JPH07301587A - Thin film strength measuring method - Google Patents

Thin film strength measuring method

Info

Publication number
JPH07301587A
JPH07301587A JP9278194A JP9278194A JPH07301587A JP H07301587 A JPH07301587 A JP H07301587A JP 9278194 A JP9278194 A JP 9278194A JP 9278194 A JP9278194 A JP 9278194A JP H07301587 A JPH07301587 A JP H07301587A
Authority
JP
Japan
Prior art keywords
plate
subject
specimen
thin film
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278194A
Other languages
Japanese (ja)
Inventor
Nobutaka Nakaso
教尊 中曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP9278194A priority Critical patent/JPH07301587A/en
Publication of JPH07301587A publication Critical patent/JPH07301587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To provide a method for evaluating the strength of a thin film by measuring the extent of crack, or the like, accurately when a thin film specimen is subjected to micro tension or bending wherein the method is applicable to a small specimen or a specimen susceptible to the moisture at an arbitrary place. CONSTITUTION:A specimen 2 is bonded to a flexible plate 1 thicker than the specimen 2 and a flexible piezoelectric element 6 is secured to the plate 1 on the surface side or the rear side thereof. The plate 1 is then applied with loads on the both side ends thereof and bent thus imparting a micro displacement to the specimen 2. An AE wave from a crack present in the coating layer 4 of the specimen, 2 is converted into an electric signal and delivered through the piezoelectric element 6 to a signal detector 10. The signal detector 10 determines the displacement of the specimen 2 based on the bending amount of the plate 1 upon generation of the AH wave thus evaluating the strength of the specimen 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機フィルム等の表裏
面にセラミックスコーティングや金属コーティング等の
コーティング層を形成する被検体又は前記有機フィルム
の内層部にセラミックスや金属層を有する被検体の引張
り及び/又は曲げによる強度を定量的に評価する測定方
法に係り、特に、微小な引張りや曲げ応力に対して正確
な強度評価が可能な薄膜強度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the pulling of a subject having a coating layer such as a ceramic coating or a metal coating formed on the front and back surfaces of an organic film or the like or a subject having a ceramic or metal layer at the inner layer of the organic film. And / or a measuring method for quantitatively evaluating the strength due to bending, and particularly to a thin film strength measuring method capable of performing accurate strength evaluation with respect to a minute tensile or bending stress.

【0002】[0002]

【従来の技術】有機フィルム,例えば、約10[μm]
のPET(ポリエチレンテレフタレート)の基材の表裏
面又は内部に0.1[μm]程度のSiO2等のセラミ
ツクスや金属のコーティング層を施した包装材料が近年
広範囲に使用されている。基材である有機フィルムは柔
軟であるがコーティング層は比較的硬く、引張りや曲げ
力が作用するとクラック又は剥離が生じる。このため
に、コーティング層の強度により包装材料としてのガス
バリア性に差が生じる。従って、当該包装材料の強度を
予め定量的に評価する測定方法が必要になる。図10乃
至図15は従来一般に使用されている強度評価方法の数
例を示すものである。
2. Description of the Related Art Organic films, for example, about 10 [μm]
In recent years, a packaging material in which a surface of the PET (polyethylene terephthalate) base material is coated with a ceramic or metal coating layer of about 0.1 [μm] such as SiO 2 has been widely used in recent years. The organic film as the base material is flexible, but the coating layer is relatively hard, and cracks or peeling occur when tensile or bending forces are applied. Therefore, the strength of the coating layer causes a difference in gas barrier properties as a packaging material. Therefore, a measuring method for quantitatively evaluating the strength of the packaging material in advance is required. 10 to 15 show several examples of strength evaluation methods generally used in the past.

【0003】第1の方法は図10に示すように、被検体
2の表面に硬い針21を押圧し、表面に沿って移動せし
め、図11のようにどの程度の力で膜破壊22が発生す
るかを観察するものである。この方法では被検体2のコ
ーティング層4と基材3間の固着強度を評価することが
出来るが被検体2の引張り及び/又は曲げ応力に対する
定量的な強度評価をすることは出来ない。
In the first method, as shown in FIG. 10, a hard needle 21 is pressed against the surface of an object 2 to be moved along the surface, and as shown in FIG. It is what you observe. With this method, the bond strength between the coating layer 4 and the base material 3 of the test object 2 can be evaluated, but the quantitative strength evaluation with respect to the tensile and / or bending stress of the test object 2 cannot be performed.

