 → CT1.
On the other hand, at the point P (t3) in FIG. 3, the secondary current of the current transformer becomes zero, but only the primary current flows. This current (I1) is
The current for resetting the residual magnetic flux of the current transformer CT1 is called a reset current.

【0014】図3のt4からt5の間において、補助G
TO素子Gs1をオフすると、図2(c)に示すように
循環電流(I1)はCT1→Df1→G1→CT1によ
る閉回路を形成する。
Between t4 and t5 in FIG. 3, the auxiliary G
When the TO element Gs1 is turned off, the circulating current (I1) forms a closed circuit of CT1 → Df1 → G1 → CT1 as shown in FIG. 2 (c).

【0015】図3のt5において、図2(d)に示すよ
うに、主GTO素子G1をオフすると主GTO素子G1
の電位が上昇し、スナバコンデンサC1の電位が上昇す
る。このためリセット電流が急減し、変流器CT1のリ
セット期間を短縮できる。
At t5 of FIG. 3, as shown in FIG. 2D, when the main GTO element G1 is turned off, the main GTO element G1 is turned on.
Rises, and the potential of the snubber capacitor C1 rises. Therefore, the reset current sharply decreases, and the reset period of the current transformer CT1 can be shortened.

【0016】この結果、変流器CT1のリセット期間t
3〜t6を短縮させることにより高周波に適用可能とな
るとともに、図10に示した直列ダイオードDを省略で
き、小形化、高効率化が図れる。
As a result, the reset period t of the current transformer CT1
By shortening 3 to t6, it can be applied to a high frequency, and the series diode D shown in FIG. 10 can be omitted, so that miniaturization and high efficiency can be achieved.

【0017】実施例2 図4は実施例2のインバータの1アーム分の回路を示
す。この回路では1アーム構成とし素子を2直列として
いる。端子PおよびNはインバータの直流電源端子であ
り、一方、端子Uはアームの交流端子、スナバ回路はコ
ンデンサC1,C2およびダイオードD1,D2により
構成されている。一方、回生用リアクトルL2と補助ダ
イオードDf3の直列回路は直流回路にエネルギーを回
生する回路である。
Second Embodiment FIG. 4 shows a circuit for one arm of the inverter of the second embodiment. In this circuit, one arm structure is used and two elements are connected in series. The terminals P and N are DC power supply terminals of the inverter, while the terminal U is composed of an AC terminal of the arm and the snubber circuit is composed of capacitors C1 and C2 and diodes D1 and D2. On the other hand, the series circuit of the regenerative reactor L2 and the auxiliary diode Df3 is a circuit for regenerating energy in the DC circuit.

【0018】本発明は主GTO素子を直列接続した場合
の回生回路で補助GTO素子2個使用して従来の欠点を
解決したスナバエネルギの回生回路である。図5(a)
〜(d)および図6に基づき動作原理を説明する。
The present invention is a snubber energy regenerative circuit that solves the conventional drawback by using two auxiliary GTO elements in a regenerative circuit in which main GTO elements are connected in series. Figure 5 (a)
The operation principle will be described with reference to FIGS.

【0019】図5(a)において、主GTO素子G1,
G2および補助GTO素子Gs1,Gs2が同時にオフ
している状態から主GTO素子G1,G2および補助G
TO素子Gs1,Gs2を図6のt1で同時に点弧させ
ると、スナバコンデンサC1およびC2に蓄えられた電
荷は放電電流(I1)として、C1→G1→G2→C2
→Gs2→CT1→Gs1→C1からなる閉回路を流れ
る。
In FIG. 5A, the main GTO element G1,
From the state in which the G2 and the auxiliary GTO elements Gs1 and Gs2 are simultaneously turned off, the main GTO elements G1 and G2 and the auxiliary GTO
When the TO elements Gs1 and Gs2 are simultaneously ignited at t1 in FIG. 6, the charges stored in the snubber capacitors C1 and C2 become C1 → G1 → G2 → C2 as a discharge current (I1).
→ Flows through a closed circuit consisting of Gs2 → CT1 → Gs1 → C1.

