JPH07300093A - Water jet propulsion device - Google Patents

Water jet propulsion device

Info

Publication number
JPH07300093A
JPH07300093A JP12944094A JP12944094A JPH07300093A JP H07300093 A JPH07300093 A JP H07300093A JP 12944094 A JP12944094 A JP 12944094A JP 12944094 A JP12944094 A JP 12944094A JP H07300093 A JPH07300093 A JP H07300093A
Authority
JP
Japan
Prior art keywords
spiral
movable
spiral element
groove
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12944094A
Other languages
Japanese (ja)
Inventor
哲哉 ▲荒▼田
Tetsuya Arata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12944094A priority Critical patent/JPH07300093A/en
Publication of JPH07300093A publication Critical patent/JPH07300093A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To provide a lightweight water jet propulsion device with no cavitation so as to enhance the efficiency and the quietness in which a positive displacement pump part is formed in a scroll type composed of a stationary spiral element having a spiral groove formed in a thick plate, and a movable spiral element having a spiral protrusion formed on an end plate. CONSTITUTION:A spiral protrusion 1a formed on a movable spiral element 1 and a spiral groove 2a formed in a stationary spiral element 2 are combined with each other so as to form a pump part, and the stationary spiral element 2 is fixed to a hull. When the movable spiral element 1 is turned with a substantially constant eccentricity and without self-rotation by means of a drive shaft 8, water is sucked into the pump part through a suction port which is communicated with the outer terminal end part of the spiral groove 2a and opened at the outer wall, and is discharged under a high pressure through a discharge port 2d which is formed in a bulb-like protrusion located a substantially center part of the groove and opened to the latter. At this time, the discharged water passes through a rudder 5 provide in a nozzle in the stationary spiral element 2, thereby it is possible to generate a propulsion for a marine vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,液体に圧力または運動
エネルギーを与える水力機械としての容積式液体ポンプ
に係わり,特に水面及び水中で水力を利用して船舶を推
進する水ジェット推進装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive displacement liquid pump as a hydraulic machine for applying pressure or kinetic energy to a liquid, and more particularly to a water jet propulsion device for propelling a ship by utilizing hydraulic power on the water surface and in water.

【0002】[0002]

【従来の技術】従来の推進装置としてはプロペラを用い
た推進装置が最も一般的である。大半の船舶が船尾下部
の船外に設けたプロペラを回転させて推進していた。そ
の他の従来例として,船底と船尾を連通させて開口する
ダクトを設け,そのダクト内に設けたプロペラで水を後
方に噴出させて推進する水ジェット推進装置があった。
プロペラを船外に設けた推進装置の公知例として,特公
昭59−37278や特開平4−50096などが挙げ
られる。これらの公知例が示すように,船尾下部の船外
に露出させて設けられたプロペラを水中でエンジン等を
駆動源として軸と一体に回転させ,プロペラの翼に生じ
る水を押す力から得られる推進力により船を推進する。
船の進路変更は後流側となるプロペラの後に設けたおよ
そ矩形状をした翼により行なわれていた。次にプロペラ
をダクト内に設けた水ジェット推進装置の公知例とし
て,特公平1−50639や特開平4−55192など
か挙げられる。これらの公知例が示すように,船底と船
尾に開口した太くて長いダクトが船内後部に設けられ,
そのダクト内に噴流を発生させるプロペラとその流れを
整流するための固定翼が設置され,そしてダクト出口近
傍には船の進路方向を操作する舵装置が設けられてい
る。そして,船底のダクト開口部から水を導入し,船尾
の開口部から水を噴出そて船を推進していた。
2. Description of the Related Art As a conventional propulsion device, a propulsion device using a propeller is most common. Most ships were propelled by rotating a propeller provided outside the lower part of the stern. As another conventional example, there is a water jet propulsion device in which a duct is provided which connects the bottom of the ship to the stern and opens, and a propeller provided in the duct ejects water backward to propel the water.
Known examples of propulsion devices provided with a propeller on the outside of the ship include JP-B-59-37278 and JP-A-4-50096. As shown in these known examples, the propeller, which is exposed outside the lower part of the stern, is rotated integrally with the shaft in the water by using an engine as a drive source and is obtained from the force of pushing water generated on the propeller blades. Propulsion propels the ship.
The course change of the ship was performed by the approximately rectangular wing provided behind the propeller on the wake side. Next, as a known example of a water jet propulsion device in which a propeller is provided in a duct, Japanese Patent Publication No. 1-50639 and Japanese Patent Laid-Open No. 4-55192 can be cited. As these known examples show, a thick and long duct that opens at the bottom and stern of the ship is installed at the rear of the ship,
A propeller for generating a jet flow and fixed vanes for rectifying the flow are installed in the duct, and a rudder device for operating the course of the ship is installed near the duct exit. Then, water was introduced from the duct opening at the bottom of the ship, and water was ejected from the opening at the stern to propel the ship.

【0003】[0003]

【発明が解決しようとする課題】プロペラを船尾の船外
で水中に露出させて取り付け推進する装置の場合,付近
に浮遊している物体又は水の底にある物体が回転してい
るプロペラに接触して,その物体を破損させるか,プロ
ペラが破損して航行不能となることがあった。その物体
が人間のような生物の場合,その生物がプロペラの先端
に接触もしくは巻き込まれて大怪我ないしは死亡するこ
ともあり,極めて危険性が高い推進装置であった。一方
プロペラをダクト内に設け,水を導入して噴流を発生さ
せて推進する水ジェット推進装置の場合には,プロペラ
や整流用の固定翼などを収納し水を導入するための太く
て長いダクトが必要となる。この場合危険なプロペラが
露出しない替わりに多くの設置スペースが必要となると
ともに設置の自由度が大幅に制約されていた。プロペラ
を用いた推進装置共通の課題として,プロペラ外周での
周速が早くキャビテーションの発生やカルマン渦の発生
に伴う推進効率の大幅な低下や騒音振動の発生が問題と
なっていた。また,プロペラ式の推力は回転数の2乗に
比例して増加するとともにトルクも回転数の2乗に比例
して増加するので,高速運転時駆動源に大きな負担を強
いることになり,電動機による駆動を困難にしていた。
このため大半がエンジン駆動であり,排気ガスによる大
気汚染や大きな騒音が発生して問題となっていた。さら
に,プロペラ式では公知例に記載されているように,プ
ロペラ単独の損失,船体との干渉による損失,水の流れ
による損失など多くの損失があり推進効率が大幅に低下
するなどの問題もあった。本発明が解決しようとしてい
る課題として,プロペラを外部に露出した危険な構造,
ダクト方式に係わる船体内の有効スペースの減少と設置
自由度の大幅な制約及びキャビテーション発生に伴う推
進効率低下や騒音振動の増大などがある。加えて,排気
ガスによる大気汚染や騒音の問題が解消できる電動機を
いかにして駆動源に容易に使用するかなどがある。
In the case of a device for mounting and propelling a propeller exposed to water outside the stern, an object floating nearby or an object at the bottom of the water contacts the rotating propeller. Then, the object could be damaged, or the propeller might be damaged, making it incapable of navigation. If the object was a human-like organism, the organism could come into contact with or be caught in the tip of the propeller, causing serious injury or death, which was a very dangerous propulsion device. On the other hand, in the case of a water jet propulsion device in which a propeller is installed in the duct and water is introduced to generate and propel the jet, a thick and long duct for accommodating the propeller and fixed vanes for rectification to introduce water is used. Is required. In this case, a dangerous propeller is not exposed, but a large amount of installation space is required, and the degree of freedom of installation is greatly restricted. A common problem with propulsion devices that use propellers is that the peripheral speed of the propeller periphery is fast and the cavitation and Karman vortices cause a significant reduction in propulsion efficiency and noise and vibration. In addition, the thrust of the propeller type increases in proportion to the square of the number of revolutions and the torque also increases in proportion to the square of the number of revolutions, which imposes a heavy load on the drive source during high-speed operation. It was difficult to drive.
For this reason, most of them are driven by the engine, causing air pollution and large noise due to exhaust gas, which has been a problem. Further, in the propeller type, as described in a known example, there are many losses such as a loss of the propeller alone, a loss due to interference with the hull, and a loss due to water flow, which causes a problem that the propulsion efficiency is significantly reduced. It was As a problem to be solved by the present invention, a dangerous structure in which a propeller is exposed to the outside,
There is a decrease in the effective space in the hull related to the duct system, a great restriction of installation freedom, a decrease in propulsion efficiency due to the occurrence of cavitation, and an increase in noise and vibration. In addition, there is how to easily use a motor as a drive source that can solve the problems of air pollution and noise due to exhaust gas.

【0004】[0004]

【課題を解決するための手段】上記従来例の課題を解決
するために船の推進装置として水または海水の噴流によ
るジェット推進力を利用した渦巻き式水ジェット推進装
置を用いる。これは容積式ポンプを用いており,回転体
を外部に露出させない密閉構造になっている。本発明の
水ジェット推進装置の容積式ポンプ部は厚板に渦巻き状
溝を設けた固定渦巻き要素と端板に渦巻き状突起を設け
た可動渦巻き要素の互いの渦巻き形状部を噛み合わせて
ポンプ部を形成する渦巻き式を用いている。固定渦巻き
要素は船体に固定され,可動渦巻き要素は駆動軸の回転
に連動して旋回運動する仕組みになっている。回転体な
どの可動部分は船体に固定されたハウジング等で被われ
て露出しておらず,ポンプ内に水を導入する入口と噴出
させる出口は推進装置に直接設けられ,その大きさも比
較的小さく,ポンプ部を内設するような大きなダクトは
必要ない。本発明は,このように回転体が船外に露出し
ない密閉構造でダクト用いないで船尾に設置でき容積式
ポンプを用いた渦巻き式水ジェット推進装置を提供する
ことを目的とする。
In order to solve the above-mentioned problems of the conventional example, a swirl type water jet propulsion device utilizing a jet propulsion force by a jet of water or seawater is used as a propulsion device of a ship. This uses a positive displacement pump and has a closed structure that does not expose the rotating body to the outside. The positive displacement pump part of the water jet propulsion device of the present invention is a pump part in which a fixed spiral element having a spiral groove provided on a thick plate and a movable spiral element having a spiral protrusion on an end plate are engaged with each other. The spiral type is used to form. The fixed spiral element is fixed to the hull, and the movable spiral element has a mechanism that makes a swivel motion in conjunction with the rotation of the drive shaft. The movable parts such as the rotating body are not exposed because they are covered by the housing fixed to the hull, and the inlet for introducing water and the outlet for ejecting water are directly provided in the propulsion device, and their size is also relatively small. , There is no need for a large duct inside the pump. SUMMARY OF THE INVENTION It is an object of the present invention to provide a spiral water jet propulsion device using a positive displacement pump that can be installed at the stern without using a duct and has a closed structure in which the rotating body is not exposed to the outside of the ship.