【0004】図12は被検体2に四角錐のクサビ23を
一定荷重で押しつけ、被検体2に残った「凹あと」の大
きさにより強度評価を行うものである。また、図13は
同じく被検体2にクサビ23を押し当てながらマイクロ
荷重計24で押圧力を測定すると共に、クサビ23側に
設けたレーザ距離計25によりクサビ23側と被検体2
間の相対距離を高精度に測定し、荷重とクサビ23の侵
入量から強度評価を行うものである。しかしながら、こ
れ等の方法はコーティング層4の膜厚が数ミクロン以下
の薄膜の場合や、基材3が柔らかい場合には正確な測定
が出来ない問題点がある。また、これ等の測定方法は外
部振動の影響を受け易く、振動の発生し易い工場内での
測定が困難である。また、鋭いクサビ23を押圧するこ
とによる硬度を評価するもので引張りや曲げ強度を評価
するものではない。
In FIG. 12, a wedge-shaped quadrangular pyramid 23 is pressed against the subject 2 with a constant load, and the strength is evaluated by the size of the "recess" left on the subject 2. Further, in FIG. 13, similarly, the pressing force is measured by the micro load meter 24 while pressing the wedge 23 against the subject 2, and the laser range finder 25 provided on the wedge 23 side and the wedge 2 side and the subject 2 are also used.
The relative distance between them is measured with high accuracy, and the strength is evaluated from the load and the amount of penetration of the wedges 23. However, these methods have a problem that accurate measurement cannot be performed when the coating layer 4 is a thin film having a thickness of several microns or less or when the base material 3 is soft. In addition, these measuring methods are easily affected by external vibration, and it is difficult to perform measurement in a factory where vibration easily occurs. Further, the hardness by pressing the sharp wedge 23 is evaluated, and the tensile or bending strength is not evaluated.

【0005】図14は被検体2に矢視C方向の引張り力
を付加しながら被検体2から生じるAE波を超音波セン
サ26により測定するものである。超音波顕微鏡レンズ
のような超音波センサ26は遅延材27および圧電素子
28からなり、圧電素子28によって受信された電気信
号は信号検出器31に入力され測定される。なお、超音
波センサ26と被検体2には超音波伝搬媒体としての水
29が介在される。この方法の場合には水29を介在さ
せているため、被検体2から発生したAE波が水29内
および遅延材27内を通過する際にかなり反射又は吸収
され、微弱なAE波を検出することが困難な場合があ
る。また、水29を使用することにより影響を受け材質
等の変化する被検体2には使用出来ない。
FIG. 14 shows an AE wave generated from the subject 2 measured by the ultrasonic sensor 26 while applying a tensile force in the direction C of the subject 2 to the subject 2. An ultrasonic sensor 26 such as an ultrasonic microscope lens is composed of a delay member 27 and a piezoelectric element 28, and an electric signal received by the piezoelectric element 28 is input to a signal detector 31 and measured. Water 29 as an ultrasonic wave propagation medium is interposed between the ultrasonic sensor 26 and the subject 2. In the case of this method, since the water 29 is interposed, the AE wave generated from the subject 2 is considerably reflected or absorbed when passing through the water 29 and the delay member 27, and a weak AE wave is detected. Can be difficult. Further, it cannot be used for the subject 2 whose material and the like are affected by the use of water 29.

【0006】図15は被検体2に直接圧電素子30を固
着したものであり、被検体2を矢視D方向に引張りなが
ら被検体2から生じるAE波を信号検出器31により測
定するものである。水を介在させないためAE波を直接
測定することが出来るが被検体2が小さいもの、例え
ば、1[mm]以下の場合には圧電素子30の力学的干
渉により正確な測定が困難になる。
In FIG. 15, the piezoelectric element 30 is directly fixed to the subject 2, and the AE wave generated from the subject 2 is measured by the signal detector 31 while pulling the subject 2 in the direction of arrow D. . Since AE waves can be directly measured because water is not interposed, accurate measurement becomes difficult due to mechanical interference of the piezoelectric element 30 when the object 2 is small, for example, 1 [mm] or less.

【0007】[0007]

【発明が解決しようとする課題】以上のように、従来の
薄膜強度測定方法の場合には、引張りや曲げに対する強
度を定量的に評価することが困難であったり、微細なク
ラックや剥離等の発見が出来ず、また、被検体の大きさ
に制限が生じる等の問題点がある。更に、一般の薄膜の
包装材料の場合には約1[%]以上伸ばすことによりコ
ーティング層が破壊されてしまうものが多い。そのた
め、1[%]以下の微小な伸び量におけるクラック等の
発生を正確に検出することが必要になるが、前記従来技
術では困難である。また、「ひずみゲージ」を使用する
方法もあるがこの場合にも被検体の大きさや厚さに制限
があると共に力学的干渉により正確な測定が困難であ
る。
As described above, in the case of the conventional thin film strength measuring method, it is difficult to quantitatively evaluate the strength against pulling or bending, and fine cracks or peeling may occur. There are problems such as being unable to be discovered and the size of the subject being limited. Furthermore, in the case of a general thin film packaging material, the coating layer is often destroyed by stretching it by about 1% or more. Therefore, it is necessary to accurately detect the occurrence of cracks or the like in a minute elongation amount of 1% or less, which is difficult with the above-mentioned conventional technique. There is also a method of using a "strain gauge", but in this case as well, the size and thickness of the subject are limited, and accurate measurement is difficult due to mechanical interference.

