JPH07297698A - On/off control circuit for semiconductor element - Google Patents

On/off control circuit for semiconductor element

Info

Publication number
JPH07297698A
JPH07297698A JP6090397A JP9039794A JPH07297698A JP H07297698 A JPH07297698 A JP H07297698A JP 6090397 A JP6090397 A JP 6090397A JP 9039794 A JP9039794 A JP 9039794A JP H07297698 A JPH07297698 A JP H07297698A
Authority
JP
Japan
Prior art keywords
current
command
pulse
potential side
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6090397A
Other languages
Japanese (ja)
Other versions
JP3147656B2 (en
Inventor
Naoki Kumagai
直樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP09039794A priority Critical patent/JP3147656B2/en
Publication of JPH07297698A publication Critical patent/JPH07297698A/en
Application granted granted Critical
Publication of JP3147656B2 publication Critical patent/JP3147656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Thyristor Switches And Gates (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To reduce the number of high breakdown voltage transistors to be assembled in an ON/OFF control circuit for operating a semiconductor element on a high voltage side corresponding to ON/OFF commands on a low potential side and to reduce the chip size of the control circuit. CONSTITUTION:A single current path 10 is provided between a high potential side HS and the low potential side LS for the respective semiconductor elements 1 on the high voltage side and the way of making a current flow is made different corresponding to the specification state of ON or OFF of the ON/OFF command S1 by a switching means 20 on the low potential side LS for making the current flow to the current path 10. The detection signals Sd of the current made flow to the current path 10 are prepared by a current detection means 30 on the high potential side HS and the ON/OFF command S1H is reproduced on the high voltage side HS while mutually discriminating the specification state of ON and OFF by the ON/OFF command S1 from the way the detection signals Sd are changed corresponding to the way of the flow of the current by a conversion means HS. Thus, the number of the high breakdown voltage transistors 22 for current control inside the switching means 20 is reduced to a half compared with a conventional case.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子,とくに負荷
用の電源電圧を受けて動作する電力用半導体素子を駆動
するに際し高電位側に接続された半導体素子を低電位側
からオンオフ指令により動作させるためのオンオフ制御
回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention operates a semiconductor element connected to a high potential side by an on / off command from a low potential side when driving a semiconductor element, particularly a power semiconductor element which operates by receiving a power supply voltage for a load. The present invention relates to an on / off control circuit for performing the operation.

【0002】[0002]

【従来の技術】例えば電動機の駆動用の電力装置では交
流電圧を整流した数百Vの直流電圧を電源とするインバ
ータ装置を用いる場合が多く、この装置の回路は周知の
ように同じ電力用半導体素子を高圧側と低圧側に配して
交互にオンオフさせるいわゆるトーテムポール接続回路
を単位とする2相や3相構成とするのが通例であるが、
これに所期のインバータ作用を営ませるには各電力用半
導体素子に対しそれぞれオンオフ指令を与えて正しい順
序で動作させる必要がある。
2. Description of the Related Art For example, in a power device for driving an electric motor, an inverter device having a rectified AC voltage and a DC voltage of several hundred V as a power source is often used, and the circuit of this device is well known to have the same power semiconductor. It is customary to have a two-phase or three-phase configuration with a so-called totem pole connection circuit as a unit, in which elements are arranged on the high-voltage side and the low-voltage side and turned on and off alternately.
In order to operate the intended inverter function, it is necessary to give an ON / OFF command to each power semiconductor element to operate it in the correct order.

【0003】このオンオフ指令は駆動制御回路等から発
せられるもちろん数V程度の低圧の信号であり、低圧側
の電力用半導体素子にはそのままで与えることができる
が、高圧側の電力用半導体素子に対してはその基準電位
のレベルを上げないと与えることができない。このた
め、従来からフォトカプラを用いてこのオンオフ信号を
高圧側に伝達することが広く行なわれて来たが、コスト
がかなり高く付くだけでなく、最近のように電力用半導
体素子とともにその制御回路を同じチップに組み込もう
とするとフォトカプラが集積化上の隘路になって来た。
This on / off command is a low voltage signal of about several V, which is of course issued from the drive control circuit and the like, and can be given to the low voltage side power semiconductor element as it is, but to the high voltage side power semiconductor element. On the other hand, it cannot be given unless the level of the reference potential is raised. For this reason, it has been widely practiced to transmit the on / off signal to the high-voltage side by using a photocoupler, but not only the cost is considerably high, but also the power semiconductor element and its control circuit have recently been used. The photo coupler became a bottleneck in the integration when I tried to incorporate it into the same chip.

【0004】この問題を解決する手段として、オンオフ
指令をいわゆるレベルシフト回路を介して高圧側の電力
用半導体素子に伝達する技術が知られており、以下に図
6と図7を参照してこの従来技術を説明する。図6はそ
の回路図,図7はその動作を示す関連信号の波形図であ
る。図6には電力インバータ装置を構成する1相分であ
る前述のトーテムポール接続の1アーム分の回路を示
す。
As a means for solving this problem, there is known a technique of transmitting an on / off command to a power semiconductor element on the high voltage side through a so-called level shift circuit, which will be described below with reference to FIGS. 6 and 7. A conventional technique will be described. FIG. 6 is a circuit diagram thereof, and FIG. 7 is a waveform diagram of related signals showing its operation. FIG. 6 shows a circuit for one arm of the above-mentioned totem pole connection, which is one phase constituting the power inverter device.

【0005】図6の右側が1アームの主回路であり、図
示の例では npn形の絶縁ゲートバイポーラトランジスタ
である半導体素子1と2が直流の電源電圧Vと接地電位
Eの間に直列にないしはトーテムポール接続され、両者
の相互接続点からインバータ装置の負荷に対する出力端
子Toが導出されている。これら半導体素子1と2には周
知のようにダイオード1aと2aがそれぞれ並列に組み込ま
れており、インバータ装置の動作上で転流ダイオードと
しての役目を果たす。半導体素子1と2に対応して駆動
回路3がそれらの絶縁ゲートを駆動するためにそれぞれ
設けられ、図の高電位側HSと低電位側LSの回路に対して
それぞれ設けられた図の左側のふつうは数V程度の低圧
の制御電源4から給電される。
The right side of FIG. 6 shows a one-arm main circuit. In the illustrated example, semiconductor elements 1 and 2 which are npn-type insulated gate bipolar transistors are connected in series between a DC power supply voltage V and a ground potential E. An output terminal To for the load of the inverter device is derived from the mutual connection point of the totem pole connection. As is well known, diodes 1a and 2a are respectively installed in parallel in these semiconductor elements 1 and 2, and serve as commutation diodes in the operation of the inverter device. Driving circuits 3 are provided for driving the insulated gates of the semiconductor elements 1 and 2, respectively, and are provided for the high potential side HS and low potential side LS circuits of the left side of the figure. Usually, power is supplied from the low-voltage control power source 4 of about several volts.

【0006】半導体素子1と2に対するオンオフ指令S1
とS2は図7(b) と(a) に示すように例えばハイとローの
論理状態でそれぞれオンとオフとを指定し、両素子1と
2を交互にオンオフさせるために図のように互いにほぼ
逆位相の波形で発生される。低圧側の半導体素子2に対
するオンオフ指令S2は駆動回路3に図6のようにそのま
ま与えることでよいが、高圧側の半導体素子1に対する
オンオフ指令S1の方は高電位側HSに伝達する必要があ
る。このために低電位側LSにパルス発生回路21を設け
て、オンオフ指令S1のローからハイへの立ち上がりに応
じて図7(c) に示すオンパルスPnを, ハイからローへの
立ち下がりに応じ図7(d) のオフパルスPfをそれぞれ対
応するトランジスタ22のゲートに出力させる。
ON / OFF command S1 for semiconductor devices 1 and 2
As shown in FIGS. 7 (b) and 7 (a), and S2 designate ON and OFF, respectively, in the logic state of high and low, respectively, and both elements 1 and 2 are alternately turned on and off as shown in the figure. The waveforms are generated in almost opposite phases. The ON / OFF command S2 for the low-voltage side semiconductor element 2 may be given to the drive circuit 3 as it is as shown in FIG. 6, but the ON / OFF command S1 for the high-voltage side semiconductor element 1 needs to be transmitted to the high potential side HS. . For this purpose, a pulse generator circuit 21 is provided on the low potential side LS, and the on-pulse Pn shown in Fig. 7 (c) is generated according to the rising edge of the on / off command S1 from low to high. The off pulse Pf of 7 (d) is output to the gate of the corresponding transistor 22.