【0005】[0005]

【作 用】本発明の渦巻き式水ジェット推進装置のポン
プ部は前記の如く固定渦巻き要素に設けた渦巻き状溝に
外周から水を吸い込み可動渦巻き要素の渦巻き状突起と
の間に封じ込めて回転させ,強制的に中央へと移動させ
て固定渦巻き要素のほぼ中央に設けた吐出口からノズル
を通り後方に噴出させ,その噴流のジェット推進力によ
り船舶を推進させる。その推進力は次式で表される。 推進力=水の密度×噴出流量×速度差×係数 ここで速度差とは水の噴出速度と船の速度の差を表し,
係数は効率と置き換えることができる。噴出流量は前記
渦巻き状溝と渦巻き状突起との間で形成される最大密閉
空間の大きさに軸回転数を掛けて求められる。回転体で
ある可動渦巻き要素の旋回速度はどの場所でも同じで,
駆動軸中心に対する旋回中心の偏心量に軸回転数を掛け
て求められる。その大きさはプロペラ先端の速度に比べ
ると極めて小さい。従って,キャビテーションの発生も
なく,高速回転時に摺動摩擦損失が大幅に増大すること
もない。軸トルクは効率により多少変動するが,ポンプ
内の最大密閉空間の大きさにほぼ比例するので,軸回転
数が増大しても軸トルクが大きく増すことはない。よっ
て,プロペラ式の軸トルクが軸回転数の2乗に比例して
急激に増加するのに比べて渦巻き式の場合はほとんど増
加しない。このように渦巻き式のトルクは電動機のトル
クに近い特性を示すので電動機駆動が容易となる。エン
ジン駆動の場合にはエンジンの小型化が図れる。さらに
回転体含めた可動部分は全て船体に固定されたハウジン
グ等の容器内に収納されており,水中の浮遊物が回転部
等に直接接触することはない。固定渦巻き要素のほぼ中
央に設けた吐出口後流側のノズル部に方向変換機構を設
けることにより噴流の方向を直接制御でき,船の機動性
が高まる。停止または後進する場合には可動渦巻き要素
の回転方向を逆転させて,噴流を逆噴射させることによ
り実現できる。船の速度を上げるには噴出速度を早くす
れば良い。噴出速度を早くする方法として,軸の回転速
度を高める方法や吐出孔の面積を可変とする方法に空気
をポンプ室に吹き込む方法などが考えられる。
[Operation] The pump portion of the spiral water jet propulsion device of the present invention sucks water from the outer periphery into the spiral groove provided in the fixed spiral element as described above, and seals it between the spiral projection of the movable spiral element and rotates it. , It is forcibly moved to the center and ejected backward through the nozzle from the discharge port provided in the center of the fixed spiral element, and the jet propulsion force of the jet propels the ship. The driving force is expressed by the following equation. Propulsion force = Water density x Ejection flow rate x Velocity difference x Coefficient Here, the velocity difference represents the difference between the water ejection velocity and the ship velocity,
The coefficient can be replaced by the efficiency. The jet flow rate is obtained by multiplying the size of the maximum enclosed space formed between the spiral groove and the spiral protrusion by the number of rotations of the shaft. The swirling speed of the movable spiral element, which is a rotating body, is the same everywhere,
It is calculated by multiplying the amount of eccentricity of the turning center with respect to the center of the drive shaft by the number of rotations of the shaft. Its size is extremely small compared to the speed of the propeller tip. Therefore, cavitation does not occur, and sliding friction loss does not significantly increase at high speed rotation. The shaft torque fluctuates somewhat depending on the efficiency, but since it is almost proportional to the size of the maximum sealed space in the pump, the shaft torque does not increase significantly even if the shaft rotation speed increases. Therefore, in comparison with the propeller type shaft torque that increases rapidly in proportion to the square of the shaft speed, the spiral type torque hardly increases. As described above, since the spiral type torque has characteristics close to those of the electric motor, the electric motor can be easily driven. When the engine is driven, the size of the engine can be reduced. Furthermore, all movable parts including the rotating body are housed in a container such as a housing fixed to the hull, so that suspended matter in the water does not directly contact the rotating part. The direction of the jet can be controlled directly by providing a direction change mechanism at the nozzle on the wake side of the discharge port, which is provided in the center of the fixed spiral element, and the maneuverability of the ship is enhanced. In the case of stopping or moving backward, it can be realized by reversing the rotation direction of the movable spiral element and making the jet flow reverse. To increase the speed of the ship, the ejection speed should be increased. As a method of increasing the ejection speed, a method of increasing the rotation speed of the shaft, a method of varying the area of the discharge hole, a method of blowing air into the pump chamber, and the like are considered.

【0006】[0006]