【0008】本発明は、以上の事情に鑑みて創案された
ものであり、微小な応力変化に対してのクラック等の発
生を正確に測定出来、被検体の引張り及び/又は曲げ強
度を評価することが出来る薄膜強度測定方法を提供する
ことを目的とする。
The present invention was devised in view of the above circumstances, and it is possible to accurately measure the occurrence of cracks and the like with respect to a minute stress change, and to evaluate the tensile and / or bending strength of an object. An object of the present invention is to provide a thin film strength measuring method capable of performing the above.

【0009】[0009]

【課題を解決するための手段】本発明は、以上の目的を
達成するために、薄膜の被検体を引張り及び/又は曲げ
て該被検体のみから生じるAE波を基にしてその膜強度
を評価する測定方法であって、屈曲可能なプレート上に
前記被検体を重ね合わせ、前記プレートに曲げ変形を与
えながら前記被検体から発生するAE波を前記プレート
に装着した屈曲性を有する圧電素子により検出し、AE
波の発生する際の前記プレートの屈曲量から被検体の膜
強度を評価する薄膜強度測定方法を特徴とするものであ
る。更に、前記圧電素子が、前記被検体と前記プレート
の間の当該プレートの表面側又は前記被検体と反対の裏
面側に装着され、前記被検体が、前記プレート上に接着
又はその両端をプレート側に支持されて固定され、前記
プレートおよび圧電素子が、被検体に較べてAE波の発
生し難い有機物から形成される。或は前記プレートと被
検体間に低摩擦膜を介設することを特徴とするものであ
る。
In order to achieve the above object, the present invention evaluates the film strength based on the AE wave generated only by pulling and / or bending a thin film subject. The measuring method according to claim 1, wherein the subject is placed on a bendable plate, and the AE wave generated from the subject is detected by a bendable piezoelectric element attached to the plate while bending the plate. AE
It is characterized by a thin film strength measuring method for evaluating the film strength of a subject from the bending amount of the plate when a wave is generated. Further, the piezoelectric element is mounted on the front surface side of the plate between the subject and the plate or on the back surface side opposite to the subject, and the subject is bonded on the plate or both ends thereof are plate side. The plate and the piezoelectric element are supported and fixed by the substrate, and are made of an organic material in which AE waves are less likely to be generated than in the subject. Alternatively, a low friction film is provided between the plate and the subject.

【0010】更に、具体的に説明する。前記プレートと
被検体間に相対的なずれが発生せず、かつ当該プレート
の表裏面の変形量を一定と仮定した場合には前記プレー
トの曲げ変形を被検体の変形と見做すことが出来る。図
8に示すように長さL0,巾b,厚みdのプレート1の
表面に間隔aで線を入れ、図9に示すようにプレート1
を曲げ変形させると、間隔aはa+Δaだけ伸びる。こ
の伸び量Δaはプレート1の表面に固着される図略の被
検体の伸び量に相当する。図9において、プレート1の
中心線の曲げによる曲率半径をrとすると Δa/a=(r+d/2)/r−1 Δa=d・a/2r・・・(1) となる。(1)式において曲率半径rは厚みdに較べて
極めて大きな値となるため極めて小さな変位Δaをプレ
ート1に与えることが出来微小な変位を被検体に生じさ
せることが出来る。また、請求項5に記載するように、
被検体とプレートとの間にテフロン膜のような低摩擦膜
を介在させることにより引張りの影響を除いた曲げのみ
による変位を被検体に印加することが出来る。図9に示
すように、プレート1の長さL0は曲げによりLのよう
に変化する。このLの値がプレート1の引張りおよび曲
げ変形量を表わすため、このLの値とΔaとを対応させ
ることにより、どの程度の引張りおよび曲げ変形によっ
て被検体が変位するかが解る。また、被検体から生じる
AE波を検出することにより微小なΔaにおけるクラッ
ク等の発生状態を正確に、かつ制御可能に測定すること
が出来る。
Further, a concrete description will be given. If relative displacement does not occur between the plate and the subject, and the amount of deformation of the front and back surfaces of the plate is assumed to be constant, the bending deformation of the plate can be regarded as the deformation of the subject. . As shown in FIG. 8, lines are formed on the surface of the plate 1 having a length L 0 , a width b, and a thickness d at an interval a, and the plate 1 is formed as shown in FIG.
When is bent and deformed, the distance a extends by a + Δa. The amount of extension Δa corresponds to the amount of extension of a subject (not shown) fixed to the surface of the plate 1. In FIG. 9, when the radius of curvature of the center line of the plate 1 is r, Δa / a = (r + d / 2) / r-1 Δa = d · a / 2r (1) In the equation (1), the radius of curvature r has an extremely large value as compared with the thickness d, so that an extremely small displacement Δa can be applied to the plate 1 and a minute displacement can be generated in the subject. In addition, as described in claim 5,
By interposing a low-friction film such as a Teflon film between the subject and the plate, it is possible to apply a displacement due to only bending without the influence of tension to the subject. As shown in FIG. 9, the length L 0 of the plate 1 changes like L due to bending. Since the value of L represents the amount of tensile and bending deformation of the plate 1, by associating the value of L with Δa, it is possible to know how much tensile and bending deformation causes the object to be displaced. Further, by detecting the AE wave generated from the subject, it is possible to accurately and controllably measure the generation state of cracks and the like in the minute Δa.