【0007】両トランジスタ22はいずれも高電位側HSか
ら高電圧を受けかつ抵抗23を介して接地Eに接続されて
おり、オンパルスPnやオフパルスPfによりオンして抵抗
23によって設定された電流が流れると、高電位側HSの対
応する検出抵抗31にそれぞれ図7(e) と(f) に示すよう
に負パルス状のオン指令Snとオフ指令Sfが発生する。各
検出抵抗31に並列に接続されたツェナーダイオード32は
これらの指令SnとSfのパルス高を常に一定に保つための
ものである。
Both of the transistors 22 receive a high voltage from the high potential side HS and are connected to the ground E through a resistor 23, and are turned on by an on pulse Pn or an off pulse Pf to turn on the resistor.
When the current set by 23 flows, negative pulse-like ON command Sn and OFF command Sf are generated in the corresponding detection resistor 31 on the high potential side HS as shown in FIGS. 7 (e) and 7 (f), respectively. The Zener diode 32 connected in parallel to each detection resistor 31 is for keeping the pulse heights of these commands Sn and Sf constant at all times.

【0008】以上で半導体素子1用の低電位側LSのオン
オフ指令S1に対応する高電位側HSのオン指令Snとオフ指
令Sfがパルスの形で得られたが、これらを駆動回路3に
適合した波形にするためにこれらからインバータ41によ
り図7(g) のセット指令Ssと図7(h) のリセット指令Sr
をそれぞれ作り、これらのパルス指令によりフリップフ
ロップ42をセット・リセット動作させ、そのQ出力を図
7(i) に示すオンオフ指令SIH として駆動回路3に与え
させる。この高電位側HSのオンオフ指令SIH は図7(b)
の低電位側LSのオンオフ指令S1と同じ波形である。
As described above, the ON command Sn and the OFF command Sf of the high potential side HS corresponding to the ON / OFF command S1 of the low potential side LS for the semiconductor element 1 are obtained in the form of pulses. These are adapted to the drive circuit 3. In order to obtain the specified waveform, the inverter 41 is used to set the command Ss in FIG. 7 (g) and the reset command Sr in FIG. 7 (h).
The flip-flop 42 is set / reset by these pulse commands, and its Q output is given to the drive circuit 3 as an on / off command SIH shown in FIG. 7 (i). This high potential side HS on / off command SIH is shown in Fig. 7 (b).
It has the same waveform as the on / off command S1 of the low potential side LS of.

【0009】[0009]

【発明が解決しようとする課題】上述の従来技術によれ
ばフォトカプラのかわりにレベルシフト回路を利用して
低電位側LSのオンオフ指令S1を高電位側HSに伝達するこ
とができ、かつオンオフ指令S1をオンパルスSnとオフパ
ルスSfに分割してトランジスタ22を短時間内だけ動作さ
せることにより指令の伝達に要する消費電力をごく僅か
で済ませることができる。しかし、フォトカプラで絶縁
されていた高電位側HSと低電位側LSの間の電位差をレベ
ルシフト回路に負担させるのでトランジスタ22に高耐圧
をもたせる必要があり、このためレベルシフト回路を集
積回路等に組み込む際に非常に広いチップ面積を要する
問題がある。
According to the above-mentioned prior art, the level shift circuit can be used instead of the photocoupler to transmit the on / off command S1 of the low potential side LS to the high potential side HS, and also the on / off state. By dividing the command S1 into the on-pulse Sn and the off-pulse Sf and operating the transistor 22 only for a short time, the power consumption required to transmit the command can be made very small. However, since the level shift circuit bears the potential difference between the high potential side HS and the low potential side LS, which is insulated by the photocoupler, it is necessary to provide the transistor 22 with a high withstand voltage. There is a problem that a very large chip area is required when it is incorporated in the.

【0010】トランジスタ22には電源電圧Vのふつう2
倍程度の耐圧が元々必要であるが、半導体素子1と2に
より電動機等の誘導性の負荷を駆動する際に負荷電流の
高速遮断時に生じるスパイク電圧が出力端子Toに掛かっ
たり電源電圧Vに重なったりするため、それに対する余
裕も見ておかねばならない。このために電源電圧Vが20
0Vの時は600V, 400Vの時は 1200V程度の耐圧がトランジ
スタ22に必要になる。また、電力消費を節減するためオ
ンオフ指令S1をオンパルスSnとオフパルスSfに分けて伝
達するには、2個のレベルシフト回路, 従って2個のト
ランジスタ22が2個必要である。さらに、実際には負荷
を2相や3相で駆動するので2〜3個のアーム, 従って
4〜6個のトランジスタ22が必要となり、集積回路用の
チップの面積のかなりの部分がこれに占領されてしまう
のが実情である。
The transistor 22 normally has a power supply voltage V of 2
Although a double breakdown voltage is originally required, when driving an inductive load such as an electric motor with the semiconductor elements 1 and 2, spike voltage generated when the load current is cut off at high speed is applied to the output terminal To or overlaps with the power supply voltage V. Therefore, you have to allow for it. Therefore, the power supply voltage V is 20
The transistor 22 is required to have a withstand voltage of 600V at 0V and 1200V at 400V. Further, in order to transmit the ON / OFF command S1 by dividing it into the ON pulse Sn and the OFF pulse Sf in order to reduce the power consumption, two level shift circuits, and thus two transistors 22 are required. In addition, since the load is actually driven in two or three phases, two to three arms, and thus four to six transistors 22, are required, and a large part of the area of the integrated circuit chip is occupied by this. The reality is that it will be done.

【0011】かかる問題点に鑑みて本発明の目的は、電
力消費をできるだけ低く抑えながら集積回路に組み込む
際に必要なチップ面積を従来よりも節約できる半導体素
子のオンオフ制御回路を提供することにある。
In view of the above problems, it is an object of the present invention to provide an on / off control circuit for a semiconductor device, which can save the chip area required when incorporating it in an integrated circuit while suppressing power consumption as low as possible. .

【0012】[0012]

【課題を解決するための手段】上記目的は本発明のオン
オフ制御回路によれば、高圧側でオンオフ動作させるべ
き半導体素子ごとに高電位側と低電位側との間に設けら
れた単一の電流路と,オンオフ指令に応じてこの電流路
に流す電流を低電位側で制御するスイッチング手段と,
電流路に電流が流れる状態を高電位側で検出する電流検
出手段と, この電流検出手段による検出信号を半導体素
子を駆動するための高電位側のオンオフ指令に変換する
変換手段とを用い、スイッチング手段により低電位側の
オンオフ指令の指定状態に応じて電流路への電流の流し
方を異ならせ、変換手段に電流に応じて変化する検出信
号からオンとオフの指定状態を区別させながら検出信号
を高電位側のオンオフ指令に変換させることによって達
成される。
According to the on / off control circuit of the present invention, the above object is to provide a single semiconductor element provided between the high potential side and the low potential side for each semiconductor element to be turned on / off on the high voltage side. A current path and switching means for controlling the current flowing through this current path on the low potential side in response to an on / off command,
Switching is performed using current detection means for detecting the state of current flowing in the current path on the high potential side, and conversion means for converting the detection signal from this current detection means into an ON / OFF command on the high potential side for driving the semiconductor element. The detection signal is detected while changing the method of flowing the current to the current path according to the specified state of the ON / OFF command on the low potential side, and making the conversion unit distinguish the specified state of ON and OFF from the detection signal that changes according to the current. Is converted into an ON / OFF command on the high potential side.

【0013】なお、本発明は上記の構成中にいう半導体
素子が絶縁ゲートバイポーラトランジスタや電界効果ト
ランジスタのほか, ゲートターンオフ可能な絶縁ゲート
制御サイリスタ等の場合にも適用できる。また、これら
に通常のようにハイやローの論理状態によりオンやオフ
の状態を指定するオンオフ指令を与える場合のほか、オ
ンオフ指令をオン指令とオフ指令に分けてそれぞれ例え
ばパルスの形で与える場合にも本発明は容易に適用でき
る。
The present invention can be applied to the case where the semiconductor element in the above structure is an insulated gate bipolar transistor or a field effect transistor, or an insulated gate control thyristor capable of turning off the gate. In addition to giving an ON / OFF command that specifies the ON / OFF state by a high or low logic state as usual, or when giving an ON / OFF command separately to an ON command and an OFF command, for example, in the form of a pulse Also, the present invention can be easily applied.