【0020】図6のt2において、スナバコンデンサC
1,C2の電圧がゼロとなった後、図5(b)に示すよ
うに変流器CT1の1次電流はCT1→Gs1→D1→
D2→Gs2→CT1の閉回路を通して循環電流(I
1)が流れる。図6のP点(t3)において回生が終了
し変流器2次側電流がゼロとなると1次側のリセット電
流のみが流れる。
At t2 in FIG. 6, the snubber capacitor C
After the voltages of 1 and C2 become zero, the primary current of the current transformer CT1 is CT1 → Gs1 → D1 →, as shown in FIG. 5 (b).
Circulating current (I) through a closed circuit of D2 → Gs2 → CT1
1) flows. At point P (t3) in FIG. 6, when the regeneration is completed and the current transformer secondary side current becomes zero, only the primary side reset current flows.

【0021】図6のt4からt5の間で補助GTO素子
GS1,GS2がオフすると図5(c)に示すように変
流器CT1のリセット電流(I1)は、CT1→Df1
→G1→G2→Df2→CT1の閉回路に移る。
When the auxiliary GTO elements GS1 and GS2 are turned off between t4 and t5 in FIG. 6, the reset current (I1) of the current transformer CT1 is CT1 → Df1 as shown in FIG. 5 (c).
→ Go to the closed circuit of G1 → G2 → Df2 → CT1.

【0022】図6のt5で主GTO素子G1,G2をオ
フにすると図5(d)に示すように主GTO素子の電位
が上昇してスナバコンデンサC1,C2の電圧が上昇
し、変流器CT1のリセット電流は急減する。これによ
り、変流器CT1のリセット時間が短縮できる。
When the main GTO elements G1 and G2 are turned off at t5 in FIG. 6, the potential of the main GTO element rises and the voltages of the snubber capacitors C1 and C2 rise, as shown in FIG. The reset current of CT1 sharply decreases. Thereby, the reset time of the current transformer CT1 can be shortened.

【0023】実施例3 図7は実施例3のインバータの1相分の回路を示す。P
側アームとN側アームのスナバ回路はコンデンサC1,
C11の中点が交流出力側Uとなるように接続されてい
る。
Third Embodiment FIG. 7 shows a circuit for one phase of the inverter of the third embodiment. P
The snubber circuits of the side arm and the N side arm are capacitors C1,
The middle point of C11 is connected to the AC output side U.

【0024】本発明はGTOを使用する場合の回生回路
で補助をGTO2個使用して従来の欠点を解決したスナ
バエネルギの回生回路である。図8(a)〜(c)およ
び図9に基づき動作原理を示す。
The present invention is a snubber energy regenerative circuit that solves the conventional drawback by using two GTOs as an auxiliary in the regenerative circuit when using the GTO. The operation principle will be described with reference to FIGS. 8A to 8C and FIG. 9.

【0025】インバータ動作時には1相分アームのう
ち、正極性側アームG1と負極性アームG11側とは交
互にオン、オフが繰り返されるが、図8(a)におい
て、主GTO素子G1,G11がデッドタイム時のオフ
状態から、図9のt1において主GTO素子G1がオフ
からオンになった時、同時に補助GTO素子Gs1,G
s2をオンすることにより、スナバコンデンサC1の電
荷は、C1→G1→D11→Gs2→L→Gs1→C1
による閉回路を形成し、放電電流(I1)が流れる。
During the inverter operation, the positive-side arm G1 and the negative-side arm G11 side of the one-phase arm are alternately turned on and off repeatedly. In FIG. 8A, the main GTO elements G1 and G11 are turned on. When the main GTO element G1 is turned on from the off state at the dead time at t1 in FIG. 9, the auxiliary GTO elements Gs1 and Gs1
By turning on s2, the electric charge of the snubber capacitor C1 is C1 → G1 → D11 → Gs2 → L → Gs1 → C1.
To form a closed circuit, and a discharge current (I1) flows.