【実施例】水面や海面に浮かび水力を用いて推進する船
舶の推進装置に適用した場合について説明する。特に本
発明の渦巻き式水ジェット推進装置は安全性が高くて騒
音が低いので,海岸近辺や河川または湖などを航行する
小型船舶の推進装置に適している。以下実施例に基づき
具体的に説明する。図1は本発明の渦巻き式水ジェット
推進装置のポンプ部の原理説明図であり,ポンプ中心部
の横断面をモデル的に示している。(a)〜(d)の4
枚の図は,可動渦巻き要素1に設けられた渦巻き状突起
1aと固定渦巻き要素2に設けられた渦巻き状溝2aが
互いに組み合わされて1組のポンプ部が形成される。固
定渦巻き要素2のほぼ中央部には溝加工の残りとして球
根状突起2bが形成されている。固定渦巻き要素2は船
体に固定されて動かないが,可動渦巻き要素1はほぼ一
定の偏心量で自転のない旋回運動をする。これら4枚の
図は軸回転位置が異なる状態を示し,(a)〜(d)の
順すなはち→印が示す順序で軸が90度づつ回転するに
伴い作動状態が変化していることを示している。このモ
デル図のように,ポンプ部は基本的に可動渦巻き要素1
と固定渦巻き要素2の2点で構成されている。可動渦巻
き要素1の渦巻き状突起1aの厚さは,巻き始めと終わ
りを除きほぼ均一に形成されている。固定渦巻き要素2
の渦巻き状溝2aの幅も同様に均一である。これら渦巻
き状突起1aの壁面形状及び渦巻き状溝2aの壁面形状
はインボリュート曲線または円弧で形成されている。渦
巻き状溝2aの溝幅は可動渦巻き要素1の公転直径と渦
巻き状突起1aの厚さを加えた値にほぼ等しくなる。渦
巻き状突起1a巻き長さはおよそ1巻きで,渦巻き状溝
2aの巻き長さは1巻き強となる。それら渦巻き状の突
起と溝の互いの高さはほぼ等しく形成されている。ポン
プ内への水の取り入れは固定渦巻き要素渦巻き状溝2a
の外側終端部に連通し外壁に開口する吸入口2cから行
い,ほぼ中央にある球根状突起2bに設けられ渦巻き状
溝に開口する吐出口2dから外部へと噴出される。
(a)の状態は可動渦巻き要素1の渦巻き状突起1a巻
き終り端外側壁面と固定渦巻き要素2の渦巻き状溝2a
外壁間の接点M,それより半周内側に入った渦巻き状突
起1a中央近傍内側壁面と固定渦巻き要素2の渦巻き状
溝2b内壁間の接点Lそしてさらに半周内側に入った渦
巻き状突起1a巻き始め端内側壁面と渦巻き状溝2a外
壁間の接点Kがそれぞれに接触ないしは隙間が最小とな
っている状態を示している。この図の場合,渦巻き状溝
2a内が水で満たされるポンプ部空間は渦巻き状突起1
aにより3分割されている。渦巻き状突起1aの内側で
渦巻き状溝2a外周側に形成されたポンプ部空間Rには
渦巻き状溝2aの外側終端部に設けられた吸入口2cか
ら水が流入している吸入行程の状態を示してしる。一
方,渦巻き状突起1aの外側で渦巻き状溝2a外壁側に
形成されたポンプ部空間Qは水が取り込まれて吸入行程
が終了した密封状態を示している。最内部に形成されて
いるポンプ部空間Pは,固定渦巻き要素2ほぼ中央で球
根状突起2bに設けられた吐出口2dから水を押し出さ
れる吐出行程の状態を示している。この(a)の状態か
ら軸が右回りに90度回転して可動渦巻き要素1が90
度右回りに旋回した状態図を(a)の右側に配置した
(b)に示す。軸の回転に対して,可動渦巻き要素1は
前の述べたように自転のない偏心量一定の旋回運動をす
る。(b)の場合,接点M,L及ひKの移動に伴いポン
プ部空間Pは容積を小さくしながらさらに中に移動して
吐出口2dに水を送り込み,ポンプ部空間Qは密封状態
から吐出行程に入り容積を小さくしながら内部空間Pと
連通して吐出口2dに水を送り込んでいる。ポンプ部空
間Rは吸入行程の状態にあり容積を大きくしながら中に
移動することにより,吸入口2cからさらに水を取り入
れている。そして渦巻き状突起1a巻き終り側では渦巻
き状溝2a外壁との間で新たなポンプ部空間Sが形成さ
れ吸入行程に入っており,この空間へも吸入口2cから
水が流入している。(b)からさらに軸が90度回転す
ると(b)の下の状態図(c)になる。(c)の場合,
ポンプ部空間Pは消滅し,これに入れ替わってポンプ部
空間Qは吐出行程の状態にあり吐出口2dに水を送り込
む主たる役目を担っている。一方,ポンプ部空間Rは吸
入行程か終了して閉じ込められて密封状態になってい
る。溝の外側に新たに形成されたポンプ部空間Sは吸入
行程の状態にあり容積を増大させつつ水を取り込んでい
る。(c)からさらに軸が90度回転すると(c)の左
の状態図(d)になる。(d)の場合,ポンプ部空間Q
の容積は大きく縮小し,ポンプ部空間Rは吐出行程の状
態にあり容積を小さくしながら内部空間へ連通して吐出
口2dへ水を送り込んでいる。そして,ポンプ部空間S
は吸入行程の状態にあり容積を増大させながら吸入口2
cから水を取り込んでいる。(d)からさらに軸が90
度回転すると,再び(a)の状態に戻って空間Sの吸入
行程が終了して空間Qとなり同じサイクルを繰り返すこ
とになる。このようにして,吸入口2cから水を連続し
てポンプ内に取り込み,吐出口2dから水を連続的に流
出させることになる。この流出のエネルギーを利用して
船を推進させる。渦巻き状突起1aと渦巻き状溝2aの
平面形状はいずれもインボリュート曲線で形成されてお
り基礎円半径をρ,巻き角度をλと置くと,曲線上の座
標(Xo,Yo)は次式で表される。 Xo=ρ(cosλ+λsinλ) Yo=ρ(sinλ−λcosλ) 突起の厚さをTとすると,そのインボリュート曲線の開
始点Fは点Eより巻き角にしてT/ρラジアンより進ん
だ位置にくる。その内側のインボリュート曲線の座標
(Xi,Yi)は次式で表される。 Xi=ρ(cosλ+(λ−T/ρ)sinλ) Yi=ρ(sinλ−(λ−T/ρ)cosλ) 図1の可動渦巻き要素の渦巻き状突起1aの場合,巻き
角λはおよそ6ラジアンから12ラジアンまでの曲線に
なっている。固定渦巻き要素の渦巻き状溝2aの巻き角
は前記突起形状の旋回運動に対する包絡線として求めら
れる巻き角に流路として必要な長さをプラスアルファし
て求められる。図1に示した空間Sの吸入行程における
容積変化及び空間Qの吐出行程における容積変化を巻き
角を横軸にして図2に示す。図中の記号で示すとAから
Bが空間Sの吸入行程であり,BからCが空間Qの吐出
行程である。密閉空間となるB点の手前で容積は最大と
なる。また図1で示した接点MとKの隙間の大きさを巻
き角を横軸にして図3に示す。図中記号のAからBを経
てCに至る点線が巻き終り側である接点Mの変化を示
し,CからDを経てEにる実線が巻き始め側である接点
Kの変化を示す。これより空間の容積が最大となる図2
のB点近傍では隙間は図3のC点近傍となり隙間は最小
となって密封性が高められることになる。図1の動作原
理を用いた本発明の渦巻き式水ジェット推進装置を船
尾に装着した実施例を横から見た外観図を図4に,後ろ
正面から見た外観図を図5に示す。水ジェット推進装置
は外観的に固定渦巻き要素2,ハウジング4,2ケ所
水平に設けたノズル2eと方向舵5及び導入管6から概
略構成されて船尾に固定されたハウジング台座7にノッ
クピン等で位置決めされてボルト固定されている。この
推進装置は駆動軸8を介して接続されたエンジンない
しは電動機などの駆動源9から動力が伝達されて駆動さ
れる。水ジェット推進装置が駆動されると2ケ所の導
入管6からそれぞれのポンプ部に水が取り込まれ固定渦
巻き要素2に設けられた2ケ所のノズル2eから水を噴
出させて船を推進する。船の進路を変更する手段として
2ケ所のノズル2e内それぞれに方向舵5が設けられて
いる。そして,それら方向舵5は1セットの舵取り機構
16で同時に繰舵される。尚,導入管6内には金網や格
子状の板などで構成された異物進入防止構造が設けられ
る。次に水ジェット推進装置の内部構造について説明
する。図5のA−A断面図を第6図に示す。水ジェット
推進装置は板の上に渦巻き状突起1aを設けた可動渦
巻き要素1,段付き厚肉板に渦巻き状溝2aを設けると
ともに前記溝2aに連通する吸入口2cや吐出口2dを
設けた固定渦巻き要素2,駆動源から動力を伝達して従
動軸11を介して可動渦巻き要素1を駆動する駆動軸
8,固定渦巻き要素2をノックピンなどで位置決めして
固定する座面を有するとともに可動渦巻き要素1や各部
の軸等の可動部を内側に抱え込んで軸受で支えるハウジ
ング4さらには固定渦巻き要素2の吐出口2dに連なる
ノズル2eの出口に設けられた方向舵5などで構成され
る2組のポンプ部から概略構成されている。可動渦巻き
要素1の端板1b上に2対の渦巻き状突起1aを設け,
その反対側である端板1b裏側に2ケ所可動軸1cが設
けられている。端板1bは2対の渦巻き状溝2aを設け
た固定渦巻き要素2とハウジング4内側との間で,上下
面側で微小隙間を設けて挟み込まれいる。可動渦巻き要
素端板1b裏面とハウジング4内側座面との間には2ケ
所設けた可動軸1c回りにそれぞれスラストシール機構
15が設けられているので,吸入口2cに通じるポンプ
部の水が可動軸1cなどの軸側に流入することはない。
2ケ所の可動軸1cはそれぞれ従動軸11に内設された
偏心量可変機構14に挿入され,従動軸11はハウジン
グ4に設けた従動軸受13で支えられている。2ケ所の
従動軸11には駆動軸8端部に設けた駆動ギア8aに噛
み合う従動ギア11aとバランスウェイト12が固定さ
れている。駆動軸8はハウジング4に設けた主軸受10
で支えられている。尚可動軸1cとその軸受には無潤滑
用軸受材を用いるか転がり軸受を用い,さらにスラスト
シール機構15の固定及び可動スラスト軸受にカーボン
や鋼板のような無潤滑に強い材料を用いれば耐久性は一
層向上する。実施例では渦巻き状のポンプ部を2ケ所設
けているが,これが1ケ所ないしは3ケ所以上設けても
良い。図6のA−A断面図を図7に示す。固定渦巻き要
素の2対ある渦巻き状溝2aの形状は同じで,それぞれ
の巻き終り側の壁面には固定渦巻き要素2に固定された
導入管6内の通路6aに連通する吸入口2cが開口し,
それぞれの巻き始め側の壁面には固定渦巻き要素2のほ
ぼ中央にある球根状突起2bに開けられた吐出口2dに
連通している。そして,それら渦巻き状溝2a内には可
動渦巻き要素1の渦巻き状突起1aがそれぞれ収まり2
対のポンプ部を形成している。図6のB−B断面図を図
8に示す。可動渦巻き要素1の2つの円盤をつなげて瓢
箪形状をした端板1b上に同一形状または同一旋回半径
の渦巻き状突起1aが2組取り付けられて,端板1bか
ら下部がハウジング4の凹みの内側に収められている。
図6のC−C断面図を図9に示す。2ケ所の従動軸11
外側にはそれぞれスラストシール機構15を構成するリ
ング状の固定スラスト軸受が設けられ,その内側には偏
心量可変機構14が内設されている。この偏心量可変機
14に挿入された可動軸1cにより可動渦巻き要素1
か駆動される。2ケ所の可動軸1cは1つの端板1bに
固定されているので,これら可動軸1cが同じ動きをす
るように偏心量可変機構14および従動軸11が配置さ
れる。図6のD−D断面図を図10に示す。2ケ所の可
動軸に同じ動きをさせて可動渦巻き要素1を旋回運動さ
せる必要上,2ケ所の従動ギアの歯数を同一にして駆動
ギア8aと2ケ所の従動ギア11aを同時に噛み合わせ
ることにより自転防止機構を兼ねている。そして,バラ
ンスウェイトの組付け位置はどちらも従動軸内の可動軸
の偏心方向とは反対方向に取り付けられる。実施例での
従動ギア11aの数は2ケであるが,これが3ケ以上で
も良い。またギアの替わりにチェーンを用いることもで
きる。図11は固定渦巻き要素2の2ケ所ある渦巻き状
溝2a側から見た平面図を示している。図の渦巻き状溝
2a形状は合同であるが,旋回半径が同じであれば異な
る形状でも良い。但し,これに合わせて可動渦巻き要素
の渦巻き状突起の形状も変える必要がある。球根状突起
2bにはノズル2e側から貫通しないようにして開けら
れ,渦巻き状溝2aに連通している吐出口2dが設けら
れている。図2及び図3で説明したように,ポンプ部空
間が空間を形成する壁面間で微小隙間を有して密封状態
になる瞬間がある。この時,液圧縮を起こして異常高圧
が発生しないように渦巻き状溝2aの巻き始めにその溝
幅を拡大した逃げ溝2fが図の如く渦巻き状溝それぞれ
の両側に設けられている。その取り付け位置は図1の
(a)の接点Kないしは(c)の接点Lの隙間が最小に
なる巻き角を基準にした前後の幅から決められる。その
A−A断面を図12に示すように,逃げ溝2fの深さは
渦巻き状溝の半分ほどであるが,逃げ溝2fの幅の大き
さに合わせて深さを変えても良い。渦巻き状溝2a底部
には,この溝と同じ形状で溝の上下方向に移動可能にし
て薄板状のFスラスト板17が設けられている。そのF
スラスト板17の平面図を図13に示す。図14に可動
渦巻き要素1とそれに装着された各種部品の外観図を示
す。可動渦巻き要素1の瓢箪形状をした端板1b上に設
けた渦巻き状突起1a側には,複数のMバネ19を端板
1bに内設しその上から前記突起1aと同じ形状の突起
挿入孔18aを2ケ所開けたMスラスト板18が装着さ
れる。2個の可動軸1cを設けた端板1bの裏面側には
複数のSバネ23が内設されその上からスラストシール
機構15の一部を構成する可動スラスト軸受21を保持
部22bに固定した軸受保持板22が,固定部22aの
穴を可動軸1cに挿入固定されるようにして装着され
る。保持部22bは端板側からSバネ23で押されて弾
性的変位し,可動スラスト軸受21がハウジング4に固
定した固定スラスト軸受20面に密着して摺動する。尚
可動渦巻き要素1は軽量化を図る目的からアルミニウム
や樹脂等の軽量材料が用いられる場合がある。図15に
は従動軸11に内設した偏心量可変機構14の展開図を
示す。偏心量可変機構14は偏心スライダー24,押え
25及びボルト26を従動軸11に設けた偏心角穴11
b,押え穴11c,ネジ穴11dにそれぞれ収めて構成
される。角柱状の偏心スライダー24は微小隙間を設け
て従動軸の偏心角穴11bに挿入され,押え穴11cと
24bに嵌め込むようにして上から押え25を挿入しそ
の上からボルト26で押え25を従動軸11に固定し
て,偏心スライダー24が偏心角穴11bから抜け出な
いようにしている。偏心スライダー24と偏心角穴11
bとの側壁間の隙間は矩形状の辺の短い側がミクロンオ
ーダーと小さく,辺の長い側すなはち押え穴24bのあ
る長手方向はミリオーダーと大きく,その隙間内での移
動を可能にしている。偏心スライダー24には従動軸1
1に対し軸心か並行で偏心している可動軸受24aが円
筒状に貫通して設けられている。この可動軸受24aに
可動渦巻き要素の可動軸1cが挿入される。よって,こ
の従動軸軸心に対する可動軸受24a軸心の偏心量が可
動渦巻き要素1の旋回半径となる。図16は固定渦巻き
要素のノズル2e部に設けた進路変更装置に係わる方向
舵5と舵取り機構16の断面詳細図である。進路変更装
置はノズル2e出口に設けた矩形状の方向舵5,この方
向舵5を縦に貫通している支持棒16aと舵棒16bさ
らにはこれら2本の棒を連結している下連結板16c,
上連結板16d及び連動板16eなどから構成されてい
る。方向舵5は支持棒16a中心の回転を可能にして取
り付けられ,その回転角は舵取り機構16に連動する舵
棒16bで制動される。方向舵5の断面は図22のA−
A断面である図17に示すように,ノズル2e内側は細
くして水の抵抗を減らしている。図18は図16のB−
B矢視図である。舵取り機構16は上下の連結板16
c,16dやギヤ付きの連動板16eとこれに噛み合う
操舵ギア16fなどで構成されている。操舵ギア16f
の回転に伴い連動板16eが揺動すると2枚の上連結板
16dが支持棒16a回りに回転して,舵棒16bが回
転するの方向舵の傾き角が変わることになる。方向舵の
傾き角が変わるとノズル内の噴流が方向舵に衝突して噴
流の方向か変わるので船の進路も変わることになる。以
上の如く構成された渦巻き式水ジェット推進装置の働き
について以下まとめて説明する。エンジン又は電動機を
動力源として駆動軸8が作動すると,駆動軸に直結した
駆動ギア8aに連動して2ケ所の従動ギア11aが同時
に駆動され,従動軸11内の偏心スライダーに挿入され
た可動軸1cと共に一体固定された可動渦巻き要素1が
自転のない公転のみの旋回運動をする。その旋回半径は
従動軸11の軸心に対する可動軸軸心の偏心量として与
えられる。可動渦巻き要素1の旋回運動に伴い,2組あ
る渦巻き状突起1aと渦巻き状溝2aとで形成された幾
つかのポンプ部空間がその容積を変化させながら外側か
ら中心へ向けて移動する。そのポンプ部容積の変化に応
じて,導入管6から水を取り込んで吸入口2cからポン
プ部空間内に流入する吸入行程から,前記ポンプ部空間
の中心への移動に伴い吐出行程に入って水が固定渦巻き
要素の吐出口に押し出されてノズル2eから船外に噴出
する。その反動で船が推進される。ノズルの出口を水面
上に開口させれば抵抗が減ってその力はより高まる。ま
た,導入管6入口には網状または格子状のカバーが設け
られており,水以外の固形物がポンプ内に進入してポン
プ部が損傷するのを防止している。ポンプ部空間の微小
隙間部における密封性は,可動と固定渦巻き要素それぞ
れに設けたMスラスト板18とFスラスト板17で互い
のスラスト面からの漏れを防止し,偏心量可変機構14
と可動渦巻き要素の遠心力を利用して渦巻き状突起の側
壁を固定渦巻き要素側に押し付けて側壁間の漏れを防止
して密封性を高め,高効率を達成している。一方ポンプ
部空間は最大容積前後の密封状態から軸が回転した時,
その開口面積が小さいと液圧縮を起こして圧力の異常上
昇をまねくが,逃げ溝2fを設けることにより異常高圧
になることなくスムーズに吐出口側に流出される。推進
装置は水面下にあり,ポンプ内は水で満たされている。
しかし,可動渦巻き要素端板の背面にスラストシール機
15が設けられており,停止時や運転中においても水
が従動軸11側の船体内に侵入することはない。さら
に,軸を支持する主軸受10や可動軸受1c及びその周
辺が水に浸されてサビや腐食等により軸受が損傷する心
配はなく信頼性は高い。船の進路を変更する場合は,固
定渦巻き要素ノズル2e部に設けた方向舵5を舵取り機
16で作動させ,ノズルからの噴流の向きを直接変
え,効果的に進路を変える。船を後進又は停止させる場
合は,駆動軸を逆転させる。するとノズルから吐出口を
経て水がポンプ内に流入し前向きに開口した吸入口から
水が噴出するので後進または制動される。吸込口から流
入した水は固定及び可動渦巻き要素で形成されるポンプ
部密閉空間に一瞬閉じ込まれて後吐出口側に圧送され,
その圧力エネルギーが運動エネルギーに変換されてジェ
ット噴流となるので,ポンプ内の圧力は周囲より高くな
る。その圧力に伴う流体力や回転に伴う可動渦巻き要素
の遠心力及び水の慣性力などが可動渦巻き要素に作用す
る。これらの力が軸トルクの主要な要因となる。そして
これらの力は従動軸受や固定スラスト軸受で受け止めら
れ,主軸受にはほとんど負担は掛からない。
[Embodiment] A case will be described in which the present invention is applied to a propulsion device of a ship that floats on the water surface or the sea surface and is propelled using hydraulic power. In particular, since the spiral water jet propulsion device of the present invention has high safety and low noise, it is suitable for a propulsion device for a small vessel that sails near the coast, a river or a lake. Specific description will be given below based on examples. FIG. 1 is an explanatory view of the principle of the pump portion of the spiral water jet propulsion device of the present invention, and shows a cross section of the pump central portion as a model. 4 of (a) to (d)
In the drawings, the spiral protrusion 1a provided on the movable spiral element 1 and the spiral groove 2a provided on the fixed spiral element 2 are combined with each other to form a set of pump parts. A bulb-shaped projection 2b is formed in the fixed spiral element 2 at a substantially central portion thereof as a groove processing residue. The fixed spiral element 2 is fixed to the hull and does not move, but the movable spiral element 1 makes a turning motion without rotation with an almost constant amount of eccentricity. These four figures show the state where the shaft rotation position is different, and the operating state changes as the shaft rotates 90 degrees in the order shown in (a) to (d) or the order indicated by the mark. Is shown. As shown in this model diagram, the pump part is basically a movable spiral element 1
And the fixed spiral element 2. The thickness of the spiral projection 1a of the movable spiral element 1 is formed to be substantially uniform except for the winding start and the winding end. Fixed spiral element 2
The width of the spiral groove 2a is also uniform. The wall shape of the spiral protrusion 1a and the wall shape of the spiral groove 2a are formed by involute curves or arcs. The groove width of the spiral groove 2a is substantially equal to the value obtained by adding the revolution diameter of the movable spiral element 1 and the thickness of the spiral protrusion 1a. The winding length of the spiral protrusion 1a is approximately one, and the winding length of the spiral groove 2a is one strong. The heights of the spiral protrusion and the groove are substantially equal to each other. Intake of water into the pump is fixed spiral element spiral groove 2a
It is conducted from an inlet 2c communicating with the outer end of the nozzle and opening to the outer wall, and is ejected to the outside from an outlet 2d provided in a bulb-shaped projection 2b in the center and opening in a spiral groove.
In the state of (a), the spiral protrusion 1a of the movable spiral element 1a, the outer wall surface at the end of the spiral, and the spiral groove 2a of the fixed spiral element 2 are shown.
The contact point M between the outer walls, the contact point L between the inner wall surface near the center of the spiral projection 1a and the inner wall of the spiral groove 2b of the fixed spiral element 2 and the spiral projection 1a that further enters the half circumference inside The contact points K between the inner wall surface and the outer wall of the spiral groove 2a are in contact with each other, or the clearance is minimized. In the case of this figure, the pump space in which the inside of the spiral groove 2a is filled with water is the spiral projection 1
It is divided into three by a. The state of the suction stroke in which water flows from the suction port 2c provided at the outer end of the spiral groove 2a into the pump portion space R formed inside the spiral protrusion 1a on the outer peripheral side of the spiral groove 2a. I will show you. On the other hand, the pump space Q formed outside the spiral projection 1a and on the outer wall side of the spiral groove 2a shows a sealed state in which water is taken in and the suction stroke is completed. The pump part space P formed in the innermost portion shows a state of a discharge stroke in which water is pushed out from a discharge port 2d provided in the bulbous projection 2b at approximately the center of the fixed spiral element 2. From this state (a), the shaft rotates 90 degrees clockwise and the movable spiral element 1 moves 90 degrees.
A state diagram of turning clockwise is shown in (b) arranged on the right side of (a). With respect to the rotation of the shaft, the movable spiral element 1 makes a swivel motion with a constant eccentricity without rotation as described above. In the case of (b), as the contacts M, L and K move, the pump portion space P moves further inward while reducing the volume and feeds water into the discharge port 2d, and the pump portion space Q is discharged from the sealed state. Water enters the discharge port 2d in communication with the internal space P while reducing the volume in the stroke. The pump part space R is in the state of the suction stroke and moves into the pump part space while increasing its volume, thereby further taking in water from the suction port 2c. At the end of the spiral protrusion 1a, a new pump space S is formed between the spiral groove 2a and the outer wall of the spiral groove 2a, and the suction stroke is started. Water also flows into this space through the suction port 2c. When the shaft further rotates 90 degrees from (b), the state diagram (c) under (b) is obtained. In the case of (c),
The pump part space P disappears and is replaced with this, and the pump part space Q is in the state of the discharge stroke and plays a main role of sending water to the discharge port 2d. On the other hand, the pump space R is closed after the suction stroke and is sealed. The pump space S newly formed on the outside of the groove is in the state of the suction stroke and takes in water while increasing its volume. When the shaft further rotates 90 degrees from (c), the state diagram (d) on the left of (c) is obtained. In case of (d), pump space Q
The volume of the pump is drastically reduced, and the pump space R is in the state of the discharge stroke, and while communicating with the internal space, the water is sent to the discharge port 2d while reducing the volume. And the pump space S
Is in the suction stroke and the suction port 2
Taking in water from c. The axis is further 90 from (d)
When rotated once, the state returns to the state of (a) again, the suction stroke of the space S is completed and the space becomes the space Q, and the same cycle is repeated. In this way, water is continuously taken into the pump from the suction port 2c, and water is continuously discharged from the discharge port 2d. The energy of this outflow is used to propel the ship. The planar shapes of the spiral protrusion 1a and the spiral groove 2a are both formed by an involute curve, and if the basic circle radius is ρ and the winding angle is λ, the coordinates (Xo, Yo) on the curve are given by the following equation. To be done. Xo = ρ (cosλ + λsinλ) Yo = ρ (sinλ−λcosλ) When the thickness of the protrusion is T, the starting point F of the involute curve is located at a position ahead of T / ρ radian in a winding angle from point E. The coordinates (Xi, Yi) of the involute curve inside thereof are represented by the following equation. Xi = ρ (cosλ + (λ−T / ρ) sinλ) Yi = ρ (sinλ− (λ−T / ρ) cosλ) In the case of the spiral projection 1a of the movable spiral element in FIG. 1, the winding angle λ is about 6 radians. The curve is from 1 to 12 radians. The winding angle of the spiral groove 2a of the fixed spiral element is obtained by adding the length required as a flow path to the addition of the winding angle obtained as the envelope for the swiveling motion of the protrusion shape. FIG. 2 shows the volume change in the intake stroke of the space S and the volume change in the discharge stroke of the space Q shown in FIG. 1 with the winding angle as the horizontal axis. As indicated by the symbols in the figure, A to B are the suction strokes of the space S, and B to C are the discharge strokes of the space Q. The volume is maximum before point B, which is a closed space. The size of the gap between the contacts M and K shown in FIG. 1 is shown in FIG. 3 with the winding angle as the horizontal axis. A dotted line from A to B through C in the drawing shows a change of the contact M on the winding end side, and a solid line from C to D to E shows a change of the contact K on the winding start side. Figure 2 shows the maximum space volume