【0014】本発明においても電力消費を減少させるた
めにスイッチング手段により従来と同様にパルス電流を
電流路に流すのが有利であるが、本発明では従来とは異
なり前記構成にいうように高圧側の半導体素子ごとに電
流路を1個だけ用いるので、それへの電流の流し方を低
電位側のオンオフ指令のオンまたはオフの指定状態に応
じて異ならせる必要がある。
Also in the present invention, in order to reduce the power consumption, it is advantageous to pass the pulse current in the current path by the switching means as in the conventional case, but in the present invention, unlike the conventional case, the high voltage side as described above is used. Since only one current path is used for each semiconductor device, it is necessary to make the current flow to the semiconductor device different according to the on / off instruction state of the on / off command on the low potential side.

【0015】このための本発明の有利な一実施態様で
は、スイッチング手段により電流路に低電位側のオンオ
フ指令の指定状態の変化の方向に応じて電流値の異なる
パルス電流を流すことによりいわば2値信号を低電位側
から電流路を介して高電位側に伝達し、電流検出手段に
よるこのパルス電流の検出信号を変換手段によりそれに
含まれているパルスの電流値を反映した波高値の差から
オン指定状態とオフ指定状態を区別しながら高電圧側の
オンオフ指令に変換する。なお、この場合の変換手段に
はしきい値動作回路要素,例えば動作しきい値が異なる
インバータを2個組み込んでパルスの波高値の差を弁別
させるのがよい。
In a preferred embodiment of the present invention for this purpose, the switching means causes a pulse current having a different current value to flow in the current path depending on the direction of change of the designated state of the ON / OFF command on the low potential side. The value signal is transmitted from the low potential side to the high potential side through the current path, and the detection signal of this pulse current by the current detection means is converted by the conversion means from the difference in peak value reflecting the current value of the pulse included in it. The ON / OFF command on the high-voltage side is converted while distinguishing the ON-designated state and the OFF-designated state. In this case, it is preferable that a threshold operating circuit element, for example, two inverters having different operating thresholds are incorporated in the converting means in order to discriminate the difference between the pulse peak values.

【0016】上記のための別の実施態様では、スイッチ
ング手段により低電位側のオンオフ指令がとる一方の論
理状態に応じて電流路にパルス電流を一定周期で繰り返
して流し、電流検出手段による検出信号を変換手段によ
りその反復パルスの継続状態からオンとオフの指定状態
を区別しながら高電圧側のオンオフ指令に変換する。こ
の場合の変換手段には、パルス電流の反復周期よりも長
いパルス幅のパルスを発生するいわゆるリトリガラブル
なワンショット回路を組み込み、検出信号中のパルスに
よりその動作を反復トリガしながらその出力を高電位側
のオンオフ指令として取り出すのが有利である。
In another embodiment for the above, the pulse current is repeatedly passed through the current path in a constant cycle according to one of the logic states given by the ON / OFF command on the low potential side by the switching means, and the detection signal by the current detecting means is supplied. Is converted into a high voltage side ON / OFF command while distinguishing the continuous state of the repetitive pulse by the conversion means from the designated state of ON and OFF. In this case, the conversion means incorporates a so-called retriggerable one-shot circuit that generates a pulse having a pulse width longer than the repetition period of the pulse current, and the output in the detection signal has a high potential while repeatedly triggering its operation. It is advantageous to take it out as a side on / off command.

【0017】上と同様に電力消費を抑制しながら電流路
への電流の流し方を低電位側のオンオフ指令のオンまた
はオフの指定状態に応じて異ならせる別の手段では、電
力用インバータ装置では低圧側と高圧側の半導体素子を
交互にオンオフさせることを利用して、スイッチング手
段により低電位側のオンオフ指令がオフの指定状態のと
きにのみ電流路に電流を流し、電流検出手段による検出
信号を変換手段によりその電流の通流時の状態をオフの
指定状態として高電位側のオンオフ指令に変換する。こ
の実施態様では電流路に電流が流れている間中は低圧側
の半導体素子がほぼオンしており、高電位側と低電位側
の間に半導体素子の順方向電圧に等しいごく僅かな電位
差しか掛からないので電力消費が少なくて済む。
In the same manner as above, another means for varying the way the current flows to the current path according to the on / off designation state of the on / off command on the low potential side while suppressing the power consumption is, in the power inverter device. By alternately turning on / off the low-voltage side and high-voltage side semiconductor elements, a current is passed through the current path only when the low-potential-side on / off command is in the designated off state by the switching means, and the detection signal by the current detection means is used. Is converted into a high-potential-side on / off command by setting the state when the current is flowing by the conversion means. In this embodiment, the semiconductor device on the low voltage side is almost turned on during the time when the current flows through the current path, and there is a very small potential difference between the high potential side and the low potential side, which is equal to the forward voltage of the semiconductor device. Since it does not hang, it consumes less power.

【0018】[0018]

【作用】本発明はオンオフ指令を低電圧側から高電圧側
に伝達するレベルシフト回路の電流路を前項の構成にい
うよう高圧側の半導体素子ごとに単一とし、従ってこの
電流路に電流を流すための図6のトランジスタ22に当た
るスイッチング手段内のトランジスタも1個だけで済ま
せることにより、高耐圧を要するトランジスタの個数を
従来の半分に減少させるものである。しかし、この単一
の電流路を介してオンオフ指令のオンとオフの2個の指
定状態を伝達する必要があるため、本発明では電流路の
時間的な使い分けが可能な点に着目してその電流の流し
方を前項の構成にいうように低電位側のオンオフ指令に
よるオンやオフの指定状態に応じて異ならせる。この電
流制御は低電位側でスイッチング手段に行わせ、高電位
側の変換手段に電流検出手段による検出信号が電流に応
じて変化する様子からオンとオフの指定状態を区別しな
がらオンオフ指令を再生させる。
According to the present invention, the level shift circuit for transmitting the ON / OFF command from the low voltage side to the high voltage side has a single current path for each semiconductor element on the high voltage side, as described in the above-mentioned configuration. By using only one transistor in the switching means corresponding to the transistor 22 of FIG. 6 for flowing, the number of transistors requiring high breakdown voltage can be reduced to half of the conventional one. However, since it is necessary to transmit the two designated states of ON and OFF of the ON / OFF command through this single current path, the present invention pays attention to the point that the current paths can be selectively used over time. As described in the configuration of the preceding paragraph, the method of flowing the current is made different according to the designated state of ON or OFF by the ON / OFF command on the low potential side. This current control is performed by the switching means on the low potential side, and the on / off command is reproduced while distinguishing the designated state of on and off from the state that the detection signal by the current detection means changes to the conversion means on the high potential side according to the current. Let

【0019】さらに、本発明ではレベルシフト回路の電
力消費をできるだけ削減する必要があり、このための一
手段として従来と同様に電流路に流す電流をパルス状に
して電力の消費時間を短縮することができる。また、こ
のための別の手段としては、高圧側と低圧側の半導体素
子が交互にオンオフする場合に高圧側の半導体素子に対
するオンオフ指令がオフ指定状態のときだけ電流路に電
流を流すことにより、電流が流れる時間内に高電位側と
低電位側の間に掛かる電位差をごく僅かにして電力消費
のレベルを下げることができる。
Further, in the present invention, it is necessary to reduce the power consumption of the level shift circuit as much as possible, and as one means for this purpose, the current flowing through the current path is pulsed as in the prior art to shorten the power consumption time. You can Further, as another means for this, when the high-voltage side and low-voltage side semiconductor elements are alternately turned on and off, by passing a current through the current path only when the on-off command for the high-voltage side semiconductor elements is in the off designated state, The level of power consumption can be reduced by making the potential difference between the high potential side and the low potential side very small during the time when the current flows.