【0026】図9のt2において、スナバコンデンサC
1の電圧がゼロになった時以降は図8(b)に示すよう
に循環電流(I1)が流れる。L→Gs1→D1→D1
1→Gs2→Lによる閉回路を流れる循環電流(I1)
は、その経路のインダクタンスL、ダイオードD1,D
2の順方向電圧および補助GTO素子Gs1,Gs2の
オン電圧の和で決まるdi/dtで緩やかに減少する。
At t2 in FIG. 9, the snubber capacitor C
After the voltage of 1 becomes zero, the circulating current (I1) flows as shown in FIG. 8 (b). L → Gs1 → D1 → D1
Circulation current (I1) flowing in a closed circuit due to 1 → Gs2 → L
Is the inductance L of the path and the diodes D1 and D
It gradually decreases at di / dt determined by the sum of the forward voltage of 2 and the ON voltage of the auxiliary GTO elements Gs1 and Gs2.

【0027】その後、図9のt3において、主GTO素
子G1および補助GTO素子Gs1,Gs2を同時にオ
フにすると、図8(c)のように電流が流れ、スナバコ
ンデンサC1のエネルギは直流電源側へ回生される。図
9に示すように、補助GTO素子Gs1,Gs2オフ後
の電流(I1)は直流電圧とインダクタンスLで決まる
値(di/dt)、すなわち直流電圧(Edc)をイン
ダクタンス(L)で除した値(−Edc/L)で急激に
減少する。
After that, at t3 in FIG. 9, when the main GTO element G1 and the auxiliary GTO elements Gs1 and Gs2 are turned off at the same time, a current flows as shown in FIG. 8C, and the energy of the snubber capacitor C1 goes to the DC power source side. Regenerated. As shown in FIG. 9, the current (I1) after turning off the auxiliary GTO elements Gs1 and Gs2 is a value (di / dt) determined by the DC voltage and the inductance L, that is, a value obtained by dividing the DC voltage (Edc) by the inductance (L). (-Edc / L) sharply decreases.

【0028】[0028]

【発明の効果】本発明は、上述のとうり構成されてお
り、次に記載するような効果を奏する。 (1)実施例1、2のものは、回生用変流器のリセット
期間が短縮できるので、高周波で使用することができ
る。
The present invention is constructed as described above and has the following effects. (1) In the first and second embodiments, the reset period of the regenerative current transformer can be shortened, so that the current transformer can be used at a high frequency.

【0029】(2)実施例3のものは、回生用変流器を
使用せずに回生できるので、変流器を用いたものに比し
部品点数の低減ができ小形化、効率化ができ、また、変
流器の場合と同様にリセット期間が短縮可能となる。
(2) Since the device of the third embodiment can be regenerated without using the current transformer for regeneration, the number of parts can be reduced and the size and efficiency can be improved as compared with the device using the current transformer. Also, the reset period can be shortened as in the case of the current transformer.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示す回路図FIG. 1 is a circuit diagram showing a first embodiment.

【図2】実施例1の動作説明用回路図FIG. 2 is a circuit diagram for explaining the operation of the first embodiment.

【図3】実施例1の電流波形図FIG. 3 is a current waveform diagram of Example 1.

【図4】実施例2を示す回路図FIG. 4 is a circuit diagram showing a second embodiment.

【図5】実施例2の動作説明用回路図FIG. 5 is a circuit diagram for explaining the operation of the second embodiment.

【図6】実施例2の電流波形図FIG. 6 is a current waveform diagram of Example 2.

【図7】実施例3を示す回路図FIG. 7 is a circuit diagram showing a third embodiment.

【図8】実施例3の動作説明用回路図FIG. 8 is a circuit diagram for explaining the operation of the third embodiment.

【図9】実施例3の電流波形図FIG. 9 is a current waveform diagram of Example 3.

【図10】従来例を示す回路図FIG. 10 is a circuit diagram showing a conventional example.