In the vicinity of point B, the clearance is in the vicinity of point C in FIG. 3 and the clearance is minimized, and the sealing performance is improved. An external view of an embodiment in which the spiral water jet propulsion device 3 of the present invention using the operation principle of FIG. 1 is attached to the stern is shown in FIG. 4 from the side, and an external view from the front of the rear is shown in FIG. Water jet propulsion device
Numeral 3 is a fixed spiral element 2, a housing 4, a nozzle 2e provided horizontally at two places, a rudder 5 and an introduction pipe 6, and is roughly fixed to a housing pedestal 7 fixed to the stern by a knock pin or the like and bolted. Has been done. The propulsion device 3 is driven by transmitting power from a drive source 9 such as an engine or an electric motor connected via a drive shaft 8. When the water jet propulsion device 3 is driven, water is taken into the respective pump parts from the two introduction pipes 6 and the water is ejected from the two nozzles 2e provided in the fixed spiral element 2 to propel the ship. As a means for changing the course of the ship, rudder 5 is provided in each of the two nozzles 2e. The rudder 5 is a set of steering mechanism.
It is steered simultaneously at 16 . A foreign matter intrusion prevention structure composed of a wire net or a grid plate is provided in the introduction pipe 6. Next, the internal structure of the water jet propulsion device 3 will be described. A sectional view taken along the line AA of FIG. 5 is shown in FIG. The water jet propulsion device 3 is provided with a movable spiral element 1 having a spiral projection 1a on a plate, a spiral groove 2a on a stepped thick plate, and an intake port 2c and a discharge port 2d communicating with the groove 2a. The fixed spiral element 2, the drive shaft 8 for transmitting power from the drive source to drive the movable spiral element 1 through the driven shaft 11, and the fixed spiral element 2 having a seat surface for positioning and fixing the fixed spiral element 2 with a knock pin or the like and being movable. Two sets composed of a spiral element 1 and a housing 4 which holds a movable part such as a shaft of each part inside and supported by bearings, and a rudder 5 provided at an outlet of a nozzle 2e connected to a discharge port 2d of a fixed spiral element 2 and the like. The pump unit is roughly configured. Two pairs of spiral projections 1a are provided on the end plate 1b of the movable spiral element 1,
Two movable shafts 1c are provided on the opposite side, that is, on the back side of the end plate 1b. The end plate 1b is sandwiched between the fixed spiral element 2 provided with two pairs of spiral grooves 2a and the inside of the housing 4 with a minute gap on the upper and lower surfaces. A thrust seal mechanism is provided around each of the movable shafts 1c provided at two places between the back surface of the movable spiral element end plate 1b and the inner seat surface of the housing 4.
Since 15 is provided, the water of the pump portion communicating with the suction port 2c does not flow into the shaft side such as the movable shaft 1c.
The two movable shafts 1c are inserted into eccentricity variable mechanisms 14 provided inside the driven shaft 11, and the driven shaft 11 is supported by a driven bearing 13 provided in the housing 4. A driven gear 11a meshing with a drive gear 8a provided at the end of the drive shaft 8 and a balance weight 12 are fixed to the two driven shafts 11. The drive shaft 8 is a main bearing 10 provided in the housing 4.
Supported by. It is to be noted that non-lubricating bearing materials or rolling bearings are used for the movable shaft 1c and its bearings, and further, if the thrust seal mechanism 15 is fixed and the movable thrust bearing is made of a non-lubricating material such as carbon or steel plate, durability is improved. Is further improved. Although two spiral pump parts are provided in the embodiment, they may be provided in one place or in three or more places. A sectional view taken along the line AA of FIG. 6 is shown in FIG. The two spiral grooves 2a of the fixed spiral element have the same shape, and a suction port 2c communicating with the passage 6a in the introduction pipe 6 fixed to the fixed spiral element 2 is opened on the wall surface on the winding end side of each of them. ,
The wall surface of each winding start side communicates with a discharge port 2d formed in a bulb-shaped projection 2b in the center of the fixed spiral element 2. The spiral projections 1a of the movable spiral element 1 are accommodated in the spiral grooves 2a, respectively.
It forms a pair of pump parts. FIG. 8 shows a sectional view taken along line BB of FIG. Two sets of spiral protrusions 1a having the same shape or the same turning radius are mounted on an end plate 1b having a gourd shape by connecting two disks of the movable spiral element 1, and the lower part from the end plate 1b is the inside of the recess of the housing 4. It is stored in.
FIG. 9 shows a sectional view taken along line CC of FIG. Two driven shafts 11
Ring-shaped fixed thrust bearings constituting the thrust seal mechanism 15 are provided on the outer sides, respectively, and the eccentricity amount varying mechanism 14 is provided on the inner side thereof. By the movable shaft 1c inserted in the eccentricity variable mechanism 14 , the movable spiral element 1 is
Or driven. Since the two movable shafts 1c are fixed to one end plate 1b, the eccentricity variable mechanism 14 and the driven shaft 11 are arranged so that these movable shafts 1c perform the same movement. A sectional view taken along the line DD of FIG. 6 is shown in FIG. Since it is necessary to make the movable spiral element 1 pivotally by making the same movement on the two movable shafts, the driven gear 8a and the two driven gears 11a are simultaneously meshed with each other by making the number of teeth of the two driven gears the same. Also serves as a rotation prevention mechanism. Both of the mounting positions of the balance weights are mounted in the direction opposite to the eccentric direction of the movable shaft in the driven shaft. Although the number of driven gears 11a in the embodiment is two, it may be three or more. A chain can be used instead of the gear. FIG. 11 shows a plan view of the fixed spiral element 2 as viewed from the side of the spiral groove 2a having two places. The shapes of the spiral grooves 2a in the figure are congruent, but different shapes may be used as long as they have the same turning radius. However, the shape of the spiral protrusion of the movable spiral element must be changed accordingly. The bulbous projection 2b is provided with a discharge port 2d which is opened so as not to penetrate from the nozzle 2e side and communicates with the spiral groove 2a. As described with reference to FIG. 2 and FIG. 3, there is a moment when the pump space has a minute gap between the wall surfaces forming the space and becomes a sealed state. At this time, escape grooves 2f having an enlarged groove width at the beginning of winding of the spiral groove 2a are provided on both sides of each spiral groove so as to prevent liquid compression and abnormal high pressure. The mounting position is determined from the front and rear widths based on the winding angle at which the gap between the contact K in FIG. 1A or the contact L in FIG. As shown in the cross section AA in FIG. 12, the depth of the escape groove 2f is about half that of the spiral groove, but the depth may be changed according to the width of the escape groove 2f. At the bottom of the spiral groove 2a, a thin plate-shaped F thrust plate 17 is provided which has the same shape as the groove and is movable in the vertical direction of the groove. That F
A plan view of the thrust plate 17 is shown in FIG. FIG. 14 shows an external view of the movable spiral element 1 and various parts attached thereto. A plurality of M springs 19 are provided in the end plate 1b on the side of the spiral protrusion 1a provided on the gourd-shaped end plate 1b of the movable spiral element 1, and a protrusion insertion hole having the same shape as the protrusion 1a is provided from above. An M thrust plate 18 having two 18a opened is mounted. A plurality of S springs 23 are internally provided on the back surface side of the end plate 1b provided with the two movable shafts 1c, and the movable thrust bearing 21 forming a part of the thrust seal mechanism 15 is fixed to the holding portion 22b from above. The bearing holding plate 22 is attached so that the hole of the fixed portion 22a is inserted and fixed to the movable shaft 1c. The holding portion 22b is elastically displaced by being pushed by the S spring 23 from the end plate side, and the movable thrust bearing 21 is in close contact with the surface of the fixed thrust bearing 20 fixed to the housing 4 and slides. The movable spiral element 1 may be made of a lightweight material such as aluminum or resin for the purpose of weight reduction. FIG. 15 is an exploded view of the eccentricity amount varying mechanism 14 provided inside the driven shaft 11. The eccentricity variable mechanism 14 is an eccentric angle hole 11 in which an eccentric slider 24, a presser 25 and a bolt 26 are provided on a driven shaft 11.
b, the holding hole 11c, and the screw hole 11d, respectively. The prismatic eccentric slider 24 is inserted into the eccentric angular hole 11b of the driven shaft with a minute gap, and is inserted into the holding holes 11c and 24b so that the presser 25 is inserted from above and the bolt 26 is used to press the presser 25. It is fixed to 11 to prevent the eccentric slider 24 from coming out of the eccentric square hole 11b. Eccentric slider 24 and eccentric square hole 11
The gap between the side wall of b and the side wall of the rectangular side is small on the short side of the rectangular side on the order of microns, and the long side of the rectangular side is large on the order of millimeters in the longitudinal direction with the holding hole 24b, allowing movement within the gap. There is. The driven shaft 1 is attached to the eccentric slider 24.
A movable bearing 24a, which is eccentric with the shaft center or parallel to 1, is provided so as to penetrate cylindrically. The movable shaft 1c of the movable spiral element is inserted into the movable bearing 24a. Therefore, the eccentric amount of the shaft center of the movable bearing 24a with respect to the driven shaft axis becomes the turning radius of the movable spiral element 1. FIG. 16 is a detailed sectional view of the rudder 5 and the steering mechanism 16 related to the course changing device provided in the nozzle 2e portion of the fixed spiral element. The course changing device includes a rectangular rudder 5 provided at the outlet of the nozzle 2e 5, a support rod 16a vertically passing through the rudder 5, a rudder rod 16b, and a lower connecting plate 16c for connecting these two rods.
The upper connecting plate 16d and the interlocking plate 16e are included. The rudder 5 is mounted so as to be rotatable around the support rod 16a, and its rotation angle is braked by the rudder rod 16b which is interlocked with the steering mechanism 16 . The cross section of the rudder 5 is A- in FIG.
As shown in FIG. 17 which is a cross section A, the inside of the nozzle 2e is made thin to reduce the resistance of water. FIG. 18 shows B- of FIG.
FIG. The steering mechanism 16 includes upper and lower connecting plates 16.
c and 16d, an interlocking plate 16e with a gear, and a steering gear 16f that meshes with the interlocking plate 16e. Steering gear 16f
When the interlocking plate 16e swings with the rotation of, the two upper connecting plates 16d rotate around the support rod 16a, and the tilt angle of the rudder of the turning of the rudder rod 16b changes. When the tilt angle of the rudder changes, the jet flow in the nozzle collides with the rudder and the direction of the jet flow changes, so the course of the ship also changes. The operation of the spiral water jet propulsion device configured as described above will be collectively described below. When the drive shaft 8 operates by using an engine or an electric motor as a power source, two driven gears 11a are simultaneously driven in conjunction with a drive gear 8a directly connected to the drive shaft, and a movable shaft inserted in an eccentric slider inside the driven shaft 11 is driven. The movable spiral element 1 integrally fixed with 1c makes a revolving motion only by the revolution without rotation. The turning radius is given as the amount of eccentricity of the movable shaft shaft center with respect to the shaft center of the driven shaft 11. Along with the swirling motion of the movable spiral element 1, some pump part spaces formed by two sets of spiral projections 1a and spiral grooves 2a move from the outside toward the center while changing their volumes. In accordance with the change in the pump part volume, water is taken in from the inlet pipe 6 and flows into the pump part space from the intake port 2c, and then the water enters the discharge process as the water moves to the center of the pump part space. Is pushed out to the discharge port of the fixed spiral element and is jetted out of the ship from the nozzle 2e. The reaction propels the ship. If the outlet of the nozzle is opened above the water surface, the resistance will decrease and the force will increase. Further, a net-like or lattice-like cover is provided at the inlet of the introduction pipe 6 to prevent solid matters other than water from entering the pump and damaging the pump portion. As for the sealing performance in the minute gap portion of the pump space, the M thrust plate 18 and the F thrust plate 17 provided on the movable and fixed spiral elements respectively prevent leakage from the thrust surfaces of the M thrust plate 18 and the F thrust plate 17, and the eccentricity varying mechanism 14
Using the centrifugal force of the movable spiral element, the side wall of the spiral projection is pressed against the fixed spiral element side to prevent leakage between the side walls and enhance the sealing performance, thus achieving high efficiency. On the other hand, when the shaft rotates from the sealed state of the pump space around the maximum volume,
If the opening area is small, liquid compression occurs and the pressure rises abnormally. However, by providing the escape groove 2f, the pressure is smoothly discharged to the discharge port side without an abnormally high pressure. The propulsion device is below the surface of the water, and the pump is filled with water.
However, since the thrust seal mechanism 15 is provided on the back surface of the movable spiral element end plate, water does not enter the hull on the side of the driven shaft 11 even at the time of stop or operation. Further, the main bearing 10 supporting the shaft, the movable bearing 1c, and the periphery thereof are not soaked in water, and the bearing is not damaged due to rust or corrosion, so that the reliability is high. When changing the course of the ship, the rudder 5 provided in the fixed spiral element nozzle 2e portion is operated by the steering mechanism 16 to directly change the direction of the jet flow from the nozzle to effectively change the course. If the ship is going backwards or stopped, the drive shaft is reversed. Then, water flows from the nozzle through the discharge port into the pump, and the water is ejected from the suction port that opens forward, so that the vehicle is moved backward or braked. The water flowing in from the suction port is temporarily closed in the closed space of the pump part formed by the fixed and movable spiral elements and pumped to the rear discharge port side.
Since the pressure energy is converted into kinetic energy to form a jet jet, the pressure inside the pump becomes higher than the surrounding pressure. The fluid force associated with the pressure, the centrifugal force of the movable spiral element associated with rotation, the inertial force of water, and the like act on the movable spiral element. These forces are the major contributors to shaft torque. These forces are received by the driven bearings and fixed thrust bearings, and the main bearings are hardly burdened.