【0020】[0020]

【実施例】以下、図を参照しながら本発明の実施例を説
明する。図1は本発明によるオンオフ制御回路の実施例
の回路図と関連する信号の波形図,図2は異なる実施例
の回路図,図3は図2の関連信号の波形図,図4はさら
に異なる実施例の回路図,図5は図4の関連信号の波形
図であり、これらの図6や図7に対応する部分には同じ
符号が付されているので重複部分の説明は適宜省略する
こととする。なお、これら実施例ではオンオフ制御すべ
き半導体素子をすべて絶縁ゲートバイポーラトランジス
タとするが、本発明回路はもちろんこれに限らず種々な
半導体素子のオンオフ制御にも適用できる。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a circuit diagram of an embodiment of an on / off control circuit according to the present invention and waveform diagrams of signals associated therewith, FIG. 2 is a circuit diagram of a different embodiment, FIG. 3 is a waveform diagram of related signals of FIG. 2, and FIG. FIG. 5 is a circuit diagram of the embodiment, and FIG. 5 is a waveform diagram of the related signals of FIG. 4, and the portions corresponding to those of FIG. 6 and FIG. And In these embodiments, all the semiconductor elements to be on / off controlled are insulated gate bipolar transistors, but the circuit of the present invention is not limited to this and can be applied to on / off control of various semiconductor elements.

【0021】以下に説明する実施例では半導体素子1と
2を含む主回路は図1(a) のように前に説明した図6と
同じであり、各半導体素子1や2に対し駆動回路3とそ
れに給電する制御電源4とを設け, かつハイとローが交
替するオンオフ指令S1とS2をそれぞれ図1(c) と図1
(b) に示すよう互いに逆位相の波形で与える点も同じで
ある。しかし、本発明回路では高圧側の半導体素子1に
対するオンオフ指令S1の低電位側LSから高電位側HSへの
伝達路として図のように単一の電流路10を用いる点が従
来の回路と異なる。
In the embodiment described below, the main circuit including the semiconductor elements 1 and 2 is the same as that of FIG. 6 described above as shown in FIG. 1A, and the drive circuit 3 is provided for each semiconductor element 1 or 2. And a control power supply 4 that supplies power to it, and ON / OFF commands S1 and S2 for alternating high and low are shown in Fig. 1 (c) and Fig. 1 respectively.
As shown in (b), it is the same in that the waveforms are given in opposite phases. However, the circuit of the present invention is different from the conventional circuit in that a single current path 10 is used as a transmission path from the low potential side LS to the high potential side HS of the on / off command S1 for the high voltage side semiconductor element 1 as shown in the figure. .

【0022】本発明ではこの電流路10に流す電流を低電
位側LSのスイッチング手段20によりオンオフ指令SIのオ
ンやオフの指定状態に応じ流し方を異ならせるよう制御
し、高電位側HSの電流検出手段30によりこの電流を検出
してその流れ方に応じて変化する検出信号Sdを作り、変
換手段40によりこの検出信号Sdをオン指定状態とオフ指
定状態とを区別しながら高圧側の半導体素子1を駆動す
るための高電位側HSのオンオフ指令S1L に変換して駆動
回路3に与える。
In the present invention, the current flowing in the current path 10 is controlled by the switching means 20 of the low potential side LS so as to change the way of flowing according to the on / off instruction SI on / off designation state, and the current of the high potential side HS is controlled. The detection means 30 detects this current and creates a detection signal Sd that changes depending on the flow of the current, and the conversion means 40 distinguishes the detection signal Sd between the on-designated state and the off-designated state, and the semiconductor element on the high voltage side. It is converted into an ON / OFF command S1L on the high-potential side HS for driving 1 and given to the drive circuit 3.

【0023】この図1(a) の実施例ではスイッチング手
段20により電流路10にパルス電流をオンオフ指令S1のハ
イやローの状態変化方向に応じて異なる電流値で流すの
で、まずそのパルス発生回路21にオンオフ指令S1のハイ
とローの状態が変化するつど共通パルスPcを図1(d) に
示すよう発生させ、かつそのハイからローへの変化に応
じてオフパルスPfを図1(e) に示すように発生させる。
このためには、例えばこのスイッチング手段20に2個の
ワンショット回路を設けてその一方をオンオフ指令SIの
立ち上がり時, 他方を立ち下がり時にそれぞれ動作さ
せ、両方の出力をオアゲートを介して共通パルスPcとし
て取り出し、他方の出力をオフパルスPfとして取り出す
ことでよい。なお、場合によってはオフパルスPfのかわ
りに図6のオンパルスPnを発生させてもよい。
In the embodiment shown in FIG. 1 (a), since the switching means 20 causes a pulse current to flow in the current path 10 at different current values depending on the direction change of the high or low state of the on / off command S1, the pulse generating circuit is first of all. A common pulse Pc is generated as shown in Fig. 1 (d) every time the high and low states of the on / off command S1 change, and an off pulse Pf changes to Fig. 1 (e) according to the change from high to low. Generate as shown.
To this end, for example, the switching means 20 is provided with two one-shot circuits, one of which is operated when the on / off command SI rises and the other of which operates when the on-off command SI falls, and both outputs are output through a common pulse Pc via an OR gate. As the off pulse Pf. In some cases, the on-pulse Pn of FIG. 6 may be generated instead of the off-pulse Pf.

【0024】このほか、スイッチング手段20には2個の
トランジスタ22と24が組み込まれており、トランジスタ
22の方は電流路10に挿入される高耐圧トランジスタであ
ってその接地側に2個の抵抗23aと23bが直列接続さ
れ、その内の一方の抵抗23bと並列にトランジスタ24が
接続され、前者に共通パルスPc, 後者にオフパルスPfが
それぞれ与えられる。従って、トランジスタ22は共通パ
ルスPcとオフパルスPfが同時に発生したときは抵抗23a
だけをソース抵抗として電流路10に大きなパルス電流を
流し、オフパルスPfだけが発生したときは抵抗23aと23
bをソース抵抗として小さなパルス電流を流す。トラン
ジスタ22はいわゆるソースフォロワ接続のトランジスタ
として動作し、電流路10に流すべき大小のパルス電流を
そのソース抵抗による設定どおりの一定値に正確に制御
する。なお、これらの大小のパルス電流の電流値比は2
以上に設定するのが望ましい。
In addition, the switching means 20 has two transistors 22 and 24 incorporated therein.
22 is a high breakdown voltage transistor that is inserted into the current path 10. Two resistors 23a and 23b are connected in series on the ground side, and a transistor 24 is connected in parallel with one of the resistors 23b. The common pulse Pc is given to the, and the off pulse Pf is given to the latter. Therefore, the transistor 22 has the resistance 23a when the common pulse Pc and the off pulse Pf are generated at the same time.
When a large pulse current is passed through the current path 10 using only the source resistance as the source resistance and only the off pulse Pf occurs, the resistances 23a and 23
A small pulse current is passed with b as the source resistance. The transistor 22 operates as a so-called source follower connection transistor, and accurately controls a large and small pulse current to be passed through the current path 10 to a constant value as set by the source resistance. The current value ratio of these large and small pulse currents is 2
It is desirable to set the above.

【0025】高電位側HSの電流検出手段30は前の図6の
場合と同様に電流路10に挿入された検出用の抵抗31と,
それと並列に接続されたツェナーダイオード33とからな
り、電流路10内に流れる上述の大小のパルス電流を検出
した検出信号Sdを図1(f) に示すように大小の負パルス
を含む波形で発する。この波形からもわかるように、こ
の実施例のツェナーダイオード33は従来のように検出信
号Sd中のパルス波形の一定化用ではなく、変換手段40に
対する過電圧保護用に従来よりもツェナー降伏電圧の高
いものが用いられる。パルスの波形はトランジスタ22側
の前述のソースフォロワ動作によって一定化される。
The current detection means 30 on the high-potential side HS has a detection resistor 31 inserted in the current path 10 as in the case of FIG.
It consists of a Zener diode 33 connected in parallel with it, and outputs a detection signal Sd that detects the above-mentioned large and small pulse currents flowing in the current path 10 in a waveform including large and small negative pulses as shown in FIG. 1 (f). . As can be seen from this waveform, the Zener diode 33 of this embodiment has a higher Zener breakdown voltage than the conventional one for overvoltage protection for the conversion means 40, not for fixing the pulse waveform in the detection signal Sd as in the conventional case. Things are used. The waveform of the pulse is made constant by the above-mentioned source follower operation on the transistor 22 side.