【0011】[0011]

【作用】前記したように、本発明では屈曲性のプレート
上に被検体を固定し、プレートと被検体間のプレートの
表面側又はプレートの裏面側に屈曲性の圧電素子を固定
し、プレートに曲げ変形を与える。これにより、被検体
には引張りおよび曲げ力が作用する。なお、前記したよ
うに、被検体とプレート間に低摩擦層を介在させる場合
には被検体には曲げ応力のみが作用する。被検体に引張
り及び/又は曲げ力が印加されると被検体にクラック等
が生じAE波が発生する。AE波は圧電素子により検出
される。前記したように、AE波の発生時におけるLの
値を求め、これから曲率半径rを求めることにより理論
的にΔaの値が求められると共にΔaの値が実測され
る。これにより、AE波の発生した際の被検体の変位が
測定され引張り及び/又は曲げによる被検体の強度評価
が正確に行われる。
As described above, in the present invention, the subject is fixed on the flexible plate, and the flexible piezoelectric element is fixed on the front surface side or the back surface side of the plate between the plates and the flexible plate is fixed to the plate. Gives bending deformation. As a result, tensile and bending forces act on the subject. As described above, when the low friction layer is interposed between the subject and the plate, only bending stress acts on the subject. When a tensile and / or bending force is applied to the subject, a crack or the like occurs in the subject and an AE wave is generated. The AE wave is detected by the piezoelectric element. As described above, by obtaining the value of L when the AE wave is generated and then obtaining the radius of curvature r, the value of Δa is theoretically obtained and the value of Δa is actually measured. As a result, the displacement of the subject when the AE wave is generated is measured, and the strength of the subject due to tension and / or bending is accurately evaluated.

【0012】[0012]

【実施例】以下、本発明の実施のための具体的手段につ
いて図面に基づき説明する。図1は本発明の一実施例の
全体構成図、図2は被検体の支持方法の異なる他の実施
例の構成図、図3は圧電素子の装着位置の相異する他の
実施例の構成図、図4はプレートに引張りおよび曲げ変
形を与える一手段を示す正面図、図5は図4の実施例の
作用を説明するための説明用構成図、図6は圧電素子の
概要構造を示す断面図、図7はプレートが導電体の場合
の圧電素子の構成を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific means for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of an embodiment of the present invention, FIG. 2 is a configuration diagram of another embodiment in which a method of supporting a subject is different, and FIG. 3 is a configuration of another embodiment in which a mounting position of a piezoelectric element is different. FIG. 4 is a front view showing one means for applying tensile and bending deformation to the plate, FIG. 5 is an explanatory configuration diagram for explaining the operation of the embodiment of FIG. 4, and FIG. 6 shows a schematic structure of the piezoelectric element. FIG. 7 is a sectional view showing the configuration of the piezoelectric element when the plate is a conductor.

【0013】図1および図8に示すように、プレート1
は長さL0,厚みd,巾bの長方形の板材からなる。そ
の厚みdは被検体2の厚みに較べてはるかに厚いものか
らなる。材質は特に限定するものではないが、屈曲性が
あり、それ自体からAE波が放出され難いものであれば
よく、有機材が望ましい。また、導電体から形成される
ものでもよい。
As shown in FIGS. 1 and 8, the plate 1
Is a rectangular plate member having a length L 0 , a thickness d, and a width b. The thickness d is much thicker than the thickness of the subject 2. The material is not particularly limited, but an organic material is preferable as long as it has flexibility and is unlikely to emit AE waves from itself. Further, it may be formed of a conductor.

【0014】被検体2は有機フィルム等の柔軟性を有す
る基材3と、セラミックス又は金属等の薄膜のコーティ
ング層4からなる。勿論、本実施例はコーティング層4
のみの場合にも適用可能である。本実施例では被検体2
の基材3とプレート1とは接着剤5を介して固定され
る。
The subject 2 comprises a flexible substrate 3 such as an organic film and a thin coating layer 4 such as ceramics or metal. Of course, in this embodiment, the coating layer 4 is used.
It is also applicable in the case of only. In this embodiment, the subject 2
The base material 3 and the plate 1 are fixed via an adhesive 5.

【0015】圧電素子6は屈曲性のある材質のもの、例
えば、ふっ化ビニリデン樹脂(PVDF)のような有機
材から形成されるのが好ましい。具体的には、図6に示
すように圧電性のある圧電材7と、圧電材7を挟持する
導電性の電極8,9から形成される。なお、図7に示す
ように、プレート1が導電性材料から形成される場合に
は一方側の電極8は不要となる。本実施例では圧電素子
6はプレート1の裏面側に固定される。
The piezoelectric element 6 is preferably made of a flexible material, for example, an organic material such as vinylidene fluoride resin (PVDF). Specifically, as shown in FIG. 6, it is formed of a piezoelectric material 7 having piezoelectricity and conductive electrodes 8 and 9 that sandwich the piezoelectric material 7. In addition, as shown in FIG. 7, when the plate 1 is made of a conductive material, the electrode 8 on one side is unnecessary. In this embodiment, the piezoelectric element 6 is fixed to the back side of the plate 1.