【0007】第2例 その他の発明を図19から図22に示す。この発明は図
1の(a)に図示した空間Qないしは(c)に図示した
密封状態にある空間Rの前後で生じる液圧縮に伴う異常
高圧を防止する機構に関し,図11の逃げ溝2fの代替
としての発明である。この発明の構造は図19に示すよ
うに可動渦巻き要素30の渦巻き状突起30aの巻き始
めに設けた逃がし弁機構A32と逃がし弁機構B33
2ケ所からなる。これら逃がし弁機構は図19のA−A
断面である図20に示すように,どちらも渦巻き状突起
30aに設けた深溝,逃がし通路,均圧孔及び深溝内に
収納される弁バネとプレート弁で構成される。そして,
プレート弁は弁バネで押し上げられ通常は固定渦巻き要
素31渦巻き状溝31a底部に設けたFスラスト板17
に押し付けられている。図19のB−B断面に示した図
21は逃がし弁機構A32の縦断面図である。深溝A3
0bの底部に設けた均圧孔A30fにより空間Pと深溝
A30bのプレート弁A34下部空間とが連通してい
る。そして,プレート弁A34の上端面には空間Qの圧
力が作用できるように片側テーパ34aになり一方の空
間の圧力を受けてプレート弁A34は上下の圧力差とバ
ネ力の差により上下に作動する。図21ではテーパ上の
圧力が弁バネ力と下部空間の圧力を加えた力より大きく
なりプレート弁Aが作動して押し下げされた状態を示し
ている。そうすると逃がし通路A30dを介して空間P
と空間Qが連通され,空間Qの大きな圧力が空間P側に
逃げて,異常高圧の発生を未然に防止することになる。
図19のC−C断面に示した図22の逃がし弁機構B
の縦断面図である。深溝B30cの底部に設けた均圧
孔A30eにより空間Qとプレート弁B35下部の深溝
B30cとが連通し,プレート弁B35の上端面は空間
Pの圧力が作用できるように片側テーパ35aになって
おり,プレート弁B35は上下の圧力差とバネ力の差で
作動する。図21ではテーパ上の圧力が弁バネ力より小
さくプレート弁Bが弁バネ力で押し上げられFスラスト
板17に押し付けられた状態を示している。逃がし通路
B30eの間にプレート弁B35が入り,空間Qと空間
Pの間を塞ぐ役目をしている。このように,空間Qの大
きな圧力上昇に対しては逃がし弁機構A32が作動し
て,その圧力を空間Pに逃がす。一方空間Pに相当する
図1の(c)に示した空間Rの大きな圧力上昇に対して
は逃がし弁機構B33が作動して,その圧力を空間Qに
逃がして異常高圧の発生を未然に防止することができ
る。
Second Example Another invention is shown in FIGS. 19 to 22. The present invention relates to a mechanism for preventing abnormal high pressure due to liquid compression occurring before and after the space Q shown in FIG. 1A or the space R shown in FIG. 1C in a sealed state. It is an alternative invention. As shown in FIG. 19, the structure of the present invention comprises two locations, a relief valve mechanism A 32 and a relief valve mechanism B 33 provided at the beginning of winding of the spiral projection 30a of the movable spiral element 30. These relief valve mechanisms are AA in FIG.
As shown in FIG. 20, which is a cross-section, both are composed of a deep groove provided in the spiral protrusion 30a, a relief passage, a pressure equalizing hole, and a valve spring and a plate valve housed in the deep groove. And
The plate valve is pushed up by a valve spring and is usually a fixed spiral element 31. An F thrust plate 17 provided at the bottom of the spiral groove 31a.
Being pressed against. Figure 21 shows the cross section B-B in FIG. 19 is a longitudinal sectional view of a relief valve mechanism A 32. Deep groove A3
The space P and the space below the plate valve A34 in the deep groove A30b communicate with each other through a pressure equalizing hole A30f provided at the bottom of the groove 0b. The plate valve A34 has a taper 34a on one side so that the pressure in the space Q can be applied to the upper end surface of the plate valve A34, and the plate valve A34 receives the pressure in one space and operates vertically due to the difference between the upper and lower pressures and the difference in the spring force. . FIG. 21 shows a state in which the pressure on the taper becomes larger than the force of the valve spring force and the pressure in the lower space and the plate valve A is actuated and pushed down. Then, the space P is formed through the escape passage A30d.
And the space Q are communicated with each other, and a large pressure in the space Q escapes to the space P side to prevent occurrence of abnormal high pressure.
The relief valve mechanism B 3 of FIG. 22 shown in the cross section CC of FIG.
3 is a vertical sectional view of FIG. The space Q communicates with the deep groove B30c below the plate valve B35 by a pressure equalizing hole A30e provided at the bottom of the deep groove B30c, and the upper end surface of the plate valve B35 is tapered on one side so that the pressure in the space P can act. The plate valve B35 operates by the difference between the upper and lower pressures and the spring force. FIG. 21 shows a state in which the pressure on the taper is smaller than the valve spring force and the plate valve B is pushed up by the valve spring force and pressed against the F thrust plate 17. A plate valve B35 enters between the escape passages B30e and serves to close the space between the space Q and the space P. In this way, the relief valve mechanism A 32 operates in response to a large pressure increase in the space Q, and the pressure is released to the space P. On the other hand, for a large pressure rise in the space R shown in FIG. 1C corresponding to the space P, the relief valve mechanism B 33 operates to let the pressure escape to the space Q to prevent abnormal high pressure from occurring. Can be prevented.

【0008】[0008]

【発明の効果】以上の如く構成された船舶の推進に用い
られる渦巻き式水ジェット推進装置は回転体などの可動
部がハウジングなどの容器内に収められて外部に露出し
ておらず,可動部が水中にある物体に接触して推進装置
が破損するとか,近くにいる人間などに危害を加える心
配がなく安全性が極めて高い。また推進装置内に水を導
入して噴出させるにはポンプ部に直結した比較的小さな
通路を設ければ良いので,小型軽量化が図れて設置の自
由度も高い。さらには,シール機構を有した容積式ポン
プ機構のために漏れ損失が少ないのと可動渦巻き要素の
動きが旋回運動であるためにその摺動速度はかなり小さ
くキャビテーションが発生することも無いので高効率が
達成できると同時に静粛性が確保できる効果がある。ま
たその軸トルクは軸回転数にはあまり依存しないので,
電動機の使用を容易にして,エンジン使用時の排気ガス
の発生をなくして公害防止などの効果がある。船の進路
はノズル内に設けた方向舵で噴流の向きを直接変えて行
うので,機動性が高い。また,船を停止,逆進させる場
合には軸を逆転させて水をノズル側から吸い込み導入口
から噴出させることにより達成できるなど機動性が高ま
る効果がある。
In the spiral water jet propulsion device used for propulsion of a ship constructed as described above, the movable part such as a rotating body is housed in a container such as a housing and is not exposed to the outside. The safety is extremely high because there is no concern that the propulsion device will be damaged due to contact with an object in the water, or that people nearby will be harmed. Further, in order to introduce and eject water into the propulsion device, it is sufficient to provide a relatively small passage directly connected to the pump section, which allows for a smaller size and lighter weight and a high degree of freedom in installation. Furthermore, since the positive displacement pump mechanism with a sealing mechanism has a small leakage loss and the movable swirl element moves in a swirling motion, its sliding speed is considerably small and cavitation does not occur, resulting in high efficiency. Can be achieved and at the same time the effect of being able to secure quietness. Also, since the shaft torque does not depend so much on the shaft speed,
This has the effect of facilitating the use of the electric motor and eliminating the emission of exhaust gas when using the engine, thus preventing pollution. The course of the ship is highly maneuverable because the direction of the jet flow is directly changed by the rudder inside the nozzle. In addition, when the boat is stopped or moved in reverse, it can be achieved by reversing the shaft so that water is sucked in from the nozzle side and ejected from the inlet, which has the effect of increasing maneuverability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 渦巻き流体機械の原理図Fig. 1 Principle diagram of spiral fluid machine

【図2】 容積変化図[Figure 2] Volume change diagram

【図3】 隙間変化図[Figure 3] Change diagram of gap

【図4】 本発明の推進装置の船舶取り付け外観図FIG. 4 is an external view of the propulsion device of the present invention attached to a ship.

【図5】 図4の後ろ正面図5 is a rear front view of FIG.

【図6】 図5のA−A断面図6 is a sectional view taken along line AA of FIG.

【図7】 図6のA−A断面図7 is a sectional view taken along line AA of FIG.

【図8】 図6のB−B断面図8 is a sectional view taken along line BB of FIG.

【図9】 図6のC−C断面図9 is a sectional view taken along line CC of FIG.

【図10】 図6のD−D断面図FIG. 10 is a sectional view taken along line DD of FIG.

【図11】 固定渦巻き要素の正面図FIG. 11 is a front view of a fixed spiral element.

【図12】 図11のA−A断面図12 is a sectional view taken along line AA of FIG.

【図13】 Fスラスト板の平面図FIG. 13 is a plan view of an F thrust plate.

【図14】 可動渦巻き要素の分解図FIG. 14 is an exploded view of a movable spiral element

【図15】 偏心量可変装置の分解図FIG. 15 is an exploded view of an eccentricity variable device

【図16】 進路変更装置の断面詳細図FIG. 16 is a detailed sectional view of the diversion device.

【図17】 図16のA−A断面図FIG. 17 is a sectional view taken along line AA of FIG.

【図18】 図16のB−B矢視図FIG. 18 is a view on arrow BB in FIG. 16.

【図19】 その他の発明の逃がし弁機構の平面図FIG. 19 is a plan view of a relief valve mechanism of another invention.

【図20】 図19のA−A断面図20 is a cross-sectional view taken along the line AA of FIG.

【図21】 図19のB−B断面図21 is a sectional view taken along line BB of FIG.

【図22】 図19のC−C断面図22 is a sectional view taken along line CC of FIG.

【符号の説明】[Explanation of symbols]

1は可動渦巻き要素 1aは渦巻き状突起 1bは
端板 1cは可動軸受 2は固定渦巻き要素 2aは渦巻
き状溝 2bは球根状突起 2cは吸入口 2dは吐出口
2eはノズル 2fは逃げ溝 は水ジェット推進装置 4はハウ
ジング 4aは固定座面 5は方向舵 6は導入管 7は
ハウジング台座 8は駆動軸 8aは駆動ギア 9は駆動源 10
は主軸受 11は従動軸 11aは従動ギア 11bは偏心角
穴 11cは押え穴 11dはネジ穴 12はバランス
ウエイト 13は従動軸受 14は偏心量可変機構 15はス
ラストシール機構16 は舵取り機構 16aは支持棒 16bは舵棒 16cは下連結板 16dは上連結板 16eは連
動板 16fは躁舵ギア 16gは繰舵軸 16hは軸支
え 17はFスラスト板 18はMスラスト板 18a
は突起挿入孔 19はMバネ 20は固定スラスト軸受 21は可
動スラスト軸受 22は軸受保持板 22aは固定部 22bは保持
部 23はSバネ 24は偏心スライダー 25は押え
26はボルト 30は可動渦巻き要素 30aは渦巻き状突起 3
0bは深溝A 30cは深溝B 30dは逃がし通路A 30eは
逃がし通路B 30fは均圧孔A 30gは均圧孔B 31は固定
渦巻き要素 31aは渦巻き状溝壁面 32は逃がし弁機構A33 は逃がし弁機構B 34はプレート弁A 34
aはテーパ 35はプレート弁B 35aはテーパ 36は弁バ
1 is a movable spiral element 1a is a spiral protrusion 1b is an end plate 1c is a movable bearing 2 is a fixed spiral element 2a is a spiral groove 2b is a bulbous protrusion 2c is a suction port 2d is a discharge port
2e is a nozzle 2f is an escape groove 3 is a water jet propulsion device 4 is a housing 4a is a fixed seat surface 5 is a rudder 6 is an introduction pipe 7 is a housing pedestal 8 is a drive shaft 8a is a drive gear 9 is a drive source 10
Is a main bearing 11 is a driven shaft 11a is a driven gear 11b is an eccentric angle hole 11c is a holding hole 11d is a screw hole 12 is a balance weight 13 is a driven bearing 14 is an eccentric amount varying mechanism 15 is a thrust seal mechanism 16 is a steering mechanism 16a is a support Rod 16b is rudder rod 16c is lower connecting plate 16d is upper connecting plate 16e is interlocking plate 16f is maniculating gear 16g is steering shaft 16h is shaft support 17 is F thrust plate 18 is M thrust plate 18a
Is a projection insertion hole 19 is an M spring 20 is a fixed thrust bearing 21 is a movable thrust bearing 22 is a bearing holding plate 22a is a fixed portion 22b is a holding portion 23 is an S spring 24 is an eccentric slider 25 is a presser 26 is a bolt 30 is a movable spiral element 30a is a spiral protrusion 3
0b is a deep groove A 30c is a deep groove B 30d is a relief passage A 30e is a relief passage B 30f is a pressure equalizing hole A 30g is a pressure equalizing hole B 31 is a fixed spiral element 31a is a spiral groove wall surface 32 is a relief valve mechanism A 33 is a relief. The valve mechanism B 34 is a plate valve A 34.
a is a taper 35 is a plate valve B 35a is a taper 36 is a valve spring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水力を利用した船舶の推進装置において, (1) 厚板に渦巻き状溝を設けた固定渦巻き要素2と
端板に渦巻き状突起を設けた可動渦巻き要素1の渦巻き
形状部を互いに噛み合わせて形成するポンプ部を同一の
固定渦巻き要素と可動渦巻き要素内に1組ないしは可動
渦巻き要素の旋回半径が同等なポンプ部を複数組設け
る。 (2) 1組ないしは複数組のポンプ部や可動渦巻き要
素1の駆動系などの可動部を固定渦巻き要素2とハウジ
ング4で覆った密閉構造とする。 (3) 水の流路として,固定渦巻き要素2の渦巻き状
溝の外側に連通して外周壁に開口する吸入口と前記溝の
内側に連通して球根状突起に開けられた吐出口とその吐
出口に連なり外部に開口するノズルをポンプ部それぞれ
に設ける。 (4) 駆動軸から可動渦巻き要素1へ動力を伝達する
と同時に可動渦巻き要素1の旋回機構を兼ねる方式とし
て,可動軸を駆動する複数の従動軸と前記駆動軸との間
をギアないしはチェーンで同時に噛み合わせて駆動する
構造とする。 (5)可動渦巻き要素端板1bの可動軸側とハウジング
4内側平坦部との間に,円盤状の固定スラスト軸受と同
じ円盤状の可動スラスト軸受とその可動スラスト軸受を
保持する軸受保持板にその板を押すSバネで構成された
スラストシール機構を設ける。 (6) 固定渦巻き要素2のノズル内に矩形板状の方向
舵5を設けると共に方向舵の傾き角を操作する棒やギヤ
付き部材などから構成された舵取り機構16を設ける。 以上の如く構成されたことを特徴とする渦巻き式水ジェ
ット推進装置。
1. A vessel propulsion apparatus utilizing hydraulic power, comprising: (1) a spiral-shaped portion of a fixed spiral element 2 having a spiral groove formed on a thick plate and a spiral-shaped portion of a movable spiral element 1 having spiral protrusions on an end plate. One set of pump parts formed by meshing with each other is provided in the same fixed spiral element and the movable spiral element, or a plurality of sets of pump parts having the same turning radius of the movable spiral elements are provided. (2) One or a plurality of sets of movable parts such as the pump part and the drive system of the movable spiral element 1 are covered with the fixed spiral element 2 and the housing 4 to form a closed structure. (3) As a water flow path, a suction port that communicates with the outside of the spiral groove of the fixed spiral element 2 and opens to the outer peripheral wall, and a discharge port that communicates with the inside of the groove and is opened in the bulb-shaped projection A nozzle that is connected to the discharge port and opens to the outside is provided in each pump unit. (4) As a method of transmitting power from the drive shaft to the movable spiral element 1 and also serving as a swivel mechanism for the movable spiral element 1, a plurality of driven shafts for driving the movable shaft and the drive shaft are simultaneously connected by a gear or a chain. The structure is such that they are engaged and driven. (5) Between the movable shaft side of the movable spiral element end plate 1b and the flat portion on the inner side of the housing 4, there are used a disk-shaped fixed thrust bearing, a disk-shaped movable thrust bearing, and a bearing holding plate for holding the movable thrust bearing. A thrust seal mechanism composed of an S spring that pushes the plate is provided. (6) A rectangular plate-shaped rudder 5 is provided in the nozzle of the fixed spiral element 2 and a steering mechanism 16 composed of a rod or a geared member for operating the tilt angle of the rudder is provided. A spiral water jet propulsion device having the above-mentioned configuration.
【請求項2】固定渦巻き要素の渦巻き状溝2aの巻き始
め部分の溝幅を拡大した逃げ溝2fを両側に設けて液圧
縮時の異常高圧を防止したことを特徴とする請求項1の
渦巻き式水ジェット推進装置。
2. The swirl according to claim 1, wherein an escape groove 2f having an enlarged groove width at the winding start portion of the spiral groove 2a of the fixed spiral element is provided on both sides to prevent abnormal high pressure during liquid compression. Water jet propulsion device.
【請求項3】可動渦巻き要素の渦巻き状突起巻き始め側
に渦巻き形状に沿った細長くて深い深溝を2ケ所設けた
それぞれの深溝の上端両側に逃がし通路と深溝下端にポ
ンプ空間に連通する均圧孔を設けると共に,この2ケ所
の均圧孔は渦巻き状突起を隔てて互いに異なる内側と外
側のポンプ空間に連通させ,さらに前記深溝内に互いに
傾き方向の異なるテーパを上端に付けたプレート弁とこ
の弁を押し上げる弁バネを収納して構成される2種類の
逃がし弁機構を設けたことを特徴とする請求項1の渦巻
き式水ジェット推進装置。
3. Elongated passages on both sides of the upper end of each of the deep grooves provided with two elongated deep grooves along the spiral shape on the spiral protrusion start side of the movable spiral element, and a pressure equalization communicating with the pump space at the lower ends of the deep grooves. In addition to the provision of holes, these two pressure equalizing holes are connected to the inner and outer pump spaces which are different from each other with the spiral protrusions separated from each other. The swirl type water jet propulsion device according to claim 1, further comprising two types of relief valve mechanisms configured to accommodate a valve spring for pushing up the valve.
JP12944094A 1994-05-06 1994-05-06 Water jet propulsion device Pending JPH07300093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12944094A JPH07300093A (en) 1994-05-06 1994-05-06 Water jet propulsion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12944094A JPH07300093A (en) 1994-05-06 1994-05-06 Water jet propulsion device

Publications (1)

Publication Number Publication Date
JPH07300093A true JPH07300093A (en) 1995-11-14

Family

ID=15009525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12944094A Pending JPH07300093A (en) 1994-05-06 1994-05-06 Water jet propulsion device

Country Status (1)

Country Link
JP (1) JPH07300093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153500A (en) * 1996-08-22 2000-11-28 Hitachi, Ltd. Atomic wire and atomic wire switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153500A (en) * 1996-08-22 2000-11-28 Hitachi, Ltd. Atomic wire and atomic wire switch

Similar Documents

Publication Publication Date Title
US7125224B2 (en) Rotary kinetic tangential pump
US5181868A (en) Jet propulsion device for watercraft, aircraft, and circulating pumps
US4074652A (en) Steering and propulsion device for watercraft
US3183878A (en) Hydrojet propulsion unit for water craft
CN102795325B (en) Water spray propulsion unit for ship
US5505639A (en) Hydro-air drive
JP6493826B2 (en) Fluid machinery and propulsion device, water jet propulsion machine for fluid machinery.
US3561392A (en) Unit of propulsion by hydrodynamic reaction
US5501072A (en) Combined centrifugal and paddle-wheel side thruster for boats
US3055175A (en) Marine propulsion means
US10099764B2 (en) Side-intake piston jet propulsor
WO2002062659A1 (en) Outboard motor
US3174454A (en) Hydrojet propulsion systems
KR20050018673A (en) Compact water-jet propulsion and steering system
JPH07300093A (en) Water jet propulsion device
WO2010042306A1 (en) Water jet propulsion system
US7238067B2 (en) Variable area pump discharge system
JPH07277280A (en) Water jet propulsion device
US5505640A (en) Propulsion system for ships
JPH0971296A (en) Water jet propulsion machine
CN210284573U (en) Water jet propulsion device of triangular rotor
CN114044117A (en) Propulsion device for ship
JPH0872795A (en) Water jet propeller device
US20070014669A1 (en) Centrifugal engine
RU2617614C1 (en) Device and method for fluid medium pressurization