【図11】従来例の動作説明用回路図FIG. 11 is a circuit diagram for explaining the operation of a conventional example.

【図12】従来例の電流波形図FIG. 12 is a current waveform diagram of a conventional example.

【符号の説明】[Explanation of symbols]

C1,C2:スナバコンデンサ D1,D2:ダイオード D:複数個のダイオードを直列に接続した直列ダイオー
ド D22:二次側回路の整流用ダイオード S,S1,S2,S11:スナバ保護回路 G1,G2:主自己消弧素子 Gs1,Gs2:補助自己消弧素子 L1:電流変化抑制用リアクトル L2:二次側回路のリアクトル U,V:交流端子 P,N:インバータの直流電源端子
C1, C2: Snubber capacitors D1, D2: Diode D: Series diode in which a plurality of diodes are connected in series D22: Rectifying diode for secondary side circuit S, S1, S2, S11: Snubber protection circuit G1, G2: Main Self-extinguishing element Gs1, Gs2: Auxiliary self-extinguishing element L1: Reactor for suppressing current change L2: Reactor of secondary side circuit U, V: AC terminal P, N: DC power supply terminal of inverter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】主回路に自己消弧素子を用いた電力変換回
路におけるコンデンサおよびダイオードからなるスナバ
回路のコンデンサの電荷を回生用変流器の1次巻線に流
し、その2次巻線の出力を整流して直流電源側に回生す
る回路において、 主自己消弧素子と並列に接続されたスナバ回路に補助自
己消弧素子、補助ダイオード及び変流器1次巻線を接続
してなる構成で、かつ変流器の2次側に帰還用ダイオー
ドおよび限流リアクトルを接続し、前記の補助自己消弧
素子を主自己消弧素子のオンとほぼ同時にオンし、回生
終了後、該主自己消弧素子をオフする前に補助自己消弧
素子をオフすることを特徴とするスナバコンデンサのエ
ネルギ回生回路。
1. A charge of a capacitor of a snubber circuit composed of a capacitor and a diode in a power conversion circuit using a self-extinguishing element in a main circuit is caused to flow to a primary winding of a regenerative current transformer, and its secondary winding is In a circuit that rectifies the output and regenerates it on the DC power supply side, a configuration in which an auxiliary self-extinguishing element, an auxiliary diode, and a current transformer primary winding are connected to a snubber circuit that is connected in parallel with the main self-extinguishing element. And a feedback diode and a current limiting reactor are connected to the secondary side of the current transformer, and the auxiliary self-extinguishing element is turned on almost at the same time when the main self-extinguishing element is turned on. An energy regeneration circuit for a snubber capacitor, characterized in that an auxiliary self-extinguishing element is turned off before turning off the extinguishing element.
【請求項2】主回路に自己消弧素子を用いた電力変換回
路におけるコンデンサおよびダイオードからなるスナバ
回路のコンデンサの電荷を回生用変流器の1次巻線に流
し、その2次巻線の出力を整流して直流電源側に回生す
る回路において、 主自己消弧素子と並列に接続されている2つのスナバ回
路の中点に補助自己消弧素子、補助ダイオードおよび変
流器を接続してなる構成で、かつ、変流器の2次側に帰
還用ダイオードおよび限流リアクトルを接続し、前記の
補助自己消弧素子を主回路消弧素子のオンとほぼ同時に
オンし、回生完了後、該主回路自己消弧素子をオフする
前に補助自己消弧素子をオフすることを特徴とするスナ
バコンデンサのエネルギ回生回路。
2. A charge of a capacitor of a snubber circuit composed of a capacitor and a diode in a power conversion circuit using a self-extinguishing element in a main circuit is caused to flow through a primary winding of a regenerative current transformer, and the secondary winding In a circuit that rectifies the output and regenerates it on the DC power supply side, connect an auxiliary self-extinguishing element, an auxiliary diode and a current transformer to the middle point of two snubber circuits that are connected in parallel with the main self-extinguishing element. And a feedback diode and a current limiting reactor connected to the secondary side of the current transformer, and the auxiliary self-extinguishing element is turned on almost at the same time when the main circuit arc extinguishing element is turned on. An energy regenerating circuit for a snubber capacitor, characterized in that the auxiliary self-extinguishing element is turned off before turning off the main circuit self-extinguishing element.
【請求項3】主回路に自己消弧素子を用いた電力変換回
路におけるコンデンサおよびダイオードからなるスナバ
回路のコンデンサの電荷を回生用リアクトルに移したリ
アクトルのエネルギをダイオードを介して直流電源側に
回生する回路において、 主自己消弧素子と並列に接続されている2つのスナバ回
路の中点に補助自己消弧素子を陽極側アームおよび陰極
側アームにそれぞれ接続し、この補助自己消弧素子間に
リアクトルを接続し、該補助自己消弧素子を主自己消弧
素子と同時に点弧することによりスナバコンデンサのエ
ネルギを前記リアクトルに蓄積し、その後補助自己消弧
素子をオフにして直流電源側にエネルギを回生すること
を特徴とするスナバエネルギ回生回路。
3. The energy of the reactor obtained by transferring the electric charge of the capacitor of the snubber circuit composed of the capacitor and the diode in the power conversion circuit using the self-extinguishing element to the main circuit to the regenerative reactor to the DC power source side via the diode. In this circuit, the auxiliary self-extinguishing element is connected to the anode side arm and the cathode side arm at the midpoint of the two snubber circuits connected in parallel with the main self-extinguishing element. Energy of the snubber capacitor is stored in the reactor by connecting the reactor and igniting the auxiliary self-extinguishing element at the same time as the main self-extinguishing element. A snubber energy regenerative circuit characterized by regenerating.
JP6094298A 1994-05-06 1994-05-06 Snubber energy regenerative circuit Pending JPH07303366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6094298A JPH07303366A (en) 1994-05-06 1994-05-06 Snubber energy regenerative circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6094298A JPH07303366A (en) 1994-05-06 1994-05-06 Snubber energy regenerative circuit