【0026】高電位側HSの変換手段40はこの検出信号Sd
を動作しきい値が互いに異なるその一対のインバータ41
cと41fに受ける。しきい値はインバータ41cの方が低
く、これにより図1(g) に示す共通パルスScが図1(d)
の共通パルスPcと同じ波形で作られる。また、しきい値
が高い方のインバータ41fにより図1(h) に示すオフパ
ルスSfが図1(e) のオフパルスPfと同じ波形で作られ
る。これらのいわば再生パルスScとSfを受ける再生回路
43は、それらによりオンオフ信号S1によるオンとオフの
指定状態を区別しながら図1(i) に示す高電位側HSのオ
ンオフ信号S1H を図1(b) と同じ波形で再生するもので
ある。
The conversion means 40 on the high potential side HS has the detection signal Sd.
The pair of inverters 41 whose operating thresholds are different from each other
Receive in c and 41f. The threshold value is lower in the inverter 41c, so that the common pulse Sc shown in FIG. 1 (g) becomes smaller than that in FIG. 1 (d).
It is made with the same waveform as the common pulse Pc of. Further, the off-pulse Sf shown in FIG. 1 (h) is generated with the same waveform as the off-pulse Pf in FIG. 1 (e) by the inverter 41f having the higher threshold value. These reproduction circuits receive the reproduction pulses Sc and Sf, so to speak.
Reference numeral 43 reproduces the ON / OFF signal S1H of the high potential side HS shown in FIG. 1 (i) with the same waveform as that of FIG. 1 (b) while distinguishing the ON / OFF designated state by the ON / OFF signal S1.

【0027】この再生に際しては、容易にわかるようオ
ン動作が共通パルスScのハイとオフパルスSfのローによ
り, オフ動作が両パルスのともにハイによってそれぞれ
指定されているから、再生回路43には例えばこれら指定
状態でそれぞれ出力をハイにする2個の論理ゲートと1
個のフリップフロップとを設け、フリップフロップを一
方の論理ゲートの出力でセットし他方の論理ゲートの出
力でリセットしながらそのQ出力をオンオフ信号S1H と
して取り出せばよい。
In this reproduction, it is easy to see that the ON operation is specified by the high level of the common pulse Sc and the low of the off pulse Sf, and the OFF operation is specified by the high level of both pulses. Two logic gates and one that makes the output high in the specified state
The number of flip-flops may be set, and the flip-flop may be set by the output of one logic gate and reset by the output of the other logic gate, and its Q output may be taken out as the on / off signal S1H.

【0028】以上からわかるように、この図1の実施例
では単一の電流路10に低電位側LSのスイッチング手段20
によりオンオフ指令S1の論理状態の変化方向に応じ電流
値の異なるパルス電流を流し、高電位側HSの電流検出手
段30によりこのパルス電流の検出信号Sdを作り、変換手
段40によりこの検出信号Sd中のパルス電流の電流値を反
映したパルスの波高値の差異からオンとオフの指定状態
を正確に区別しながら高電位側HSにオンオフ信号S1H を
再生できる。また、電流路10に電流をパルスの形でごく
短時間内しか流さないから電力消費はごく僅かで済む。
As can be seen from the above, in the embodiment of FIG. 1, the switching means 20 of the low potential side LS is connected to the single current path 10.
A pulse current having a different current value according to the changing direction of the logic state of the on / off command S1 is caused to flow, the detection signal Sd of this pulse current is generated by the current detection means 30 on the high potential side HS, and the detection signal Sd is converted by the conversion means 40. The ON / OFF signal S1H can be reproduced to the high-potential side HS while accurately distinguishing the specified state of ON and OFF from the difference in pulse peak value that reflects the current value of the pulse current. Moreover, since the current is passed through the current path 10 in the form of a pulse for a very short time, the power consumption is very small.

【0029】次の図2に示す実施例では電流路10にパル
ス電流を流すのは前実施例と同じであるが、オンオフ指
令S1が一方の論理状態をとる時間だけ反復パルス電流を
流す点が異なる。このため、スイッチング手段20にはパ
ルス発生回路25を組み込んで図3(b) のオンオフ指令S1
の状態がこの例ではハイの時間内に限って図3(c) に示
すように反復パルスPrを発生させる。その反復周期はオ
ンオフ指令SIの周期の例えば10〜数十分の1の範囲内に
設定される。この反復パルスPrを受けるトランジスタ22
は電流路10に反復パルス電流を抵抗23により設定された
電流値で流し、かつ前述のソースフォロワ動作によって
その値を一定に保つ。
In the next embodiment shown in FIG. 2, the pulse current is passed through the current path 10 in the same manner as in the previous embodiment, except that the repetitive pulse current is passed only during the time when the on / off command S1 takes one logic state. different. For this reason, the switching means 20 is equipped with a pulse generation circuit 25, and the on / off command S1 shown in FIG.
In this example, the repetitive pulse Pr is generated only in the high time as shown in FIG. 3 (c). The repetition cycle is set within the range of, for example, 10 to several tens of minutes of the cycle of the on / off command SI. Transistor 22 that receives this repetitive pulse Pr
Causes a repetitive pulse current to flow in the current path 10 at a current value set by the resistor 23, and keeps the value constant by the source follower operation described above.

【0030】高電位側LSの電流検出手段30は抵抗31とツ
ェナーダイオード32からなり、検出信号Sdを図3(d) に
示すように上述の反復パルスPrに対応する複数の負パル
スを含む波形で発生する。この実施例ではツェナーダイ
オード32によって負パルスの波高値を一定化することが
できる。変換手段40はこの検出信号Sdを受けてそれに含
まれる反復パルスの継続と中断の状態からオンオフ指令
SIによるオンとオフの指定状態を弁別しながら高電位側
HSのオンオフ指令S1H を作る。このため、図の実施例で
は変換手段40としてリトリガラブルなワンショット回路
44を用い、その発生パルスの幅を電流路10に流れるパル
ス電流の反復周期より若干長いめに設定しておき、検出
信号Sd中のパルスによりその動作を反復してトリガしな
がらその出力を図3(e) に示すオンオフ指令S1H として
取り出す。以上の説明からわかるように、この図2の実
施例では電流路10に反復パルス電流を流すので電力消費
は前実施例より若干増えるが、回路構成をかなり簡単化
できる。
The current detecting means 30 on the high potential side LS comprises a resistor 31 and a zener diode 32, and the detection signal Sd has a waveform including a plurality of negative pulses corresponding to the above-mentioned repetitive pulse Pr as shown in FIG. 3 (d). Occurs in. In this embodiment, the Zener diode 32 can make the peak value of the negative pulse constant. Upon receiving this detection signal Sd, the conversion means 40 receives an on / off command from the state of continuation and interruption of the repetitive pulse contained in it.
High potential side while distinguishing the specified state of ON and OFF by SI
Create HS on / off command S1H. Therefore, in the illustrated embodiment, the retriggerable one-shot circuit is used as the conversion means 40.
44, the width of the generated pulse is set to be slightly longer than the repetition period of the pulse current flowing in the current path 10, and the output is generated by repeatedly triggering the operation by the pulse in the detection signal Sd. It is taken out as the on / off command S1H shown in 3 (e). As can be seen from the above description, in the embodiment of FIG. 2, a repetitive pulse current is passed through the current path 10 so that power consumption is slightly increased as compared with the previous embodiment, but the circuit configuration can be considerably simplified.

【0031】図4に示す実施例では高圧側の半導体素子
1と低圧側の半導体素子2が交互にオンオフ動作するこ
とを利用して、電流路10にこれまでの実施例のようにパ
ルス電流を流すかわりにオンオフ指令S1がオフ指定状態
の時間内に持続電流を流す。すなわち、図4の実施例の
スイッチング回路20ではインバータ26によりオンオフ指
令S1を反転した図5(c) の補指令S1I をトランジスタ22
に与えることにより、電流路10に電流iを図5(d) に示
すようにオンオフ指令S1がオフ指定状態, 図の例では図
5(b) のようにローである時間内に持続して流す。
In the embodiment shown in FIG. 4, the high-voltage side semiconductor element 1 and the low-voltage side semiconductor element 2 are alternately turned on and off, and a pulse current is applied to the current path 10 as in the previous embodiments. Instead of supplying the current, the ON / OFF command S1 applies the continuous current within the specified OFF time. That is, in the switching circuit 20 of the embodiment shown in FIG. 4, the auxiliary instruction S1I shown in FIG.
By giving the current i to the current path 10 as shown in FIG. 5 (d), the on / off command S1 continues to be in the OFF designated state, and in the example of the figure, as long as it is low as shown in FIG. 5 (b). Shed.