【0016】信号検出器10は、アンプ11,デジタル
オッシロスコープ12およびコンピュータ13等から構
成される。圧電素子6からのAE波の検出信号はアンプ
11により増巾されデジタルオッシロスコープ12およ
びコンピュータ13側に入力され所定の演算が行われ
る。すなわち、コンピュータ13は、プレート1の変形
から曲率半径rを求め、これからΔaを求め、ΔaとA
E波との対比を解析表示する。
The signal detector 10 comprises an amplifier 11, a digital oscilloscope 12 and a computer 13. The detection signal of the AE wave from the piezoelectric element 6 is amplified by the amplifier 11 and input to the digital oscilloscope 12 and the computer 13 side to perform a predetermined calculation. That is, the computer 13 obtains the radius of curvature r from the deformation of the plate 1, obtains Δa from this, and obtains Δa and A
Analysis and display of comparison with E wave.

【0017】図2は被検体2を接着によらないでプレー
ト1側に固着したものである。プレート1側に固定され
るサポータ14,14は被検体2の両側端を保持する。
図1の場合、使用後におけるプレート1と被検体2との
剥離が容易ではなく、プレート1の再使用が困難な場合
が生じるが、図2の場合はその不具合が解消される。但
し、プレート1の曲げ変形と被検体2の曲げ変形に多少
の相異が発生し易い。
In FIG. 2, the subject 2 is fixed to the plate 1 side without using adhesion. The supporters 14, 14 fixed to the plate 1 side hold both ends of the subject 2.
In the case of FIG. 1, it may be difficult to separate the plate 1 and the subject 2 after use, and it may be difficult to reuse the plate 1, but in the case of FIG. 2, the problem is solved. However, a slight difference easily occurs between the bending deformation of the plate 1 and the bending deformation of the subject 2.

【0018】図3はプレート1と被検体2との間に圧電
素子6を介設したものである。被検体2のAE波が直接
圧電素子6に入力される利点を有するが、圧電素子6が
プレート1および被検体2の基材3に介在するため、被
検体2側に物理的な力が作用し、被検体2が小形の場合
には好ましくない。
FIG. 3 shows a piezoelectric element 6 provided between the plate 1 and the subject 2. Although there is an advantage that the AE wave of the subject 2 is directly input to the piezoelectric element 6, since the piezoelectric element 6 is interposed between the plate 1 and the base material 3 of the subject 2, a physical force acts on the subject 2 side. However, it is not preferable when the subject 2 is small.

【0019】図4はプレート1に引張りおよび曲げ変形
を与える手段の一例を示す。プレート1は固定側の支持
台15により一側端を支持され他側端はナット部材16
により支持される。ナット部材16にはモータ17
(M)に連結する送りねじ軸18が螺合する。モータ1
7を駆動するとナット部材16が矢視A方向に移動し、
プレート1に曲げ変形が生じる。なお、曲げ手段は勿論
本例に限定するものではない。
FIG. 4 shows an example of means for applying tensile and bending deformation to the plate 1. One end of the plate 1 is supported by a fixed support 15 and the other end is a nut member 16.
Supported by. A motor 17 is attached to the nut member 16.
The feed screw shaft 18 connected to (M) is screwed. Motor 1
When 7 is driven, the nut member 16 moves in the direction of arrow A,
Bending deformation occurs in the plate 1. The bending means is not limited to this example.

【0020】図5は図4によって曲げ変形されたプレー
ト1と、その変形に伴う被検体2の引張りおよび曲げ変
形の状態を示す。被検体2のE点で生じた膜クラック等
によるAE波19はプレート1を介して圧電素子6に入
力され、信号検出器10側に送られる。
FIG. 5 shows the plate 1 bent and deformed according to FIG. 4, and the state of the tensile and bending deformation of the subject 2 due to the deformation. An AE wave 19 due to a film crack or the like generated at the point E of the subject 2 is input to the piezoelectric element 6 via the plate 1 and sent to the signal detector 10 side.