Publications (1)

Publication Number Publication Date
JPH07303366A true JPH07303366A (en) 1995-11-14

Family

ID=14106371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6094298A Pending JPH07303366A (en) 1994-05-06 1994-05-06 Snubber energy regenerative circuit

Country Status (1)

Country Link
JP (1) JPH07303366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947389A (en) * 1996-06-06 1999-09-07 Zexel Corporation Variable nozzle hole type fuel injection nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947389A (en) * 1996-06-06 1999-09-07 Zexel Corporation Variable nozzle hole type fuel injection nozzle

Similar Documents

Publication Publication Date Title
JPH03103079A (en) Method and apparatus for regenerating energy in power converting circuit using gto thyristor
JPH0435994B2 (en)
EP0309919B1 (en) A power conversion apparatus
JPH07303366A (en) Snubber energy regenerative circuit
JPH01295675A (en) Snubber circuit for dc power supply
JP3070964B2 (en) Inverter device
JP3656779B2 (en) DC-DC converter
JPS6343969B2 (en)
JPS6127989B2 (en)
JPH11146648A (en) Dc-dc converter
JP2861430B2 (en) Rectifier circuit
JP3004774B2 (en) Snubber circuit
JP3216327B2 (en) Snubber energy regeneration circuit
JPH09252576A (en) Sunbber circuit of dc-dc converter
JP2555621B2 (en) Inverter energy recovery circuit
JP2017153205A (en) Snubber circuit and switching circuit
JPH05115178A (en) Power converter
JP3583208B2 (en) Switching power supply
JPH01117653A (en) Power converter
JPH0833313A (en) Snubber circuit for power converter
JPH08168263A (en) Circuit and method for recovering snubber energy of power converter
JPS61106068A (en) Power converter
JPH01255477A (en) Electric power conversion device
JPH01318562A (en) Snubber energy regenerative circuit
JPH0687652B2 (en) Method for suppressing voltage oscillation in power supply circuit