【0032】この電流iの通流中は低圧側の半導体素子
2がオンしているので高電位側HSの基準電位である出力
端子Toは接地点Eとほぼ同じ電位であり、従って電流路
10の上下端間には制御電源4の電圧程度しか掛からない
ため持続電流であっても電力消費は僅かで済む。なお、
電流iが流れ始める当初に半導体素子1と2がともにオ
フ状態になるため図5(d) のようにピーク電流ipが生じ
るが2〜3μS程度のごく短時間なので電流消費に大き
な影響はない。高電位側HSの電流検出手段30は図2の実
施例と同構成であり、その検出信号Sdは図5(e) に示す
ようにオンオフ指令S1と相似な波形をもつ。従って、変
換手段40には単なる増幅回路45を用いて検出信号Sdを所
望のレベルまで増幅すれば、電流路に電流が通流する状
態をオフ指定状態とする高電位側HSのオンオフ指令S1H
が得られる。
Since the semiconductor element 2 on the low-voltage side is on while the current i is flowing, the output terminal To, which is the reference potential on the high-potential side HS, has substantially the same potential as the ground point E, and therefore the current path.
Since only the voltage of the control power supply 4 is applied between the upper and lower ends of 10, the power consumption is small even with continuous current. In addition,
Since the semiconductor elements 1 and 2 are both turned off at the beginning of the flow of the current i, the peak current ip is generated as shown in FIG. 5D, but the current consumption is not greatly affected because it is a short time of about 2 to 3 μS. The current detection means 30 on the high potential side HS has the same configuration as that of the embodiment of FIG. 2, and the detection signal Sd thereof has a waveform similar to the on / off command S1 as shown in FIG. 5 (e). Therefore, if the detection signal Sd is amplified to a desired level by using the simple amplifying circuit 45 in the converting means 40, the ON / OFF command S1H for the high potential side HS that sets the state in which the current flows in the current path to the OFF designation state.
Is obtained.

【0033】このように、図4の実施例では電流消費を
抑えながら回路構成を図2の実施例よりさらに簡単化で
き、かつ制御回路の動作の信頼性も図1や図2の実施例
より高めることができる。すなわち、制御回路へのノイ
ズの混入によって図1(a) の再生回路43内のフリップフ
ロップが誤ってセットないしリセットされた場合や、図
2のワンショット回路44の反復トリガが切れた場合には
高電位側HSのオンオフ指令S1H の波形が乱れるので、最
悪の場合は半導体素子1と2が同時にオンして電源電圧
Vを短絡するおそれがあるが、図4の実施例では電流路
10に持続電流を流すのでノイズの悪影響を受けるおそれ
はほぼ皆無になる。
As described above, in the embodiment shown in FIG. 4, the circuit configuration can be further simplified as compared with the embodiment shown in FIG. 2 while suppressing the current consumption, and the reliability of the operation of the control circuit is also better than those in the embodiments shown in FIGS. Can be increased. That is, when the flip-flop in the reproducing circuit 43 of FIG. 1 (a) is set or reset by mistake due to the noise mixed in the control circuit, or when the repetitive trigger of the one-shot circuit 44 of FIG. 2 is cut off. Since the waveform of the on / off command S1H of the high potential side HS is disturbed, in the worst case, the semiconductor elements 1 and 2 may be turned on at the same time to short-circuit the power supply voltage V. However, in the embodiment of FIG.
Since a continuous current flows through 10, there is almost no risk of being adversely affected by noise.

【0034】[0034]

【発明の効果】本発明ではオンオフ指令を低電圧側から
高電圧側に伝達する電流路を高圧側の半導体素子ごとに
単一としても、それを時間的に使い分ければオンとオフ
の指令状態を伝達できる点に着目して、以上に説明した
とおり低電位側のスイッチング手段により電流路の電流
の流し方を低電位側のオンオフ指令によるオンやオフの
指定状態に応じて異ならせ、高電位側の電流検出手段に
よりこの電流を検出して検出信号を作り、変換手段によ
りこの検出信号が電流の流れ方に応じて変化する様子か
らオンとオフの指定状態を互いに区別しながら高電位側
でオンオフ指令を再生するようにしたので、電流路に流
す電流を制御する高耐圧のトランジスタが1個だけで済
み、その所要個数を従来の半分に減少させて半導体装置
にオンオフ制御回路を組み込む際に必要なチップ面積を
節約することができる。
According to the present invention, even if a single current path for transmitting an ON / OFF command from the low voltage side to the high voltage side is provided for each semiconductor device on the high voltage side, the ON / OFF command state can be obtained by properly using the current path. Focusing on the point that it is possible to transmit the high potential, the switching means on the low potential side changes the way of flowing the current in the current path in accordance with the ON / OFF command state of the low potential side, as described above. The current detection means on the side detects this current to generate a detection signal, and the conversion means changes the detection signal according to the flow of current, so that the specified state of ON and OFF is distinguished from each other on the high potential side. Since the on / off command is reproduced, only one high withstand voltage transistor that controls the current flowing in the current path is required. It is possible to save the chip area necessary for incorporating.

【0035】なお、オンオフ指令のオンとオフの指定状
態が変化する方向に応じて電流値の異なるパルス電流を
電流路に流し、この電流値を反映した検出信号中のパル
スの波高値の差異からオンやオフの指定状態を弁別しな
がらオンオフ指令を再生する本発明の態様,さらにこの
弁別にインバータ等のしきい値動作回路要素を用いる実
施態様は、電流路にパルス電流をごく短時間だけ流して
制御回路の電力消費を減少させる効果を有する。また、
オンオフ指令の一方の論理状態に応じ電流路に反復パル
ス電流を流し、検出信号中の反復パルスの継続状態から
オンとオフの指定状態を区別する態様,さらにはこの反
復パルスにより繰り返してトリガされるワンショット回
路によりオンオフ指令を再生する態様は、消費電力を減
少させるとともに回路構成を簡単化できる効果を有す
る。
It should be noted that a pulse current having a different current value depending on the direction in which the on / off command ON / OFF designation state changes is made to flow in the current path, and from the difference in the peak value of the pulse in the detection signal reflecting this current value, The aspect of the present invention for reproducing the on / off command while discriminating the specified state of on or off, and the embodiment using the threshold value operating circuit element such as the inverter for discriminating the discriminating state, the pulse current is supplied to the current path for a very short time. This has the effect of reducing the power consumption of the control circuit. Also,
A mode in which a repetitive pulse current is passed through the current path according to one of the logic states of the on / off command, and the specified state of on and off is distinguished from the continuous state of the repetitive pulse in the detection signal, and further, it is repeatedly triggered by this repetitive pulse. The mode of reproducing the on / off command by the one-shot circuit has the effects of reducing power consumption and simplifying the circuit configuration.

【0036】さらに、低圧側と高圧側の半導体素子が交
互にオンオフすることを利用して、低電位側のオンオフ
指令がオフ指定状態のときにのみ電流路に電流を流し、
この電流の通流時をオフ指定状態としてオンオフ指令を
再生する態様は、電力消費を抑制しながら回路構成をさ
らに簡単化し,かつオンオフ制御回路の動作信頼性を一
層高め得る効果を有する。
Furthermore, by utilizing the fact that the low-voltage side and high-voltage side semiconductor elements are turned on and off alternately, a current is passed through the current path only when the low-potential-side on-off command is in the off-designated state,
The mode in which the on / off command is reproduced with the current passing state designated as the off state has the effects of further simplifying the circuit configuration while suppressing power consumption and further improving the operational reliability of the on / off control circuit.

【0037】上述のような特長を備える本発明のオンオ
フ制御回路は、電動機等を駆動する電力インバータ装置
の2相や3相構成のアーム内に組み込む電力用半導体素
子の制御回路を単一の半導体チップに組み込み、あるい
は半導体素子用のチップ内に組み込む場合に適用してと
くに効果が高く、この種の集積回路のチップサイズを大
幅に縮小して経済性を高める上で著効を奏するものであ
る。
The on / off control circuit of the present invention having the above-mentioned features is a single semiconductor control circuit for a power semiconductor element incorporated in an arm of a two-phase or three-phase structure of a power inverter device for driving an electric motor or the like. It is particularly effective when applied to a chip or embedded in a chip for a semiconductor element, and is extremely effective in significantly reducing the chip size of this kind of integrated circuit and improving the economical efficiency. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例回路図とその関連信号の波形を
示し、同図(a) はその回路図、同図(b) は低圧側の半導
体素子用のオンオフ指令の波形図、同図(c) は高圧側の
半導体素子に対する低電位側のオンオフ指令の波形図、
同図(d) はスイッチング手段内の共通パルスの波形図、
同図(e) はスイッチング手段内のオフパルスの波形図、
同図(f) は電流検出手段による検出信号の波形図、同図
(g) は変換手段内の共通パルスの波形図、同図(h) は変
換手段内のオフパルスの波形図、同図(i)は高圧側の半
導体素子に対する高電位側のオンオフ信号の波形図であ
る。
FIG. 1 shows a circuit diagram of an embodiment of the present invention and waveforms of related signals thereof. FIG. 1A is a circuit diagram thereof, and FIG. 1B is a waveform diagram of an ON / OFF command for a semiconductor device on the low voltage side, Figure (c) is a waveform diagram of the ON / OFF command on the low potential side for the semiconductor element on the high voltage side.
Figure (d) is a waveform diagram of the common pulse in the switching means,
Figure (e) is a waveform diagram of the off-pulse in the switching means,
Figure (f) is a waveform diagram of the signal detected by the current detection means.
(g) is a waveform diagram of the common pulse in the converting means, (h) is a waveform diagram of the off-pulse in the converting means, and (i) is a waveform diagram of the high-potential-side on / off signal for the high-voltage side semiconductor element. Is.