【0021】次に、本実施例の更に具体的実験例につい
て説明する。本実験例ではプレート1は塩化ビニール材
からなり、L0=80[mm],b=15[mm],d
=1[mm]のものが使用される。また、間隔aは10
0[μm]とした。一方、被検体2は12[μm]のP
ETの基材3上に0.5[μm]のSiO2膜のコーテ
ィング層4を形成したものを採用した。被検体2は図1
に示すようにプレート1の表面に接着剤5により固着さ
れる。接着剤5は10[μm]以下の膜厚としその影響
を無視し得るものを選択した。なお、材質は特に限定し
ないが接着性がよく、かつ屈曲により破壊しないものを
設定した。また、圧電素子6はPVDF材を用い、1
[mm]×5[mm]の長方形のものを用い図1のよう
にプレート1の裏面に接着した。また、圧電素子6とア
ンプ11間は2重にシールドされた高周波ケーブル20
を使用し圧電素子6からの微弱なAE信号に雑音が侵入
しないようにした。また、信号検出器10には、6[m
v]を起えたAE信号がアンプ11から入力された場合
に、0.5[秒]だけ表示ランプを点燈させる表示ラン
プ(図略)を設けた。
Next, a more specific experimental example of this embodiment will be described. In this experimental example, the plate 1 is made of a vinyl chloride material, and L 0 = 80 [mm], b = 15 [mm], d
= 1 [mm] is used. The interval a is 10
It was set to 0 [μm]. On the other hand, the subject 2 has a P of 12 [μm].
The ET substrate 3 on which the coating layer 4 of a 0.5 [μm] SiO 2 film was formed was adopted. The subject 2 is shown in FIG.
As shown in FIG. 3, the surface of the plate 1 is fixed with an adhesive 5. The adhesive 5 has a film thickness of 10 [μm] or less and is selected so that its influence can be ignored. Although the material is not particularly limited, a material having good adhesiveness and not breaking by bending was set. The piezoelectric element 6 is made of PVDF material, and 1
A rectangular one having a size of [mm] × 5 [mm] was used and bonded to the back surface of the plate 1 as shown in FIG. In addition, the high-frequency cable 20 is doubly shielded between the piezoelectric element 6 and the amplifier 11.
Is used to prevent noise from entering the weak AE signal from the piezoelectric element 6. In addition, the signal detector 10 has 6 [m
A display lamp (not shown) is provided for illuminating the display lamp for 0.5 [seconds] when the AE signal which causes v] is input from the amplifier 11.

【0022】次に、図4に示すような手段によりプレー
ト1を曲げ変形させ、L[mm]と間隔a[μm]の変
化Δaの相関関係を求めた。その結果が表1に示され
る。
Next, the plate 1 was bent and deformed by a means as shown in FIG. 4, and the correlation between L [mm] and the change Δa of the interval a [μm] was obtained. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】表1において、L=73[mm]のところ
で表示ランプが点燈し始めL=60[mm]になるまで
複数回の点燈が確認された。L=73[mm]の場合に
間隔aが100.8[μm]のため、Δa/a≒0.8
%となり、0.8%の微細な伸びにおけるSiO2膜の
クラックが正確に検出された。また、同様な方法で、S
iO2膜のないPETの基材3だけの被検体について実
験を行った結果、L=73[mm]においてもAE波は
発生しないことが確認された。また、同様な方法で圧電
素子6を図3に示すようにプレート1と被検体2との間
に介設して実験を行ったが前記とほぼ同様な結果が得ら
れた。
In Table 1, it was confirmed that the display lamp started to light at L = 73 [mm] and a plurality of lightings started until L = 60 [mm]. When L = 73 [mm], the interval a is 100.8 [μm], so Δa / a≈0.8
%, A crack of the SiO 2 film at a fine elongation of 0.8% was accurately detected. In the same way, S
As a result of an experiment conducted on an object having only the PET base material 3 without the iO 2 film, it was confirmed that the AE wave was not generated even at L = 73 [mm]. In addition, an experiment was conducted in the same manner with the piezoelectric element 6 interposed between the plate 1 and the subject 2 as shown in FIG. 3, but almost the same results as above were obtained.

【0025】以上の説明において、プレート1,被検体
2および圧電素子6等の形状,材質等を特定したが、本
発明はそれ等に限定するものではない。また、プレート
1の引張り曲げ用の手段も前記のものに限定するもので
はない。
In the above description, the shapes, materials and the like of the plate 1, the subject 2 and the piezoelectric element 6 are specified, but the present invention is not limited to these. Further, the means for pulling and bending the plate 1 is not limited to the above.

【0026】[0026]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)引張り及び/又は曲げ力の作用時における薄膜コー
ティング層のクラック等が正確に測定され、薄膜強度の
評価が高精度に行われる。 2)被検体をプレートに固着しプレートに圧電素子を固
定するため、約1%以下の微小な変位におけるクラック
等の発生が正確に把握される。 3)小形で薄いフィルム状の被検体の測定が可能であ
り、かつ水を使用しないため、水に影響され易い被検体
の測定も出来る。 4)強度の定量的評価が正確に把握出来るため、製品の
品質管理が効果的に行われる。 5)被検体とプレート間に低摩耗膜を形成することによ
り曲げ作用のみにおけるコーティング層の強度を求める
ことが出来る。 6)工場内等における振動に影響されないため、任意の
場所において使用出来る。 7)簡単構造のため、容易に、かつ安価に実施出来る。
According to the present invention, the following remarkable effects are obtained. 1) Cracks and the like in the thin film coating layer during the action of tensile and / or bending forces are accurately measured, and thin film strength is evaluated with high accuracy. 2) Since the subject is fixed to the plate and the piezoelectric element is fixed to the plate, the occurrence of cracks or the like at a minute displacement of about 1% or less can be accurately grasped. 3) It is possible to measure a small and thin film-shaped object, and since water is not used, it is possible to measure an object that is easily affected by water. 4) Since the quantitative evaluation of strength can be accurately grasped, product quality control is effectively performed. 5) By forming a low wear film between the subject and the plate, the strength of the coating layer can be obtained only by the bending action. 6) Since it is not affected by vibration in the factory, it can be used in any place. 7) It has a simple structure and can be implemented easily and inexpensively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体構成図。FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