【図2】本発明の異なる実施例の回路図である。FIG. 2 is a circuit diagram of a different embodiment of the present invention.

【図3】図2の関連信号の波形を示し、同図(a) は低圧
側の半導体素子用のオンオフ指令の波形図、同図(b) は
高圧側の半導体素子に対する低電位側のオンオフ指令の
波形図、同図(c) はスイッチング手段内の反復パルスの
波形図、同図(d) は電流検出手段による検出信号の波形
図、同図(e) は高圧側の半導体素子に対する高電位側の
オンオフ信号の波形図である。
3A and 3B show waveforms of related signals in FIG. 2, where FIG. 3A is a waveform diagram of an ON / OFF command for the semiconductor device on the low voltage side, and FIG. 3B is an ON / OFF on the low potential side for the semiconductor device on the high voltage side. Waveform of command, waveform (c) of repetitive pulse in switching means, waveform (d) of detection signal by current detector, and waveform (e) of high voltage for semiconductor device It is a waveform diagram of an on-off signal on the potential side.

【図4】本発明のさらに異なる実施例の回路図である。FIG. 4 is a circuit diagram of still another embodiment of the present invention.

【図5】図4の関連信号の波形を示し、同図(a) は低圧
側の半導体素子用のオンオフ指令の波形図、同図(b) は
高圧側の半導体素子に対する低電位側のオンオフ指令の
波形図、同図(c) はスイッチング内のオンオフ指令の補
信号の波形図、同図(d)は電流路に流れる電流の波形
図、同図(e) は電流検出手段による検出信号および高圧
側の半導体素子に対する高電位側のオンオフ信号の波形
図である。
5A and 5B show waveforms of related signals in FIG. 4, where FIG. 5A is a waveform diagram of an ON / OFF command for the semiconductor device on the low voltage side, and FIG. 5B is an ON / OFF on the low potential side for the semiconductor device on the high voltage side. Command waveform diagram, (c) waveform diagram of complementary signal of ON / OFF command in switching, (d) waveform diagram of current flowing in current path, (e) diagram of detection signal by current detection means FIG. 6 is a waveform diagram of a high-potential-side on / off signal for a high-voltage side semiconductor element.

【図6】従来のオンオフ制御回路の回路図である。FIG. 6 is a circuit diagram of a conventional on / off control circuit.

【図7】図6の関連信号の波形を示し、同図(a) は低圧
側の半導体素子用のオンオフ指令の波形図、同図(b) は
高圧側の半導体素子に対する低電位側のオンオフ指令の
波形図、同図(c) はオンパルスの波形図、同図(d) はオ
フパルスの波形図、同図(e) はオン指令の波形図、同図
(f) はオフ指令の波形図、同図(g) はセット指令の波形
図、同図(h) はリセット指令の波形図、同図(i) は高圧
側の半導体素子に対する高電位側のオンオフ信号の波形
図である。
7A and 7B show waveforms of related signals in FIG. 6, where FIG. 7A is a waveform diagram of an ON / OFF command for a semiconductor element on the low voltage side, and FIG. 7B is an ON / OFF on the low potential side with respect to the semiconductor element on the high voltage side. Waveform of command, Figure (c) is waveform of on-pulse, Figure (d) is waveform of off-pulse, Figure (e) is waveform of on-command, figure
(f) is the waveform diagram of the off command, (g) is the waveform diagram of the set command, (h) is the waveform diagram of the reset command, and (i) is the high potential side of the semiconductor element on the high voltage side. It is a wave form diagram of an on-off signal.

【符号の説明】[Explanation of symbols]

1 高圧側の半導体素子 2 低圧側の半導体素子 3 半導体素子に対する駆動回路 4 制御回路の電源 10 電流路 20 スイッチング手段 22 高耐圧のトランジスタ 30 電流検出手段 40 変換手段 41c,41f 動作しきい値が異なるインバータ 43 変換手段の再生回路 44 変換手段のリトリガラブルワンショット回路 45 変換手段の増幅回路 HS 高電位側 i 電流路を流れる電流 LS 低電位側 Pc 低電位側の共通パルス Pf 低電位側のオフパルス Pr 反復パルス Sc 高電位側の共通パルス Sd 電流検出手段による検出信号 Sf 高電位側のオフパルス S1 半導体素子1用の低電圧側のオンオフ指令 S1H 半導体素子1用の高電圧側のオンオフ指令 S2 半導体素子2用の低電圧側のオンオフ指令 1 High voltage side semiconductor element 2 Low voltage side semiconductor element 3 Driving circuit for semiconductor element 4 Control circuit power supply 10 Current path 20 Switching means 22 High breakdown voltage transistor 30 Current detecting means 40 Converting means 41c, 41f Different operation thresholds Inverter 43 Regeneration circuit for conversion means 44 Retriggerable one-shot circuit for conversion means 45 Amplification circuit for conversion means HS High potential side i Current flowing through current path LS Low potential side Pc Low potential side common pulse Pf Low potential side off pulse Pr Repetitive pulse Sc Common pulse on high potential side Sd Detection signal by current detecting means Sf Off pulse on high potential side S1 Low voltage side on / off command for semiconductor element 1 S1H High voltage side on / off command for semiconductor element 1 S2 Semiconductor element 2 ON / OFF command for low voltage side

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03K 17/66 C 9184−5J 17/73 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H03K 17/66 C 9184-5J 17/73