【図2】図1のものと被検体の支持構造が異なる実施例
の構成図。
FIG. 2 is a configuration diagram of an embodiment in which a support structure for a subject is different from that in FIG.

【図3】図1および図2のものと圧電素子の装着構造の
相異する実施例の構成図。
FIG. 3 is a configuration diagram of an embodiment in which the mounting structure of the piezoelectric element is different from that of FIGS. 1 and 2;

【図4】プレートを引張りおよび曲げ変形させるための
曲げ手段の実施例を示す正面図。
FIG. 4 is a front view showing an embodiment of a bending means for pulling and bending-deforming a plate.

【図5】図4のプレート曲げ手段によるプレートおよび
被検体の変形とAE波の発生を示す説明用構成図。
5 is an explanatory configuration diagram showing deformation of a plate and an object and generation of an AE wave by the plate bending means in FIG.

【図6】本実施例に使用される圧電素子の断面図。FIG. 6 is a sectional view of a piezoelectric element used in this example.

【図7】導電体のプレートを用いた場合の圧電素子の構
造を示す断面図。
FIG. 7 is a sectional view showing the structure of a piezoelectric element when a conductor plate is used.

【図8】本実施例に使用されるプレートの斜視図。FIG. 8 is a perspective view of a plate used in this embodiment.

【図9】図8のプレートの曲げ状態を示す正面図。9 is a front view showing a bent state of the plate shown in FIG.

【図10】従来の薄膜評価手段の一例を示す断面図。FIG. 10 is a sectional view showing an example of a conventional thin film evaluation means.

【図11】図10における被検体の膜破壊を示す断面
図。
11 is a cross-sectional view showing film destruction of the subject in FIG.

【図12】従来の薄膜評価手段の他の例を示す断面図。FIG. 12 is a sectional view showing another example of a conventional thin film evaluation means.

【図13】従来の薄膜評価手段の具体例を示す構成図。FIG. 13 is a configuration diagram showing a specific example of a conventional thin film evaluation means.

【図14】超音波センサを用いた従来の薄膜評価手段の
例を示す構成図。
FIG. 14 is a configuration diagram showing an example of a conventional thin film evaluation means using an ultrasonic sensor.

【図15】圧電素子を直接被検体に装着した従来の薄膜
評価手段の例を示す構成図。
FIG. 15 is a configuration diagram showing an example of a conventional thin film evaluation means in which a piezoelectric element is directly attached to a subject.

【符号の説明】[Explanation of symbols]

1 プレート 2 被検体(薄膜の被測定物) 3 基材 4 コーティング層 5 接着剤 6 圧電素子 7 圧電材 8 電極 9 電極 10 信号検出器 11 アンプ 12 デジタルオッシロスコープ 13 コンピュータ 14 サポータ 15 支持台 16 ナット部材 17 モータ 18 送りねじ軸 19 AE波 20 高周波ケーブル DESCRIPTION OF SYMBOLS 1 plate 2 test object (measurement object of thin film) 3 base material 4 coating layer 5 adhesive agent 6 piezoelectric element 7 piezoelectric material 8 electrode 9 electrode 10 signal detector 11 amplifier 12 digital oscilloscope 13 computer 14 supporter 15 support stand 16 nut member 17 Motor 18 Feed Screw Shaft 19 AE Wave 20 High Frequency Cable

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 薄膜の被検体を引張り及び/又は曲げて
該被検体から生じるAE波を基にしてその膜強度を評価
する測定方法であって、屈曲可能なプレート上に前記被
検体を重ね合わせ、前記プレートに曲げ変形を与えなが
ら前記被検体から発生するAE波を前記プレートに装着
した屈曲性を有する圧電素子により検出し、AE波の発
生する際の前記プレートの屈曲量から被検体の膜強度を
評価することを特徴とする薄膜強度測定方法。
1. A method for measuring the strength of a thin film specimen by pulling and / or bending the specimen based on AE waves generated from the specimen, wherein the specimen is placed on a bendable plate. In addition, the AE wave generated from the subject while bending the plate is detected by the flexible piezoelectric element attached to the plate, and the AE wave generated from the subject is detected from the bending amount of the plate when the AE wave is generated. A method for measuring thin film strength, which comprises evaluating film strength.
【請求項2】 前記圧電素子が、前記被検体と接する当
該プレートの表面側又は前記被検体と反対の裏面側又は
当該プレートの内部に装着される請求項1の薄膜強度測
定方法。
2. The thin film strength measuring method according to claim 1, wherein the piezoelectric element is mounted on a front surface side of the plate in contact with the subject, a back surface side opposite to the subject, or the inside of the plate.
【請求項3】 前記被検体が、前記プレート上に接着又
はその両端をプレート側に支持されて固定される請求項
1の薄膜強度測定方法。
3. The thin film strength measuring method according to claim 1, wherein the object is adhered onto the plate or fixed with both ends thereof supported on the plate side.
【請求項4】 前記プレートおよび圧電素子は、被検体
に較べてAE波の発生し難い有機物から形成されたもの
を用いる請求項1の薄膜強度測定方法。
4. The thin film strength measuring method according to claim 1, wherein the plate and the piezoelectric element are made of an organic material in which AE waves are less likely to be generated as compared with a subject.
【請求項5】 前記プレートと被検体間に低摩擦膜を介
設することを特徴とする請求項1の薄膜強度測定方法。
5. The thin film strength measuring method according to claim 1, wherein a low friction film is provided between the plate and the subject.
JP9278194A 1994-05-02 1994-05-02 Thin film strength measuring method Pending JPH07301587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278194A JPH07301587A (en) 1994-05-02 1994-05-02 Thin film strength measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278194A JPH07301587A (en) 1994-05-02 1994-05-02 Thin film strength measuring method

Publications (1)

Publication Number Publication Date
JPH07301587A true JPH07301587A (en) 1995-11-14

Family

ID=14063966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278194A Pending JPH07301587A (en) 1994-05-02 1994-05-02 Thin film strength measuring method

Country Status (1)

Country Link
JP (1) JPH07301587A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047555A (en) * 2007-08-20 2009-03-05 Toyota Central R&D Labs Inc Evaluator and evaluation method of mechanical characteristic of film
JP2013221899A (en) * 2012-04-18 2013-10-28 Sekisui Chem Co Ltd Test method for building adhesive
JP2014041098A (en) * 2012-08-23 2014-03-06 Nikon-Essilor Co Ltd Coat film durability measurement method and coat film durability measurement device
KR20230078224A (en) * 2021-11-26 2023-06-02 한국재료연구원 3-point bending test system and 3-point bending test method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047555A (en) * 2007-08-20 2009-03-05 Toyota Central R&D Labs Inc Evaluator and evaluation method of mechanical characteristic of film
JP2013221899A (en) * 2012-04-18 2013-10-28 Sekisui Chem Co Ltd Test method for building adhesive
JP2014041098A (en) * 2012-08-23 2014-03-06 Nikon-Essilor Co Ltd Coat film durability measurement method and coat film durability measurement device
KR20230078224A (en) * 2021-11-26 2023-06-02 한국재료연구원 3-point bending test system and 3-point bending test method

Similar Documents

Publication Publication Date Title
Dutta et al. A nonlinear acoustic technique for crack detection in metallic structures
US4856326A (en) Apparatus for measuring an adhesion force of a thin film
CN1654950B (en) Method of measuring the adhesion of a coating to a substrate
US7424827B2 (en) Inspecting method of elastic body, inspecting apparatus thereof, and dimension predicting program thereof
US10677682B2 (en) Systems and methods for monitoring plastic deformation of a structured material
KR20100122636A (en) Method for testing adhesion strength of thin film formed on flexible substrate
JPH07301587A (en) Thin film strength measuring method
US11054402B2 (en) Method and device for checking a bond between two substrates
JPH02234047A (en) Measuring instrument for adhering force
JPH07301588A (en) Method and apparatus for measuring thin film strength
JP2003130851A (en) Elastic parameter measuring device for material surface and coating layer
JP3709559B2 (en) Dry contact high frequency ultrasonic transmission method and apparatus therefor, and dry contact high frequency ultrasonic inspection method and apparatus therefor
JPH11173973A (en) Measuring method for adhesion force of thin film
JP2745648B2 (en) Adhesion measuring device
Blackshire et al. Characterization of bonded piezoelectric sensor performance and durability in simulated aircraft environments
CN111044804B (en) Piezoelectric coefficient measuring method for piezoelectric material
JPH11211699A (en) Measuring sensor for diagnosing various material and various solution, diagnosing device, and diagnosing method
JPH0278932A (en) Measuring instrument for filming sticking force
KR101391772B1 (en) A indentor with a functional sensor, indentation tester and analysis system using the indentor
JP5070146B2 (en) Test method and test apparatus
JPH0612320B2 (en) Device and method for evaluating mechanical properties of thin film
JPH07325029A (en) Physical property of thin film evaluating apparatus
JPH0643954B2 (en) Method and apparatus for evaluating adhesion strength of film
Zheng et al. Mechanical Fatigue Analysis of AlN/SUS430/AlN Heterolayered Foils in Micromachined Devices.
JPH08304247A (en) Device for evaluating strength of thin film