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】高電位側の半導体素子を低電位側のオンオ
フ指令に応じて動作させる制御回路であって、オンオフ
動作させるべき半導体素子ごとに高電位側と低電位側の
間に設けられた単一の電流路と、オンオフ指令に応じて
電流路に流す電流を低電位側で制御するスイッチング手
段と、電流路の電流を高電位側で検出する電流検出手段
と、この電流検出手段による検出信号を半導体素子を駆
動するための高電位側のオンオフ指令に変換する変換手
段とを備えてなり、低電位側のオンオフ指令による指定
状態に応じてスイッチング手段により電流路中の電流の
流し方を異ならせ、変換手段によりこの電流に応じて変
化する検出信号からオン指定状態とオフ指定状態とを区
別しながら検出信号を高電位側のオンオフ指令に変換す
るようにしたことを特徴とする半導体素子のオンオフ制
御回路。
1. A control circuit for operating a high-potential-side semiconductor element in response to a low-potential-side on / off command, which is provided between the high-potential side and the low-potential side for each semiconductor element to be turned on / off. A single current path, a switching means for controlling the current flowing through the current path on the low potential side in response to an ON / OFF command, a current detection means for detecting the current of the current path on the high potential side, and detection by this current detection means It is provided with a conversion means for converting a signal into an ON / OFF command on the high potential side for driving the semiconductor element, and a switching means determines how to flow the current in the current path according to the designated state by the ON / OFF command on the low potential side. Differently, the conversion signal is converted into a high-potential-side on / off command while distinguishing the on-designated state and the off-designated state from the detection signal that changes according to the current by the conversion means. Off control circuit of a semiconductor device characterized.
【請求項2】請求項1に記載の制御回路において、スイ
ッチング手段により電流路内にパルス電流を流すように
したことを特徴とする半導体素子のオンオフ制御回路。
2. The control circuit according to claim 1, wherein a pulse current is caused to flow in the current path by the switching means.
【請求項3】請求項2に記載の制御回路において、スイ
ッチング手段により低電位側のオンオフ指令の状態変化
の方向に応じて電流値の異なるパルス電流を電流路に流
し、変換手段にパルス電流の電流値を反映した検出信号
中のパルスの波高値の差からオン指定とオフ指定の状態
を区別させるようにしたことを特徴とする半導体素子の
オンオフ制御回路。
3. The control circuit according to claim 2, wherein the switching means causes a pulse current having a different current value to flow through the current path in accordance with the direction of change of the state of the on / off command on the low potential side, and the pulse current is supplied to the converting means. An on / off control circuit for a semiconductor device, wherein an on-designated state and an off-designated state are distinguished from each other based on a difference in pulse crest value in a detection signal reflecting a current value.
【請求項4】請求項3に記載の制御回路において、変換
手段にしきい値動作回路要素を組み込んで検出信号中の
パルスの波高値の差を弁別させるようにしたことを特徴
とする半導体素子のオンオフ制御回路。
4. The control circuit according to claim 3, wherein a threshold operating circuit element is incorporated in the converting means to discriminate a difference in peak value of pulses in the detection signal. On-off control circuit.
【請求項5】請求項2に記載の制御回路において、スイ
ッチング手段により低電位側のオンオフ指令の一方の論
理状態に応じて電流路にパルス電流を一定の周期で繰り
返して流し、変換手段に検出信号中の反復パルスの継続
状態からオン指定状態とオフ指定状態を区別させるよう
にしたことを特徴とする半導体素子のオンオフ制御回
路。
5. The control circuit according to claim 2, wherein the switching means repeatedly applies a pulse current to the current path at a constant cycle according to one of the logic states of the ON / OFF command on the low potential side, and the conversion means detects the pulse current. An on / off control circuit for a semiconductor device, wherein an on-designated state and an off-designated state are distinguished from a continuous state of a repetitive pulse in a signal.
【請求項6】請求項5に記載の制御回路において、変換
手段にパルス電流の反復周期よりも長いパルス幅のパル
スを発生するワンショット回路を組み込んで検出信号中
のパルスによりその動作を反復トリガしながらその出力
を高電位側のオンオフ指令として取り出すようにしたこ
とを特徴とする半導体素子のオンオフ制御回路。
6. The control circuit according to claim 5, wherein the conversion means includes a one-shot circuit for generating a pulse having a pulse width longer than the repetition period of the pulse current, and the operation is repeatedly triggered by the pulse in the detection signal. However, the output of the semiconductor element is taken out as an ON / OFF command on the high potential side, and an ON / OFF control circuit for the semiconductor element is characterized.
【請求項7】請求項1に記載の制御回路において、低圧
側と高圧側の半導体素子のオンオフを交互に操作するよ
うにし、スイッチング手段により低電位側のオンオフ指
令がオフ指定状態のときに電流路に電流を流し、変換手
段により検出信号をその電流の通流時の状態をオフ指定
状態として高電位側のオンオフ指令に変換するようにし
たことを特徴とする半導体素子のオンオフ制御回路。
7. The control circuit according to claim 1, wherein the low-voltage side and high-voltage side semiconductor elements are alternately turned on and off, and a current is supplied when the low potential side on-off command is in an off designated state by the switching means. An on / off control circuit for a semiconductor element, wherein a current is caused to flow in a path, and the conversion means converts the detection signal into an on / off command on the high potential side by setting the state when the current is in the off designation state.
JP09039794A 1994-04-28 1994-04-28 On / off control circuit for semiconductor device Expired - Fee Related JP3147656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09039794A JP3147656B2 (en) 1994-04-28 1994-04-28 On / off control circuit for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09039794A JP3147656B2 (en) 1994-04-28 1994-04-28 On / off control circuit for semiconductor device

Publications (2)

Publication Number Publication Date
JPH07297698A true JPH07297698A (en) 1995-11-10
JP3147656B2 JP3147656B2 (en) 2001-03-19

Family

ID=13997458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09039794A Expired - Fee Related JP3147656B2 (en) 1994-04-28 1994-04-28 On / off control circuit for semiconductor device

Country Status (1)

Country Link
JP (1) JP3147656B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141078A (en) * 1997-07-16 1999-02-12 Wako Giken:Kk Method and device for shortening dead time of semiconductor device and pwm inverter
US6774674B2 (en) 2001-07-19 2004-08-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2004328329A (en) * 2003-04-24 2004-11-18 Mitsubishi Electric Corp Semiconductor device
WO2006101139A1 (en) * 2005-03-23 2006-09-28 Sanken Electric Co., Ltd. Level shift circuit and power supply device
JP2008288802A (en) * 2007-05-16 2008-11-27 Hitachi Ltd Semiconductor circuit
US7763974B2 (en) 2003-02-14 2010-07-27 Hitachi, Ltd. Integrated circuit for driving semiconductor device and power converter
JP2011035923A (en) * 2010-09-24 2011-02-17 Fuji Electric Systems Co Ltd Drive circuit
DE102010064410B4 (en) * 2010-02-16 2020-03-26 Mitsubishi Electric Corp. Bootstrap semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141078A (en) * 1997-07-16 1999-02-12 Wako Giken:Kk Method and device for shortening dead time of semiconductor device and pwm inverter
US6774674B2 (en) 2001-07-19 2004-08-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7973405B2 (en) 2003-02-14 2011-07-05 Hitachi, Ltd. Integrated circuit for driving semiconductor device and power converter
US7763974B2 (en) 2003-02-14 2010-07-27 Hitachi, Ltd. Integrated circuit for driving semiconductor device and power converter
CN100446419C (en) * 2003-04-24 2008-12-24 三菱电机株式会社 Semiconductor elements
JP2004328329A (en) * 2003-04-24 2004-11-18 Mitsubishi Electric Corp Semiconductor device
JP2006270382A (en) * 2005-03-23 2006-10-05 Sanken Electric Co Ltd Level shifting circuit and power supply device
US7688049B2 (en) 2005-03-23 2010-03-30 Sanken Electric Co., Ltd. Level shift circuit and power supply device
KR100965686B1 (en) * 2005-03-23 2010-06-24 산켄덴키 가부시키가이샤 Level shift circuit and power supply device
WO2006101139A1 (en) * 2005-03-23 2006-09-28 Sanken Electric Co., Ltd. Level shift circuit and power supply device
JP2008288802A (en) * 2007-05-16 2008-11-27 Hitachi Ltd Semiconductor circuit
JP4531075B2 (en) * 2007-05-16 2010-08-25 株式会社日立製作所 Semiconductor circuit
DE102010064410B4 (en) * 2010-02-16 2020-03-26 Mitsubishi Electric Corp. Bootstrap semiconductor device
JP2011035923A (en) * 2010-09-24 2011-02-17 Fuji Electric Systems Co Ltd Drive circuit

Also Published As

Publication number Publication date
JP3147656B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP3618829B2 (en) Reset priority level shift circuit that is not affected by noise
JP2669117B2 (en) Drive circuit for voltage-driven semiconductor devices
US4748532A (en) Transformer coupled power switching circuit
CA2043100A1 (en) Circuit for providing dv/dt immunity
US20020105316A1 (en) Voltage sensing with high and low side signals for deadtime compensation and shutdown for short circuit protection
JP2717542B2 (en) Circuit and method for controlling a MOS transistor bridge
EP0814564A1 (en) Electronic switching circuit with reduction of switching transients
US6246593B1 (en) Topology-independent synchronous rectifier commutation circuit
US4633381A (en) Inverter shoot-through protection circuit
JP2892815B2 (en) IGBT drive circuit
JPH0947015A (en) Drive circuit for self-extinguishing semiconductor element
JPH07297698A (en) On/off control circuit for semiconductor element
US4970635A (en) Inverter with proportional base drive controlled by a current transformer
JPH0393457A (en) Drive circuit for voltage driving type element
US6208541B1 (en) PWM inverter apparatus
JPH10337046A (en) Power conversion device
JP3602011B2 (en) Control circuit
US6252436B1 (en) Method and arrangement for determining state information of power semiconductor
JP2002153043A (en) Gate-driving device for voltage-driving semiconductor element
US4540894A (en) Peak turn-on current limiting base drive
JP3269092B2 (en) MOS circuit for intermittent conduction
JP3402067B2 (en) Three-phase power controller
JP3756353B2 (en) Semiconductor device drive circuit
JPH04289781A (en) Control circuit for pwm control inverter
KR100310645B1 (en) Over-current protection circuit using desaturation in IPM

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees