JPH0729563A - Battery separator and lithium battery using the same - Google Patents

Battery separator and lithium battery using the same

Info

Publication number
JPH0729563A
JPH0729563A JP5276947A JP27694793A JPH0729563A JP H0729563 A JPH0729563 A JP H0729563A JP 5276947 A JP5276947 A JP 5276947A JP 27694793 A JP27694793 A JP 27694793A JP H0729563 A JPH0729563 A JP H0729563A
Authority
JP
Japan
Prior art keywords
film
molecular weight
sheet
temperature
polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5276947A
Other languages
Japanese (ja)
Other versions
JP3050021B2 (en
Inventor
Toshio Fujii
敏雄 藤井
Keishin Handa
敬信 半田
Hiroshi Nakanishi
弘志 中西
Kiyousuke Watanabe
恭資 渡辺
Yasushi Usami
康 宇佐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26449352&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0729563(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5276947A priority Critical patent/JP3050021B2/en
Publication of JPH0729563A publication Critical patent/JPH0729563A/en
Application granted granted Critical
Publication of JP3050021B2 publication Critical patent/JP3050021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent the overheating of the battery by using as a separator a porous film or sheet made of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of a value greater than that specified, the film or sheet having a specified thickness, air permeability, hole percentage, pin piercing strength, thermal blockage temperature, and thermal film breakage resistance temperature. CONSTITUTION:As an ultrahigh molecular weight polyethylene, polyethylene having a viscosity average molecular weight of 500,000 or more and, as a plasticizer added thereto, parafin wax, n-alkane, or the like which has compatibility with the ultrahigh molecular weight polyethylene and which does not evaporate during melt-kneading or forming is used. The polyethylene and plasticizer are kneaded together and are melt-extruded to make a film or a sheet. As a result, a separator with a high resistance to thermal film breakage which has a thickness of 10 to 100mum, an air permeability of from 20 to 2000sec/100cc, a hole percentage of 15 to 80%, a pin-piercing strength of 120g/25mum or more, and a thermal film breakage temperature of 160 deg.C or more is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、安全性、機械的特性の
良好なバッテリーセパレーター及びそれを用いたリチウ
ム電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery separator having good safety and mechanical properties and a lithium battery using the same.

【0002】[0002]

【従来の技術】多孔性フィルム或いはシートは、従来よ
り各種用途に広く使用されている。かかる多孔性樹脂成
形体の製造方法も種々提案されている。バッテリー・セ
パレーターとして使用するための多孔性樹脂成形体は、
一般に、超高分子量ポリエチレンおよび可塑剤を含有す
る樹脂組成物から、一旦、フィルムまたはシートを溶融
押出成形して製造し、次いで、フィルムまたはシートに
含まれる可塑剤をイソプロパノール、エタノール、ヘキ
サンなどの有機溶媒で溶解除去した後、機械的強度向上
のためロール延伸機、テンター横延伸機などの延伸機で
延伸、即ち、固相変形することによって製造されてい
た。
2. Description of the Related Art Porous films or sheets have been widely used for various purposes. Various methods for producing such a porous resin molded body have been proposed. Porous resin molding for use as a battery separator,
Generally, a film or sheet is once melt-extruded to be produced from a resin composition containing ultra-high molecular weight polyethylene and a plasticizer, and then the plasticizer contained in the film or sheet is treated with an organic solvent such as isopropanol, ethanol or hexane. After being dissolved and removed with a solvent, it was produced by stretching with a stretching machine such as a roll stretching machine or a tenter transverse stretching machine, that is, by solid phase deformation in order to improve mechanical strength.

【0003】セパレーターに高温膜形状維持特性が不足
していると、短絡事故などで短時間に大電流が流れ、電
池は発熱し、熱によるセパレーター破損での内部短絡が
起る危険性がある。そのため、セパレーターには電池内
部温度が上昇した時、セパレーターの孔が熱により自動
的に閉塞する性質(自己閉塞性)と高温になっても膜形
状を維持し電極を隔てておく性質(高温膜形状維持特
性)が必要とされる。
If the separator lacks the high-temperature membrane shape maintaining property, a large current flows in a short time due to a short circuit accident, the battery heats up, and there is a risk of internal short circuit due to damage of the separator due to heat. Therefore, when the internal temperature of the battery rises in the separator, the property that the pores of the separator are automatically closed by heat (self-closing property) and the property that the film shape is maintained and the electrodes are separated even when the temperature becomes high (high temperature film) Shape retention properties) are required.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような固相変形によって得られるフィルムまたはシート
は、本質的に超高分子量ポリエチレンのポリエチレン分
子鎖の絡み合いが多くその残留応力が高いため、バッテ
リーに組込まれたような固定された状態で一定以上の温
度がかかると破膜するという問題があり、高温膜形状維
持特性等の改良にも限度があった。
However, the film or sheet obtained by the solid phase deformation as described above essentially has many entanglement of polyethylene molecular chains of ultra-high molecular weight polyethylene, and the residual stress is high, so that the battery or the battery has a high residual stress. There is a problem that the membrane may be broken when a certain temperature or more is applied in a fixed state such as built-in, and there is a limit to improvement of the high temperature membrane shape maintaining property.

【0005】ポリプロピレン製セパレーター膜は高温で
の形状維持性に優れているが、特にリチウム電池セパレ
ーターとして使用する際、自己閉塞性を発現する温度が
約175℃でありリチウムの発火温度180℃と接近し
ており問題がある。また、セパレーター膜においては通
常強度向上のために延伸を行うが、延伸した膜は高温膜
形状維持特性が低くポリエチレン製では150〜160
℃、ポリプロピレン製では180℃近辺で破膜し、電極
の絶縁性に問題を生じる。
The polypropylene separator film is excellent in shape retention at high temperature, but when used as a lithium battery separator, the temperature at which self-closing property is exhibited is about 175 ° C., which is close to the ignition temperature of lithium of 180 ° C. I have a problem. In addition, the separator film is usually stretched to improve the strength, but the stretched film has a low high-temperature film shape-maintaining property, and is 150 to 160 when made of polyethylene.
In the case of polypropylene made of polypropylene, the film ruptures at around 180 ° C., which causes a problem in the insulating property of the electrode.

【0006】[0006]

【課題を解決するための手段】本発明者らの一部は、先
に、気体、液体およびイオン透過性に優れ、高温での膜
形状維持特性の優れたバッテリーセパレーター用ポリエ
チレン膜を提案した(特願平4−111820)。本発
明者らは、更に残留応力が小さく、しかも、面強度、特
にピン刺強度の優れたバッテリーセパレーターを得るべ
く、溶融変形後の配向緩和が起こりにくいという超高分
子量ポリエチレンの特性に着目し、鋭意検討した結果、
溶融押出成形して得られるフィルムまたはシートに、そ
れを溶融状態に保持したままで、変形応力を加えて溶融
変形(成形)することにより、残留応力が小さく、耐熱
破膜性に優れたフィルムまたはシートを得ることができ
ること、特に、特定の条件下に溶融変形することによ
り、面強度の向上したフィルムまたはシートを得ること
ができること、更には、溶融変形し、冷却して得られる
フィルムまたはシートを従来のようにさらに延伸処理し
なくとも、工業的に有利に多孔性フィルムまたはシート
を製造できることを知見し、本発明を完成するに至っ
た。
DISCLOSURE OF THE INVENTION Some of the present inventors have previously proposed a polyethylene membrane for a battery separator, which has excellent gas, liquid and ion permeability, and excellent membrane shape retention characteristics at high temperatures ( Japanese Patent Application No. 4-111820). The present inventors focused on the characteristics of ultra-high molecular weight polyethylene that orientation relaxation after melt deformation is unlikely to occur in order to obtain a battery separator having a smaller residual stress, and moreover, excellent surface strength, particularly pin puncture strength, As a result of diligent examination,
A film or sheet obtained by melt extrusion molding is melted and deformed (molded) by applying a deformation stress while keeping it in a molten state, so that the residual stress is small and the film is excellent in heat resistance and film rupture resistance. It is possible to obtain a sheet, in particular, it is possible to obtain a film or sheet having an improved surface strength by melt-deforming under a specific condition, and further, a film or sheet obtained by melt-deforming and cooling is obtained. The inventors have found that a porous film or sheet can be industrially advantageously produced without further stretching treatment as in the past, and have completed the present invention.

【0007】即ち、本発明の要旨は、粘度平均分子量が
50万以上の超高分子量ポリエチレンからなる多孔性フ
ィルムまたはシートであって、しかも、(a)厚さ10
〜100μm、(b)透気度20〜2,000秒/10
0cc、(c)空孔率15〜80%、(d)ピン刺強度
120g/25μm以上、(e)熱閉塞温度90〜15
0℃および(f)熱破膜温度160℃以上の特性を有す
る多孔性フィルムまたはシートから形成されたバッテリ
ーセパレーター及びそれを組み込んでなるリチウム電池
に存する。
That is, the gist of the present invention is a porous film or sheet made of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more, and (a) a thickness of 10
〜100 μm, (b) Air permeability 20-2,000 seconds / 10
0 cc, (c) Porosity 15 to 80%, (d) Pin puncture strength 120 g / 25 μm or more, (e) Thermal blocking temperature 90 to 15
The present invention resides in a battery separator formed from a porous film or sheet having characteristics of 0 ° C. and (f) thermal membrane rupture temperature of 160 ° C. or higher, and a lithium battery incorporating the same.

【0008】以下本発明を更に詳細に説明する。本発明
の樹脂組成物は、少なくとも超高分子量ポリエチレンと
可塑剤を含有する。本発明で使用する超高分子量ポリエ
チレンとしては、粘度平均分子量(以下単に「分子量」
という。)が50万以上の直鎖状のポリエチレンが挙げ
られる。バッテリー・セパレーターとして使用する場
合、分子量が50万以下であるとバッテリーに組込まれ
たセパレーターが、バッテリー内の自己発熱、或いは、
外部からの熱により、例えば、180℃に加熱されたと
きに、セパレーターの形状を保持しにくくなる。また、
分子量が例えば400万以上とあまり大きすぎると、流
動性が低すぎて加熱されたときにセパレーターの孔が閉
塞せず、短絡してバッテリーが発火することになるの
で、分子量が50万〜400万、好ましくは、150万
〜300万のものを使用するのがよい。
The present invention will be described in more detail below. The resin composition of the present invention contains at least ultra-high molecular weight polyethylene and a plasticizer. The ultra high molecular weight polyethylene used in the present invention has a viscosity average molecular weight (hereinafter simply referred to as “molecular weight”).
Say. ) Is 500,000 or more linear polyethylene. When used as a battery separator, if the molecular weight is 500,000 or less, the separator built into the battery may cause self-heating in the battery, or
The heat from the outside makes it difficult to maintain the shape of the separator when heated to 180 ° C., for example. Also,
If the molecular weight is too large, for example, 4,000,000 or more, the fluidity is too low to close the pores of the separator when heated, causing a short circuit and ignition of the battery. Therefore, the molecular weight is 500,000 to 4,000,000. It is preferable to use one having 1.5 to 3 million.

【0009】また、本発明においては、溶融変形のし易
さから、超高分子量ポリエチレンとして溶融温度が11
0〜140℃のエチレンホモポリマーを好適に使用する
ことができる。本発明においては、ポリブテン−1、ポ
リプロピレンまたは粘度平均分子量が50万未満のポリ
エチレンを超高分子量ポリエチレンに対して100重量
%以下、好ましくは、2〜80重量%の割合で併用する
こともできる。
Further, in the present invention, the melting temperature of the ultra high molecular weight polyethylene is 11 because it is easily deformed by melting.
An ethylene homopolymer of 0 to 140 ° C. can be preferably used. In the present invention, polybutene-1, polypropylene or polyethylene having a viscosity average molecular weight of less than 500,000 may be used in combination in an amount of 100% by weight or less, preferably 2 to 80% by weight, based on the ultrahigh molecular weight polyethylene.

【0010】かかるポリエチレンとしては、分岐状また
は線状の低密度ポリエチレン(分子量5,000〜10
万)、高密度ポリエチレン(分子量1万〜50万)、ポ
リエチレンワックス(分子量5,000以下)が挙げら
れる。ポリブテン−1やポリプロピレンとしては、分子
量400万以下のものが使用できる。低密度または高密
度ポリエチレン、ポリブテン−1、或いは、ポリエチレ
ンワックスを超高分子量ポリエチレンに対して100重
量%以下、好ましくは30〜90重量%、特に好ましく
は、40〜80重量%併用すると熱閉塞温度を低くする
ことができる。また、ポリプロピレン、或いは、ポリブ
テン−1を超高分子量ポリエチレンに対して100重量
%以下、好ましくは1〜50重量%、特に好ましくは、
2〜40重量%併用すると強度若しくは破断時の伸度を
向上させることができる。
Examples of such polyethylene include branched or linear low density polyethylene (molecular weight of 5,000 to 10).
10,000), high-density polyethylene (molecular weight 10,000 to 500,000), and polyethylene wax (molecular weight 5,000 or less). Polybutene-1 and polypropylene having a molecular weight of 4,000,000 or less can be used. When low-density or high-density polyethylene, polybutene-1, or polyethylene wax is used in an amount of not more than 100% by weight, preferably 30 to 90% by weight, and particularly preferably 40 to 80% by weight, based on the ultrahigh molecular weight polyethylene, the heat blocking temperature. Can be lowered. Further, polypropylene or polybutene-1 is 100% by weight or less, preferably 1 to 50% by weight, particularly preferably, with respect to the ultrahigh molecular weight polyethylene.
When used in an amount of 2 to 40% by weight, the strength or the elongation at break can be improved.

【0011】可塑剤としては、超高分子量ポリエチレン
との相溶性がよく、溶融混練や成形時に蒸発しないよう
な、例えば、超高分子量ポリエチレンの溶融温度より高
い沸点を有するものであれば公知の種々のものが使用で
きる。具体的には、例えば、常温で固体であるパラフィ
ンワックス、或いは、ステアリルアルコール、セリルア
ルコールなどの高級脂肪族アルコール、常温で液体のn
−デカン、n−ドデカン等のn−アルカン、流動パラフ
ィン、灯油などの挙げることができる。
As the plasticizer, there are various known plasticizers as long as they have good compatibility with ultrahigh molecular weight polyethylene and do not evaporate during melt kneading or molding, for example, those having a boiling point higher than the melting temperature of ultrahigh molecular weight polyethylene. Can be used. Specifically, for example, paraffin wax which is solid at room temperature, higher aliphatic alcohol such as stearyl alcohol or ceryl alcohol, and n which is liquid at room temperature.
Examples include n-alkanes such as decane and n-dodecane, liquid paraffin, and kerosene.

【0012】超高分子量ポリエチレンと可塑剤の使用割
合は、通常、超高分子量ポリエチレンが5〜60重量
%、好ましくは、10〜50重量%で、可塑剤が40〜
95重量%、好ましくは、90〜50重量%の範囲から
選ばれる。本発明の樹脂組成物には、公知の各種添加
剤、例えば、酸化防止剤などを樹脂組成物中、0.01
〜5重量%程度併用してもよい。
The ultrahigh molecular weight polyethylene and the plasticizer are usually used in an amount of 5 to 60% by weight, preferably 10 to 50% by weight, and 40 to 50% by weight of the plasticizer.
95% by weight, preferably selected from the range of 90 to 50% by weight. In the resin composition of the present invention, various known additives such as antioxidants are added in an amount of 0.01
You may use together about 5 to 5 weight%.

【0013】上記樹脂組成物の各成分は、公知の一軸ま
たは二軸の押出機で均一に混練し、溶融押出成形する。
押出量、押出安定性、混練強度の点から二軸の押出機が
好適に使用される。溶融押出成形は、通常、140〜2
40℃の温度で行い、5〜50μ或いは50〜300μ
の厚さでフィルム状或いはシート状に押し出す。本発明
においては、かくして押し出されたフィルムまたはシー
トを溶融変形する。即ち、分子量が極めて大きいので、
変形に対して分子鎖の配向緩和が起こり難く、変形方向
に配向し易いという超高分子量ポリエチレンの特性を利
用して溶融変形することにより、最終的に得られる多孔
性フィルムまたはシートの機械的強度の向上を図る。
The respective components of the above resin composition are uniformly kneaded by a known uniaxial or biaxial extruder and melt-extruded.
A biaxial extruder is preferably used in terms of extrusion rate, extrusion stability, and kneading strength. Melt extrusion is usually 140-2
Perform at a temperature of 40 ℃, 5 ~ 50μ or 50 ~ 300μ
Extruded into a film or sheet with the thickness of. In the present invention, the film or sheet thus extruded is melted and deformed. That is, since the molecular weight is extremely large,
Mechanical strength of the porous film or sheet finally obtained by melt-deformation by utilizing the characteristics of ultra-high molecular weight polyethylene that the orientation of molecular chains is less likely to be relaxed by deformation and that it is easily oriented in the direction of deformation. To improve.

【0014】溶融変形は、押し出されたフィルムまたは
シートを構成する樹脂組成物を溶融状態に保持したまま
で変形応力を加えることによって行われる。通常、該樹
脂組成物の温度を約130〜240℃、好ましくは、1
60〜200℃の範囲となるように保持した状態で変形
応力を加える。その際、変形は一方向だけではなく、多
方向に変形を加えることもできる。バッテリー・セパレ
ーターとして使用する場合、一方向のみの変形である
と、フィルムまたはシート中の細孔がその変形方向に伸
ばされた形状となり、若干流路が狭くなり、通気性が低
下し、セパレーターのイオン抵抗率が増大する傾向とな
るので、細孔を広げるように多方向にバランスよく変形
を加えるのが好ましい。
The melt deformation is carried out by applying a deformation stress while keeping the resin composition constituting the extruded film or sheet in a molten state. Usually, the temperature of the resin composition is about 130 to 240 ° C., preferably 1
Deformation stress is applied in a state of being kept in the range of 60 to 200 ° C. In that case, the deformation may be applied in not only one direction but also multiple directions. When used as a battery separator, if it is deformed in only one direction, the pores in the film or sheet will be elongated in that deformation direction, the flow path will be slightly narrowed, the air permeability will decrease, and the separator Since the ionic resistivity tends to increase, it is preferable to apply deformation in a balanced manner in multiple directions so as to widen the pores.

【0015】具体的には、例えば、一方向に変形を加え
る場合は、Tダイまたはインフレーション成形法、好ま
しくは、インフレーション成形法において、ダイのギャ
ップを大きくして、引取り速度を上げて引っ張る、即
ち、ドラフト率を上げていくことにより、MD(機械)
方向に変形を加える。また、多方向に変形を加える場合
は、インフレーション成形法において、ドラフト率およ
びブロー比を上げていくことにより、MDおよびTD
(幅)方向に溶融変形を加える。更に、Tダイ成形法に
よる多方向の変形の場合は、ピンテンターで溶融状態の
フィルムまたはシートの幅方向の端部をキャタピラに固
定し、2つのキャタピラの幅を流れ方向に従って広げて
いくことによりTD方向に変形し、同時に引取り速度を
上げることによりMD方向にも変形を加えることによっ
て行う。
Specifically, for example, in the case of applying a deformation in one direction, in the T die or the inflation molding method, preferably, in the inflation molding method, the gap of the die is increased to increase the take-up speed and pull. In other words, by increasing the draft rate, MD (machine)
Add deformation in the direction. In addition, when deformation is applied in multiple directions, MD and TD can be increased by increasing the draft ratio and blow ratio in the inflation molding method.
Melt deformation is applied in the (width) direction. Further, in the case of multi-directional deformation by the T-die molding method, the end of the melted film or sheet in the width direction is fixed to the caterpillar with a pin tenter, and the widths of the two caterpillars are widened in the TD direction. This is performed by deforming in the MD direction and simultaneously deforming in the MD direction by increasing the take-up speed.

【0016】溶融変形の程度は、本発明の効果を損なわ
ない範囲であれば特に制限はないが、下記式で表される
溶融変形率で、通常、10〜1000、好ましくは、3
0〜800、特に好ましくは、50〜400の範囲とな
るように変形応力を加えるのが好ましい。例えば、縦と
横に変形応力を加える場合は、変形率の縦横比がDR/
BUR≦50、好ましくは、≦20、特に好ましくは、
≦10となるように行うのがよい。
The degree of melt deformation is not particularly limited as long as it does not impair the effects of the present invention, but is a melt deformation rate represented by the following formula, and is usually 10 to 1000, preferably 3
It is preferable to apply a deformation stress so as to be in the range of 0 to 800, particularly preferably 50 to 400. For example, when a deformation stress is applied to the vertical and horizontal directions, the aspect ratio of the deformation rate is DR /
BUR ≦ 50, preferably ≦ 20, particularly preferably
It is preferable to do so that ≦ 10.

【0017】[0017]

【数1】溶融変形率=(D×ρ1 )/(t×ρ2 ) D:ダイギャップ(mm) ρ1 :樹脂組成物の溶融密度(g/cm3 ) t:成形フィルムまたはシートの膜厚(mm) ρ2 :成形フィルムまたはシートの固体密度(g/cm
3
## EQU1 ## Melt deformation rate = (D × ρ 1 ) / (t × ρ 2 ) D: Die gap (mm) ρ 1 : Melt density (g / cm 3 ) of resin composition t: Molded film or sheet Film thickness (mm) ρ 2 : Solid density (g / cm) of molded film or sheet
3 )

【0018】インフレーション成形法において、ダイギ
ャップが0.5mmの環状ダイを使用して溶融変形して
ポリエチレンフィルムを製造することが知られている
(特開昭62−223245)。従来、10〜100μ
mの厚さのフィルムまたはシートを成形する場合、ダイ
ギャップは通常1mm以下で、最大でも1.5mm以下
で行われている。しかしながら、従来のダイギャップの
範囲で成形して得られるフィルムまたはシートは、強
度、特にピン刺強度が必ずしも十分とはいえない。良好
な強度を有するバッテリーセパレーターを得るために
は、後述の冷却速度と共にダイギャップの範囲が重要で
ある。本発明においては、ダイギャップは好ましくは2
〜20mm、特に好ましくは、3〜10mmの範囲で行
うようにするのがよい。
In the inflation molding method, it is known to produce a polyethylene film by melt-deforming using an annular die having a die gap of 0.5 mm (JP-A-62-223245). Conventionally, 10-100μ
When a film or sheet having a thickness of m is formed, the die gap is usually 1 mm or less, and 1.5 mm or less at the maximum. However, the film or sheet obtained by molding in the range of the conventional die gap does not always have sufficient strength, particularly pin puncture strength. In order to obtain a battery separator having good strength, the range of the die gap is important together with the cooling rate described below. In the present invention, the die gap is preferably 2
˜20 mm, particularly preferably 3 to 10 mm.

【0019】かくして溶融変形したフィルムまたはシー
トを冷却した後、該フィルムまたはシートに含まれる可
塑剤を除去することにより、フィルムまたはシートを多
孔化する。その際、冷却は下記式で定義される冷却固化
時間が50秒以下、好ましくは、20秒以下となるよう
に行うのがよい。あまり冷却固化時間が長いと相分離が
進み、孔径が大きくなると共に強度が低下する。 冷却固化時間の定義
After the melt-deformed film or sheet is cooled, the plasticizer contained in the film or sheet is removed to make the film or sheet porous. At that time, the cooling is preferably performed such that the cooling and solidifying time defined by the following formula is 50 seconds or less, preferably 20 seconds or less. If the cooling and solidification time is too long, phase separation will proceed, the pore size will increase and the strength will decrease. Definition of cooling and solidification time

【0020】[0020]

【数2】 τ…冷却固化時間(秒) L…リップ出口と冷却固化ラインの距離(cm) (インフレーションでは、フロストライン高さに相当す
る。Tダイでは、エアーギャップに相当する。) V0 …リップ出口での樹脂の移動速度(cm/秒) V1 …冷却固化ラインでの樹脂の移動速度(cm/秒)
[Equation 2] τ ... Cooling and solidifying time (seconds) L ... Distance (cm) between the lip outlet and the cooling and solidifying line (corresponding to the frost line height in inflation. In T die, it corresponds to the air gap.) V 0 ... At the lip outlet Moving speed of resin (cm / sec) V 1 ... Moving speed of resin on the cooling and solidifying line (cm / sec)

【0021】可塑剤の除去方法としては、例えば、フィ
ルムまたはシート中の可塑剤をイソプロパノール、エタ
ノール、ヘキサンなどの有機溶媒で溶解し、溶媒置換に
より抽出除去する、所謂、公知の有機溶媒法によって行
うことができる。上記のようにして可塑剤を除去し多孔
化したフィルムまたはシートは、その機械的強度向上の
ために一軸または二軸延伸するか、或いは、100〜1
80℃程度で熱固定を行ってもよい。本発明において
は、延伸処理により高温膜形状維持能力が低下する傾向
にあるので、延伸処理を施していないフィルムまたはシ
ートを使用するのが良い。
The method for removing the plasticizer is, for example, a so-called known organic solvent method in which the plasticizer in the film or sheet is dissolved in an organic solvent such as isopropanol, ethanol or hexane and the solvent is replaced to extract and remove the plasticizer. be able to. The film or sheet obtained by removing the plasticizer and making it porous as described above is uniaxially or biaxially stretched to improve its mechanical strength, or 100 to 1
You may heat-fix at about 80 degreeC. In the present invention, it is preferable to use a film or sheet that has not been subjected to a stretching treatment, since the stretching treatment tends to reduce the ability to maintain the shape of the high temperature film.

【0022】本発明においては、特に、MD(機械方
向)及びTD(機械方向に対して垂直な方向)の収縮応
力が共に20gf以下、好ましくは、1〜10gfであ
るものが形状維持能力に優れているので好ましい。収縮
応力は、INTESCO高温引張試験機を使用し、幅2
5mmでチャック間距離50mmの条件下、室温から1
50℃まで昇温(5℃/min)して、150℃での収
縮応力をフィルムまたはシート厚さ25μmに換算した
値として求める。
In the present invention, particularly, those having a contraction stress in both MD (machine direction) and TD (direction perpendicular to the machine direction) of 20 gf or less, preferably 1 to 10 gf are excellent in shape retention ability. Therefore, it is preferable. Shrinkage stress was measured using INTESCO high temperature tensile tester, width 2
1 mm from room temperature under the condition of 5 mm and chuck distance of 50 mm
The temperature is raised to 50 ° C. (5 ° C./min), and the shrinkage stress at 150 ° C. is obtained as a value converted to a film or sheet thickness of 25 μm.

【0023】本発明によれば、10〜100μ、好まし
くは、15〜60μmの膜厚の多孔性フィルムまたはシ
ートを得ることができる。本発明のバッテリーセパレー
ターの平均孔径は通常1μ以下、好ましくは、0.01
〜1μ程度であり、透気度は20〜2,000秒/10
0cc、好ましくは、100〜700秒/100cc
で、空孔率は15〜80%、好ましくは、30〜70%
の範囲である。
According to the present invention, a porous film or sheet having a thickness of 10 to 100 μm, preferably 15 to 60 μm can be obtained. The average pore size of the battery separator of the present invention is usually 1 μm or less, preferably 0.01 μm.
Is about 1 μm, and the air permeability is 20 to 2,000 seconds / 10
0 cc, preferably 100 to 700 seconds / 100 cc
And the porosity is 15 to 80%, preferably 30 to 70%.
Is the range.

【0024】また、本発明により、得られる多孔性フィ
ルムまたはシートは機械的強度、特に、ピン刺強度およ
び耐熱破膜性が良好である。ピン刺強度は日本農林規格
告示1019号に準じて測定〔測定機器:レオメーター
(不動工業(株)製 NRM−2002J)ピン径1m
mφ 先端部0.5R、ピン刺速度300mm/mi
n〕した値で120g以上、好ましくは、140g(2
5μ膜厚)以上、特に好ましくは、170〜300g
(25μ膜厚)のものが得られる。また、耐熱破膜性
は、該フィルムまたはシートの高温域での熱によって生
じる収縮応力による破れ易さの指標で、バッテリー用セ
パレーターとして使用する場合は高温になっても膜形状
を維持し、電極を隔てておく必要があるため重要な特性
となる。透気度は、JIS P8117に従って測定し
た。使用装置は東洋精器社製B型ガーレ式デンソメータ
ー(商品名)を用いた。
Further, according to the present invention, the porous film or sheet obtained has good mechanical strength, especially pin puncture strength and heat rupture resistance. The pin puncture strength is measured according to Japanese Agriculture and Forestry Standards Notification No. 1019 [Measuring instrument: Rheometer (NRM-2002J manufactured by Fudo Kogyo Co., Ltd.) Pin diameter 1 m
mφ tip 0.5R, pin sticking speed 300mm / mi
n] is 120 g or more, preferably 140 g (2
5 μ film thickness) or more, particularly preferably 170 to 300 g
(25 μ film thickness) is obtained. Further, the heat-resistant film rupture resistance is an index of the fragility of the film or sheet due to shrinkage stress caused by heat in a high temperature range, and when used as a battery separator, maintains the film shape even at high temperatures, This is an important property because it is necessary to keep them separated. The air permeability was measured according to JIS P8117. The apparatus used was a B-type Gurley type densometer (trade name) manufactured by Toyo Seiki.

【0025】熱閉塞温度と熱破膜温度の測定方法は中央
部に直径4cmの穴の開いた1辺8cmの正方形のテフ
ロン膜(TF)及びアルミニウム板(Al)を用意し、
Al/TF/多孔性フィルム/TF/Alの順に重ねて
クリップ等で固定した試験片とする。試験片を130℃
のオーブンに入れ5℃/5分の昇温速度で昇温しつつ5
分ごとにサンプルを取出して透気度(JIS P811
7)を測定し、透気度が0となった温度を熱閉塞温度と
する。
The thermal blocking temperature and the thermal film rupture temperature were measured by preparing a square Teflon film (TF) with a side of 8 cm and a aluminum plate (Al) having a hole of 4 cm in the center.
A test piece is prepared by stacking Al / TF / porous film / TF / Al in this order and fixing them with a clip or the like. Test piece at 130 ℃
In an oven at 5 ℃ for 5 minutes while heating at 5 ℃
Samples are taken every minute and the air permeability (JIS P811
7) is measured, and the temperature at which the air permeability becomes 0 is defined as the heat blocking temperature.

【0026】同様にして昇温を続け目で確認して認識で
きるような穴が生じた温度を熱破膜温度とする。空孔率
の測定はフィルムの幅方向に5ケ所を直径3cmの円形
に打抜き、打抜いたフィルムの中心部の厚さを測定し、
また重量を測定し、下記式により計算する。
Similarly, the temperature at which a hole is formed so that the temperature can be continuously checked and recognized visually is defined as the thermal film rupture temperature. The porosity is measured by punching 5 places in the width direction of the film into a circle with a diameter of 3 cm, and measuring the thickness of the punched film at the center.
In addition, the weight is measured and calculated by the following formula.

【0027】[0027]

【数3】 空孔率(%)=(Vρ−W)/(Vρ)×100 V:フィルムの体積(5枚分) W:重量(5枚分) ρ:材料の密度## EQU00003 ## Porosity (%) = (V.rho.-W) / (V.rho.). Times.100 V: Volume of film (5 sheets) W: Weight (5 sheets) ρ: Material density

【0028】更に本発明により得られる多孔性フィルム
またはシートは、熱閉塞温度、即ち、所定温度下に5分
間保持したときに自己閉塞性を発現する温度が、100
〜150℃、好ましくは、105〜135℃であるた
め、電池の安全性からも好適である。100℃以下で閉
塞してしまうと実用上問題があり、閉塞温度が150℃
以上になると電池が過熱状態となり易く問題である。
Further, the porous film or sheet obtained by the present invention has a heat closing temperature, that is, a temperature at which the film exhibits self-closing property when kept at a predetermined temperature for 5 minutes.
It is preferably 150 to 150 ° C., and more preferably 105 to 135 ° C., which is also suitable from the viewpoint of battery safety. Closing below 100 ° C poses a practical problem, and the blocking temperature is 150 ° C.
If the above is the case, the battery is easily overheated, which is a problem.

【0029】また、熱破膜温度は160℃以上、望まし
くは180℃以上、特に200℃以上であることが望ま
しい。熱破膜温度が160℃未満では電池発熱時、セパ
レーターが150℃程度で熱閉塞しても温度の上昇が速
く、余熱で電池内が160℃以上となることも考えられ
るためである。従って安全性確保の為に、セパレーター
の熱閉塞温度を熱破膜温度との差が大きい事もポイント
となる。
The thermal membrane rupture temperature is preferably 160 ° C. or higher, more preferably 180 ° C. or higher, and particularly preferably 200 ° C. or higher. This is because when the thermal membrane rupture temperature is less than 160 ° C, the temperature rises quickly even if the separator is thermally closed at about 150 ° C when the battery heats up, and it is considered that residual heat causes the temperature inside the battery to be 160 ° C or higher. Therefore, in order to ensure safety, it is also important that the difference between the heat blocking temperature of the separator and the thermal film rupture temperature is large.

【0030】両者の温度差は30℃以上、好ましくは5
0℃以上ある事が熱閉塞後にも続く温度上昇に対して安
全面で余裕があり優れているセパレーターとなる。本発
明のバッテリーセパレーターは例えばリチウム電池、リ
チウムイオン二次電池等に好適に使用できる。また、本
発明において、多孔性フィルムまたはシートは、バブル
ポイント法によって測定したバブルポイント値が2〜8
kgf/cm2 、好ましくは、3〜7kgf/cm2
範囲のものが好適である。
The temperature difference between the two is 30 ° C. or more, preferably 5
When the temperature is 0 ° C or higher, the separator has a margin in terms of safety with respect to the temperature rise that continues even after thermal blockage and is an excellent separator. The battery separator of the present invention can be suitably used in, for example, lithium batteries, lithium ion secondary batteries and the like. Further, in the present invention, the porous film or sheet has a bubble point value of 2 to 8 measured by a bubble point method.
kgf / cm 2, preferably, suitably in the range of 3~7kgf / cm 2.

【0031】バブルポイント値は、JIS K3832
に記載されたバブルポイント法(溶媒としてイソプロピ
ルアルコールを使用)によって測定することができる値
であって、フィルムまたはシートの最大孔径を表わす。
バブルポイント値が2kgf/cm2 以下であると絶縁
性が不十分となり、また、過熱時の閉塞時間が長くなっ
て安全上問題であり、強度も低下する。逆に、8kgf
/cm2 以上であると、電池の内部抵抗が大きくなるの
で上記範囲であるものを使用するのが好ましい。
The bubble point value is JIS K3832.
The maximum pore size of a film or sheet, which is a value that can be measured by the bubble point method described above (using isopropyl alcohol as a solvent).
When the bubble point value is 2 kgf / cm 2 or less, the insulating property becomes insufficient, and the blocking time at the time of overheating becomes long, which is a safety problem and the strength also decreases. On the contrary, 8kgf
If it is / cm 2 or more, the internal resistance of the battery becomes large, so that it is preferable to use a battery in the above range.

【0032】本発明のリチウム電池(二次電池)は、上
述した多孔性フィルムまたはシートからなるセパレータ
ーと、非プロトン性電解液と、リチウム化合物からなる
正極(放電時正極)と、負極とにより構成される。ま
ず、非プロトン性電解液をセパレーターの空孔に充填す
るが、充填は滴下、含浸、塗布またはスプレー法により
容易に行なうことができる。これは多孔性フィルムまた
はシートが0.001〜0.1μmの平均貫通孔径を有
しているため、該フィルムまたはシートに対して接触角
が90°以下となる非プロトン性電解液が、毛管凝縮作
用により孔中に容易にとり込まれるためである。
The lithium battery (secondary battery) of the present invention comprises a separator made of the above-mentioned porous film or sheet, an aprotic electrolytic solution, a positive electrode made of a lithium compound (positive electrode at discharge), and a negative electrode. To be done. First, the aprotic electrolytic solution is filled in the pores of the separator, but the filling can be easily performed by dropping, impregnating, coating or spraying. This is because the porous film or sheet has an average through-hole diameter of 0.001 to 0.1 μm, and therefore, an aprotic electrolyte solution having a contact angle of 90 ° or less with respect to the film or sheet is not condensed by capillary condensation. This is because it is easily taken into the holes by the action.

【0033】非プロトン性電解液としては、プロピレン
カーボネート、ジメチルスルホキシド、3−メチル−
1,3−オキサゾリジン−2−オン、スルホラン、1,
2−ジメトキシエタン、2−メチルテトラヒドロフラン
などの単独、あるいは多成分系の有機溶媒に、LiBF
4 、LiClO4 などのリチウム塩を溶解したものを使
用することができる。特に、プロピレンカーボネート、
1,2−ジメトキシエタン、LiBF4 の組み合わせ、
ジメチルスルホキシド、1,2−ジメトキシエタン、L
iBF6 の組み合わせ、プロピレンカーボネート、1,
2−ジメトキシエタン、LiClO4 の組み合わせは、
室温での電気伝導度が10-3〜10-2s/cmであるこ
とが知られており、好適である。
As the aprotic electrolytic solution, propylene carbonate, dimethyl sulfoxide, 3-methyl-
1,3-oxazolidin-2-one, sulfolane, 1,
A single or multi-component organic solvent such as 2-dimethoxyethane or 2-methyltetrahydrofuran may be mixed with LiBF
A solution in which a lithium salt such as 4 , LiClO 4 or the like is dissolved can be used. In particular, propylene carbonate,
A combination of 1,2-dimethoxyethane and LiBF 4 ,
Dimethyl sulfoxide, 1,2-dimethoxyethane, L
iBF 6 combination, propylene carbonate, 1,
The combination of 2-dimethoxyethane and LiClO 4 is
The electrical conductivity at room temperature is known to be 10 −3 to 10 −2 s / cm, which is preferable.

【0034】このようにして得られたセパレーターを用
いれば、信頼性及び安全性に優れたリチウム電池とする
ことができる。本発明のリチウム電池は、上述した非プ
ロトン性電解液を電解質として用いた、いわゆる非水性
電解質型の電池であり、その構造は、基本的に通常の同
種のリチウム電池と同様となる。正負両極間にはこれま
で詳述した本発明のセパレーターを設置している。
By using the separator thus obtained, a lithium battery having excellent reliability and safety can be obtained. The lithium battery of the present invention is a so-called non-aqueous electrolyte type battery using the above-mentioned aprotic electrolytic solution as an electrolyte, and its structure is basically the same as that of a normal lithium battery of the same type. The separator of the present invention, which has been described in detail so far, is installed between the positive and negative electrodes.

【0035】一次電池とする場合には負極にリチウム化
合物を用い、正極としてはクロム酸銀、フッ化炭素、二
酸化マンガン等を用いることができる。また二次電池と
する場合には、正極(放電時正極)としてリチウム化合
物、又はアルミニウムや可融合金(Pb,Cd,Inを
含む合金)や炭素にリチウムを吸蔵させた物を用い、負
極としては層状構造としたTiS2 、MoS2 やNbS
3 などの金属カルコゲン化物や、トンネル状空孔をも
つCoO2 、Cr2 5 やV2 5 (・P2 5 )、M
nO2 (・LiO2 )などの金属酸化物、ポリアセチレ
ンやポリアニリンなどの共役系高分子化合物などを用い
ることができる。
When the primary battery is used, the negative electrode is lithiated
Compound, and the positive electrode is silver chromate, fluorocarbon,
Manganese oxide or the like can be used. Also with a secondary battery
When using a lithium compound
Or aluminum or fusible gold (Pb, Cd, In
(Including alloys) and carbon that absorbs lithium
TiS with layered structure as pole2, MoS2And NbS
e3Such as metal chalcogenides and tunnel-shaped holes
Two CoO2, Cr2OFiveAnd V2OFive(・ P2O Five), M
nO2(・ LiO2) Etc. metal oxides, polyacetylene
Using conjugated polymer compounds such as amine and polyaniline
You can

【0036】[0036]

【実施例】以下に実施例を挙げてさらに本発明を具体的
に説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0037】実施例1 融点135℃で、分子量(粘度平均)2×106 の超高
分子量ポリエチレン粉末20重量部とセリルアルコール
80重量部をφ40mm押出機に供給して230℃で混
練しながら連続的に幅400mm、ダイギャップ2mm
のTダイより押し出し、引張り速度2.5m/minで
引取ることによりMD方向(引取方向)に溶融変形を加
え、膜厚0.05mmのシートを得た。その際、ダイ温
度は170℃、ギャップでの線速度は7.1cm/mi
n、ドラフト率(Dr)は35.1であった。本実施例
で使用した樹脂組成物の溶融密度は0.76g/cm3
で、押し出されたシートの固体密度は0.867g/c
3 であったので、かかる溶融変形において加えられた
溶融変形率は35.1であった。
Example 1 20 parts by weight of ultra-high molecular weight polyethylene powder having a melting point of 135 ° C. and a molecular weight (viscosity average) of 2 × 10 6 and 80 parts by weight of ceryl alcohol were fed into a φ40 mm extruder and continuously kneaded at 230 ° C. Width 400mm, die gap 2mm
Was extruded from the T-die and drawn at a pulling speed of 2.5 m / min to be melt-deformed in the MD direction (drawing direction) to obtain a sheet having a thickness of 0.05 mm. At that time, the die temperature was 170 ° C., and the linear velocity in the gap was 7.1 cm / mi.
n, the draft ratio (Dr) was 35.1. The resin composition used in this example has a melt density of 0.76 g / cm 3.
And the solid density of the extruded sheet is 0.867 g / c
Since it was m 3 , the melt deformation rate applied in such melt deformation was 35.1.

【0038】得られたシートを80℃のイソプロピルア
ルコール中に浸漬し、セリルアルコールをシート中から
抽出除去し、次いで、表面温度125℃の加熱ピンチロ
ールにて30秒間熱処理して、27μの膜厚の多孔性樹
脂膜を得た。この膜の物性を表1に示した。得られた多
孔性樹脂膜(幅58mm、長さ1mに切断したもの)を
リチウム電池(負極:コバルト酸リチウム、正極:カー
ボン、電解液:プロピレンカーボネート)の正極と負極
の間に挟み、巻き込んで60mmの長さ、15mmの径
の金属容器に収納してリチウム二次電池とした。
The obtained sheet was dipped in isopropyl alcohol at 80 ° C. to extract and remove ceryl alcohol from the sheet, and then heat-treated with a heating pinch roll having a surface temperature of 125 ° C. for 30 seconds to give a film thickness of 27 μm. To obtain a porous resin film. The physical properties of this film are shown in Table 1. The obtained porous resin film (width 58 mm, length 1 m cut) was sandwiched between the positive electrode and the negative electrode of a lithium battery (negative electrode: lithium cobalt oxide, positive electrode: carbon, electrolytic solution: propylene carbonate), and rolled up. The lithium secondary battery was housed in a metal container having a length of 60 mm and a diameter of 15 mm.

【0039】得られた二次電池の組上げ時不良率、外部
短絡試験の結果を表1に示す。組上げ時不良率(%)
は、リチウム電池の正極と負極との間に多孔性樹脂膜を
挟み、ピン等で刺して保持しつつ巻き込むが、この際に
破膜を起す等して電池に組上げられなかった割合を百分
率で示したものである。外部短絡試験は、リチウム電池
に組み上げた後、電池の正極と負極を外部で短絡させ、
電池の状況を観察した結果である。
Table 1 shows the assembled defective rate of the obtained secondary battery and the result of the external short circuit test. Failure rate during assembly (%)
In the lithium battery, a porous resin film is sandwiched between the positive electrode and the negative electrode, and it is stabbed with a pin or the like and held and caught, but at this time, the percentage that could not be assembled into the battery due to rupture of the film etc. is expressed in percentage. It is shown. In the external short-circuit test, after assembling into a lithium battery, the positive electrode and negative electrode of the battery are short-circuited externally,
It is the result of observing the condition of the battery.

【0040】実施例2 実施例1において、幅500mm、ダイギャップ6.2
mmのTダイを使用し、ギャップでの線速度2.3cm
/min、引取り速度2.3m/min(Dr98.
8)の条件下で引取ることにより、膜厚0.055mm
のシートを作成した。かかる溶融変形において加えられ
た溶融変形率は約98.8であった。次いで、このシー
トを実施例1と同様にしてセリルアルコールを除去後、
熱処理して、28μの膜厚の多孔性樹脂膜を得た。この
膜の物性を表1に示した。得られた多孔性樹脂膜を実施
例1と同様にしてリチウム電池のセパレーターとして用
いた。
Example 2 In Example 1, the width was 500 mm and the die gap was 6.2.
mm T-die, linear velocity at gap 2.3 cm
/ Min, take-off speed 2.3 m / min (Dr98.
By taking off under the condition of 8), the film thickness is 0.055mm
Created a sheet of. The melt deformation rate applied in this melt deformation was about 98.8. Then, after removing the ceryl alcohol from this sheet in the same manner as in Example 1,
Heat treatment was performed to obtain a porous resin film having a thickness of 28μ. The physical properties of this film are shown in Table 1. The obtained porous resin film was used as a separator for a lithium battery in the same manner as in Example 1.

【0041】実施例3 融点138℃で、分子量(粘度平均)3×106 の超高
分子量ポリエチレン粉末30重量部とステアリルアルコ
ール70重量部をφ50mm押出機に供給して200℃
で混練しながら連続的にダイ直径50mm、ダイギャッ
プ4.5mmのインフレダイより押し出し、引取り速度
10m/min(ダイ温度180℃、ギャップでの線速
度25.4cm/min、Dr39.3)で引取り、ブ
ロー比(BUR)2.4にて溶融変形を加え、膜厚0.
043mmのシートを得た。本実施例で使用した樹脂組
成物の溶融密度は0.79g/cm3 で、押し出された
シートの固体密度は0.876g/cm3 であったの
で、かかる溶融変形において加えられた溶融変形率は約
94.4であった。このシートを60℃のイソプロピル
アルコール中に浸漬して、ステアリルアルコールを抽出
し、ついで実施例1と同様にして熱処理して膜厚24μ
の多孔性樹脂膜を得た。この膜の物性を表1に示した。
得られた多孔性樹脂膜を実施例1と同様にしてリチウム
電池のセパレーターとして用いた。試験の結果を表1に
示す。
Example 3 30 parts by weight of ultra-high molecular weight polyethylene powder having a melting point of 138 ° C. and a molecular weight (viscosity average) of 3 × 10 6 and 70 parts by weight of stearyl alcohol were fed to a φ50 mm extruder at 200 ° C.
While continuously kneading, extrude from an inflation die having a die diameter of 50 mm and a die gap of 4.5 mm at a take-up speed of 10 m / min (die temperature 180 ° C., linear velocity in the gap 25.4 cm / min, Dr 39.3). Take-up, melt deformation was applied at a blow ratio (BUR) of 2.4, and a film thickness of 0.
A 043 mm sheet was obtained. The melt density of the resin composition used in this example was 0.79 g / cm 3 , and the solid density of the extruded sheet was 0.876 g / cm 3 , so the melt deformation rate applied in such melt deformation was Was about 94.4. This sheet was dipped in isopropyl alcohol at 60 ° C. to extract stearyl alcohol, and then heat treated in the same manner as in Example 1 to obtain a film thickness of 24 μm.
To obtain a porous resin film. The physical properties of this film are shown in Table 1.
The obtained porous resin film was used as a separator for a lithium battery in the same manner as in Example 1. The test results are shown in Table 1.

【0042】実施例4 実施例3において、ダイ直径40mm、ダイギャップ
0.28mmのインフレダイよりダイ温度170℃、D
r1.0、BUR5.5にて溶融変形(溶融変形率約
5.5)を加え、次いで実施例3と同様に可塑剤除去、
熱処理して膜厚28μの多孔性樹脂膜を得た。この膜の
物性を表1に示した。得られた多孔性樹脂膜を実施例1
と同様にしてリチウム電池のセパレーターとして用い
た。試験結果を表1に示す。
Example 4 In Example 3, a die diameter of 40 mm and a die gap of 0.28 mm were used to obtain a die temperature of 170 ° C. and D
Melt deformation (melt deformation rate of about 5.5) was added at r1.0 and BUR 5.5, and then the plasticizer was removed as in Example 3.
Heat treatment was performed to obtain a porous resin film having a thickness of 28 μm. The physical properties of this film are shown in Table 1. The obtained porous resin film was used in Example 1.
It was used as a separator for a lithium battery in the same manner as. The test results are shown in Table 1.

【0043】実施例5 実施例1において、Dr43、BUR1.1とするほか
は同様にして、膜厚60μの多孔性樹脂膜を得た。この
膜の物性を表1に示した。得られた多孔性樹脂膜を実施
例1と同様にしてリチウム電池のセパレーターとして用
いた。試験結果を表1に示す。
Example 5 A porous resin film having a thickness of 60 μm was obtained in the same manner as in Example 1 except that Dr43 and BUR1.1 were used. The physical properties of this film are shown in Table 1. The obtained porous resin film was used as a separator for a lithium battery in the same manner as in Example 1. The test results are shown in Table 1.

【0044】実施例6 融点135℃で、分子量(粘度平均)2×106 の超高
分子量ポリエチレン粉末30重量部とセリルアルコール
70重量部をφ90mm押出機に供給して230℃で混
練しながら連続的に幅500mm、ダイギャップ3.5
mmのTダイより押し出し、樹脂組成物の温度を加熱ロ
ールおよび赤外線ヒーターで170℃に保持し、ピンテ
ンターでDr30.7で引取りながら、シート幅を12
50mmまで広げて溶融変形(溶融変形率76.7)し
た後、冷却し、膜厚40μのシートを得た。このシート
を実施例1と同様にしてセリルアルコールを除去し、熱
処理して膜厚20μの多孔性樹脂膜を得た。この膜の物
性を表1に示した。得られた多孔性樹脂膜を実施例1と
同様にしてリチウム電池のセパレーターとして用いた。
試験結果を表1に示す。
Example 6 30 parts by weight of ultrahigh molecular weight polyethylene powder having a melting point of 135 ° C. and a molecular weight (viscosity average) of 2 × 10 6 and 70 parts by weight of ceryl alcohol were fed to a φ90 mm extruder and continuously kneaded at 230 ° C. Width 500mm, die gap 3.5
While extruding from a T-die of mm, the temperature of the resin composition is maintained at 170 ° C. with a heating roll and an infrared heater, and the sheet width is 12 while being drawn by a pin tenter at Dr 30.7.
The sheet was spread to 50 mm, melt-deformed (melt-deformation rate 76.7), and then cooled to obtain a sheet having a film thickness of 40 μm. Ceryl alcohol was removed from this sheet in the same manner as in Example 1 and heat treatment was performed to obtain a porous resin film having a thickness of 20 μm. The physical properties of this film are shown in Table 1. The obtained porous resin film was used as a separator for a lithium battery in the same manner as in Example 1.
The test results are shown in Table 1.

【0045】実施例7 実施例3において、押出機として50mmφの二軸押出
機を使用し、ダイ直径40mm、ダイギャップ5.6m
mのインフレダイよりダイ温度170℃、Dr17.
6、BUR5.5にて溶融変形(溶融変形率約96.
8)を加える以外は実施例3と同様にして厚さ52μm
のシートを得た。次いで実施例3と同様に可塑剤除去
し、ピンチローラ式の熱処理機で熱処理して膜厚28μ
の多孔性樹脂膜を得た。この膜のバブルポイント値は
5.5kgf/cm2 で、縦方向収縮応力は12gfで
あった。また他の物性を表1に示した。得られた多孔性
樹脂膜を実施例1と同様にしてリチウム電池のセパレー
ターとして用いた。試験結果を表1に示す。
Example 7 In Example 3, a twin-screw extruder having a diameter of 50 mm was used as an extruder, the die diameter was 40 mm, and the die gap was 5.6 m.
m inflating die temperature 170 ° C., Dr 17.
6, melt deformation at BUR 5.5 (melt deformation rate of about 96.
The thickness is 52 μm in the same manner as in Example 3 except that 8) is added.
Got a sheet of. Then, the plasticizer was removed in the same manner as in Example 3, and heat treatment was performed using a pinch roller type heat treatment machine to obtain a film thickness of 28 μm.
To obtain a porous resin film. The bubble point value of this film was 5.5 kgf / cm 2 and the longitudinal shrinkage stress was 12 gf. Other physical properties are shown in Table 1. The obtained porous resin film was used as a separator for a lithium battery in the same manner as in Example 1. The test results are shown in Table 1.

【0046】実施例8 実施例7において、融点135℃で分子量2.5×10
6 の超高分子量ポリエチレン粉末25重量部とステアリ
ルアルコール75重量部と分子量3,500のポリエチ
レンワックス10重量部を押出機に供給する以外は同様
にして多孔性樹脂膜を得た、バブルポイント値は5.2
kgf/cm2 で、縦方向収縮応力は7gfであった。
リチウム電池のセパレーターとして用いた。試験結果を
表1に示す。
Example 8 In Example 7, the melting point was 135 ° C. and the molecular weight was 2.5 × 10 5.
A porous resin film was obtained in the same manner except that 25 parts by weight of 6 ultra high molecular weight polyethylene powder, 75 parts by weight of stearyl alcohol and 10 parts by weight of polyethylene wax having a molecular weight of 3,500 were supplied to the extruder. The bubble point value was 5.2
The longitudinal shrinkage stress was 7 gf at kgf / cm 2 .
It was used as a separator for lithium batteries. The test results are shown in Table 1.

【0047】比較例1 市販のポリプロピレン製多孔膜(膜厚25μ、ピン刺し
強度376g(厚さ25μ当り)、透気度660sec
/100cc、熱閉塞温度177℃、熱破膜温度180
℃)を用いて実施例1と同様にして電池を組上げた。表
1に電池の性能を記す。
Comparative Example 1 Commercially available polypropylene porous film (film thickness 25 μ, pin puncture strength 376 g (per 25 μ thickness), air permeability 660 sec.
/ 100cc, thermal blocking temperature 177 ° C, thermal film rupture temperature 180
A battery was assembled in the same manner as in Example 1 by using (° C.). Table 1 shows the battery performance.

【0048】比較例2 実施例1で用いたと同じ融点135℃、分子量(粘度平
均)2×106 の超高ポリエチレン粉末30重量部にセ
リルアルコール70重量部とを40mmφの二軸押出機
に供給して230℃で混練しながらダイ温度170℃で
幅500mmダイギャップ0.25mmのダイより連続
的に押出しドラフト率2.5でシート化した。シート厚
は85μであった。冷却後、実施例1と同様にしてセリ
ルアルコールを除去した後、ロール延伸機で2.0倍に
延伸(延伸温度125℃)して、膜厚30μの多孔性樹
脂成形体を得た。この成形体の物性及び実施例1と同様
にして電池とした試験結果を表1に示した。
Comparative Example 2 30 parts by weight of ultra-high polyethylene powder having the same melting point of 135 ° C. and molecular weight (viscosity average) of 2 × 10 6 as used in Example 1 and 70 parts by weight of ceryl alcohol were fed to a 40 mmφ twin-screw extruder. While being kneaded at 230 ° C., it was continuously extruded at a die temperature of 170 ° C. from a die having a width of 500 mm and a die gap of 0.25 mm to form a sheet with a draft ratio of 2.5. The sheet thickness was 85μ. After cooling, the ceryl alcohol was removed in the same manner as in Example 1, and then stretched 2.0 times by a roll stretching machine (stretching temperature 125 ° C.) to obtain a porous resin molded product having a film thickness of 30 μm. Table 1 shows the physical properties of this molded article and the test results of a battery made in the same manner as in Example 1.

【0049】比較例3 ダイギャップ0.16mm、シート厚を55μとする以
外は比較例2と同様にした。延伸はせず実施例1と同様
に熱処理を加え膜厚25μの多孔性樹脂成形体を得た。
この膜の物性及び実施例1と同様にして電池とした試験
結果を表1に示した。
Comparative Example 3 The procedure of Comparative Example 2 was repeated except that the die gap was 0.16 mm and the sheet thickness was 55 μm. Heat treatment was performed in the same manner as in Example 1 without stretching, to obtain a porous resin molded body having a film thickness of 25 μm.
Table 1 shows the physical properties of this film and the test results of the battery as in Example 1.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【発明の効果】本発明のバッテリーセパレーターをリチ
ウム電池等の二次電池に用いれば、異常な加熱や、電池
自体が壊れること等が防止され、安全性の高い二次電池
が得られる。
When the battery separator of the present invention is used in a secondary battery such as a lithium battery, abnormal heating and breakage of the battery itself can be prevented, and a highly safe secondary battery can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 恭資 岡山県倉敷市潮通三丁目10番地 三菱化成 株式会社水島工場内 (72)発明者 宇佐見 康 岡山県倉敷市潮通三丁目10番地 三菱化成 株式会社水島工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kyosuke Watanabe 3-10, Shiodo, Kurashiki City, Okayama Prefecture Mitsubishi Kasei Co., Ltd. Mizushima Plant (72) Inventor, Yasushi Usami 3-10, Shiodo, Kurashiki, Okayama Prefecture Mizushima Plant, Mitsubishi Kasei Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 粘度平均分子量が50万以上の超高分子
量ポリエチレンからなる多孔性フィルムまたはシートで
あって、しかも、(a)厚さ10〜100μm、(b)
透気度20〜2,000秒/100cc、(c)空孔率
15〜80%、(d)ピン刺強度120g(膜厚25μ
m当り)以上、(e)熱閉塞温度90〜150℃および
(f)熱破膜温度160℃以上の特性を有する多孔性フ
ィルムまたはシートから形成されたバッテリーセパレー
ター。
1. A porous film or sheet made of ultra high molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more, wherein (a) the thickness is 10 to 100 μm, and (b) is
Air permeability 20 to 2,000 seconds / 100 cc, (c) Porosity 15 to 80%, (d) Pin penetration strength 120 g (film thickness 25 μ
A battery separator formed from a porous film or sheet having the characteristics of (e) heat blocking temperature of 90 to 150 ° C. and (f) thermal membrane rupture temperature of 160 ° C. or more.
【請求項2】 請求項1記載の多孔性フィルムまたはシ
ートの熱閉塞温度と熱破膜温度の差が30℃以上である
バッテリーセパレーター。
2. A battery separator in which the difference between the heat blocking temperature and the heat rupture temperature of the porous film or sheet according to claim 1 is 30 ° C. or more.
【請求項3】 請求項1記載の多孔性フィルムまたはシ
ートのバブルポイント法によるバブルポイント値が2〜
8kgf/cm2 であるバッテリーセパレーター。
3. The bubble point value of the porous film or sheet according to claim 1 measured by the bubble point method is 2 to 2.
Battery separator with 8 kgf / cm 2 .
【請求項4】 請求項1記載の多孔性フィルムまたはシ
ートが、粘度平均分子量が50万以上の超高分子量ポリ
エチレン及びポリブテン−1、ポリプロピレンまたは粘
度平均分子量が50万未満のポリエチレンからなるバッ
テリーセパレーター。
4. A battery separator in which the porous film or sheet according to claim 1 is made of ultra-high molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more and polybutene-1, polypropylene or polyethylene having a viscosity average molecular weight of less than 500,000.
【請求項5】 請求項3記載の粘度平均分子量が50万
未満のポリエチレンが、ポリエチレンワックス、低密度
ポリエチレン及び高密度ポリエチレン、から選ばれるも
のであるバッテリーセパレーター。
5. A battery separator according to claim 3, wherein the polyethylene having a viscosity average molecular weight of less than 500,000 is selected from polyethylene wax, low density polyethylene and high density polyethylene.
【請求項6】 請求項1記載のバッテリーセパレーター
を組み込んでなるリチウム電池。
6. A lithium battery incorporating the battery separator according to claim 1.
JP5276947A 1993-05-11 1993-11-05 Battery separator and lithium battery using the same Expired - Lifetime JP3050021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5276947A JP3050021B2 (en) 1993-05-11 1993-11-05 Battery separator and lithium battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-109619 1993-05-11
JP10961993 1993-05-11
JP5276947A JP3050021B2 (en) 1993-05-11 1993-11-05 Battery separator and lithium battery using the same

Publications (2)

Publication Number Publication Date
JPH0729563A true JPH0729563A (en) 1995-01-31
JP3050021B2 JP3050021B2 (en) 2000-06-05

Family

ID=26449352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5276947A Expired - Lifetime JP3050021B2 (en) 1993-05-11 1993-11-05 Battery separator and lithium battery using the same

Country Status (1)

Country Link
JP (1) JP3050021B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027597A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH1064501A (en) * 1996-08-22 1998-03-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH10125299A (en) * 1996-10-25 1998-05-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JPH10296839A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Manufacture of polyolefin porous film
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
US6586912B1 (en) 2002-01-09 2003-07-01 Quallion Llc Method and apparatus for amplitude limiting battery temperature spikes
JP2004006408A (en) * 1998-09-17 2004-01-08 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
US6891353B2 (en) 2001-11-07 2005-05-10 Quallion Llc Safety method, device and system for an energy storage device
JP2006045328A (en) * 2004-08-04 2006-02-16 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous film
WO2008038818A1 (en) 2006-09-26 2008-04-03 Sumitomo Chemical Company, Limited Porous film and separator for nonaqueous electrolyte secondary battery
WO2008044513A1 (en) 2006-09-26 2008-04-17 Sumitomo Chemical Company, Limited Multilayer porous film and separator for nonaqueous electrolyte secondary battery
WO2008105555A1 (en) 2007-02-27 2008-09-04 Sumitomo Chemical Company, Limited Separator
WO2008123331A1 (en) 2007-03-23 2008-10-16 Sumitomo Chemical Company, Limited Separator
US7443136B2 (en) 2002-01-09 2008-10-28 Quallion Llc Method and device employing heat absorber for limiting battery temperature spikes
US7592776B2 (en) 2001-11-07 2009-09-22 Quallion Llc Energy storage device configured to discharge energy in response to unsafe conditions
WO2010013837A1 (en) 2008-07-30 2010-02-04 住友化学株式会社 Sodium rechargeable battery
WO2010024304A1 (en) 2008-08-27 2010-03-04 住友化学株式会社 Electrode active material and method for producing same
WO2010027038A1 (en) 2008-09-02 2010-03-11 住友化学株式会社 Electrode active material, electrode, and nonaqueous electrolyte secondary battery
JP2011063025A (en) * 2010-10-04 2011-03-31 Asahi Kasei E-Materials Corp Polyolefin-made microporous film
WO2011078098A1 (en) 2009-12-24 2011-06-30 住友化学株式会社 Laminated film, and nonaqueous electrolyte secondary battery
EP2472639A1 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
US8323837B2 (en) 2007-03-23 2012-12-04 Sumitomo Chemical Company, Limited Porous film
JP2013126765A (en) * 2013-02-04 2013-06-27 Asahi Kasei E-Materials Corp Microporous polyolefin film
WO2014017662A1 (en) 2012-07-27 2014-01-30 住友化学株式会社 Alumina slurry, method for producing same, and coating liquid
US8642212B2 (en) * 2003-11-21 2014-02-04 Eveready Battery Company, Inc. High discharge capacity lithium battery
JP2014524113A (en) * 2011-07-04 2014-09-18 エルジー・ケム・リミテッド Composition for manufacturing separator for electrochemical device, method for manufacturing separator for electrochemical device, and electrochemical device using the same
US9837652B2 (en) 2014-04-09 2017-12-05 Sumitomo Chemical Company, Limited Layered porous film, and non-aqueous electrolyte secondary battery
US9941499B2 (en) 2015-11-30 2018-04-10 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery laminated separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
US10059085B2 (en) 2014-08-29 2018-08-28 Sumitomo Chemical Company, Limited Wound body of porous film, and manufacturing method thereof
US10230085B2 (en) 2014-04-08 2019-03-12 Sumitomo Chemical Company, Limited Method for producing laminated porous film
US10297805B2 (en) 2014-04-08 2019-05-21 Sumitomo Chemcial Company, Limited Method for producing separator
US10468653B2 (en) 2014-04-10 2019-11-05 Sumitomo Chemical Company, Limited Layered porous film, and non-aqueous electrolyte secondary battery
KR20200106880A (en) * 2019-03-04 2020-09-15 아사히 가세이 가부시키가이샤 Polyolefin microporous membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2145757A4 (en) 2007-05-07 2011-11-30 Mitsubishi Plastics Inc Laminated porous film and separator for cell

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027597A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH1064501A (en) * 1996-08-22 1998-03-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
JPH10125299A (en) * 1996-10-25 1998-05-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JPH10296839A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Manufacture of polyolefin porous film
JP2004006408A (en) * 1998-09-17 2004-01-08 Toshiba Corp Nonaqueous electrolyte secondary battery and its manufacturing method
US6891353B2 (en) 2001-11-07 2005-05-10 Quallion Llc Safety method, device and system for an energy storage device
US7592776B2 (en) 2001-11-07 2009-09-22 Quallion Llc Energy storage device configured to discharge energy in response to unsafe conditions
US7893659B2 (en) 2002-01-09 2011-02-22 Quallion Llc Method and apparatus for amplitude limiting battery temperature spikes
US6586912B1 (en) 2002-01-09 2003-07-01 Quallion Llc Method and apparatus for amplitude limiting battery temperature spikes
US7443136B2 (en) 2002-01-09 2008-10-28 Quallion Llc Method and device employing heat absorber for limiting battery temperature spikes
US8642212B2 (en) * 2003-11-21 2014-02-04 Eveready Battery Company, Inc. High discharge capacity lithium battery
EP2472637A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
EP2472638A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
EP2472636A2 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
EP2472639A1 (en) 2003-12-15 2012-07-04 Mitsubishi Chemical Corporation Nonaqueous-electrolyte secondary battery
JP2006045328A (en) * 2004-08-04 2006-02-16 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous film
WO2008038818A1 (en) 2006-09-26 2008-04-03 Sumitomo Chemical Company, Limited Porous film and separator for nonaqueous electrolyte secondary battery
WO2008044513A1 (en) 2006-09-26 2008-04-17 Sumitomo Chemical Company, Limited Multilayer porous film and separator for nonaqueous electrolyte secondary battery
WO2008105555A1 (en) 2007-02-27 2008-09-04 Sumitomo Chemical Company, Limited Separator
WO2008123331A1 (en) 2007-03-23 2008-10-16 Sumitomo Chemical Company, Limited Separator
US8313865B2 (en) 2007-03-23 2012-11-20 Sumitomo Chemical Company, Limited Separator
US8323837B2 (en) 2007-03-23 2012-12-04 Sumitomo Chemical Company, Limited Porous film
WO2010013837A1 (en) 2008-07-30 2010-02-04 住友化学株式会社 Sodium rechargeable battery
WO2010024304A1 (en) 2008-08-27 2010-03-04 住友化学株式会社 Electrode active material and method for producing same
WO2010027038A1 (en) 2008-09-02 2010-03-11 住友化学株式会社 Electrode active material, electrode, and nonaqueous electrolyte secondary battery
WO2011078098A1 (en) 2009-12-24 2011-06-30 住友化学株式会社 Laminated film, and nonaqueous electrolyte secondary battery
JP2011063025A (en) * 2010-10-04 2011-03-31 Asahi Kasei E-Materials Corp Polyolefin-made microporous film
JP2014524113A (en) * 2011-07-04 2014-09-18 エルジー・ケム・リミテッド Composition for manufacturing separator for electrochemical device, method for manufacturing separator for electrochemical device, and electrochemical device using the same
WO2014017662A1 (en) 2012-07-27 2014-01-30 住友化学株式会社 Alumina slurry, method for producing same, and coating liquid
JP2013126765A (en) * 2013-02-04 2013-06-27 Asahi Kasei E-Materials Corp Microporous polyolefin film
US10230085B2 (en) 2014-04-08 2019-03-12 Sumitomo Chemical Company, Limited Method for producing laminated porous film
US10297805B2 (en) 2014-04-08 2019-05-21 Sumitomo Chemcial Company, Limited Method for producing separator
US9837652B2 (en) 2014-04-09 2017-12-05 Sumitomo Chemical Company, Limited Layered porous film, and non-aqueous electrolyte secondary battery
US10944088B2 (en) 2014-04-09 2021-03-09 Sumitomo Chemical Company, Limited Layered porous film, and non-aqueous electrolyte secondary battery
US10468653B2 (en) 2014-04-10 2019-11-05 Sumitomo Chemical Company, Limited Layered porous film, and non-aqueous electrolyte secondary battery
US10059085B2 (en) 2014-08-29 2018-08-28 Sumitomo Chemical Company, Limited Wound body of porous film, and manufacturing method thereof
US9941499B2 (en) 2015-11-30 2018-04-10 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery laminated separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
KR20200106880A (en) * 2019-03-04 2020-09-15 아사히 가세이 가부시키가이샤 Polyolefin microporous membrane

Also Published As

Publication number Publication date
JP3050021B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP3050021B2 (en) Battery separator and lithium battery using the same
EP0603500B1 (en) Porous film or sheet, battery separator and lithium battery
JP2883726B2 (en) Manufacturing method of battery separator
CN101983219B (en) Polyolefin microporous membrane and products of winding
JP5595459B2 (en) Polyolefin microporous membrane with excellent physical properties and high-temperature thermal stability
US8058348B2 (en) Polyolefin microporous film
EP1168469B1 (en) Porous film and separator for battery using the same
US6127438A (en) Polyethylene microporous film and process for producing the same
JP2009108323A (en) Polyolefin microporous membrane and method for evaluating the same
WO2006025323A1 (en) Microporous polyolefin film and separator for storage cell
JP6334568B2 (en) Separation membrane manufacturing method, separation membrane and battery using the same
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
JPWO2019163935A1 (en) Porous polyolefin film
JP5311361B2 (en) Porous film, battery separator and battery
US7662518B1 (en) Shutdown separators with improved properties
JP4074116B2 (en) Method for producing microporous membrane
JP2000204188A (en) Finely porous membrane of polyethylene
JPH10261393A (en) Battery separator
KR102045548B1 (en) Manufacturing method of a porous separator
JPH0873643A (en) Porous film
JPH06182918A (en) Polyethylene laminated porpous film and its manufacture
JP2009138159A (en) Microporous membrane
JP4120116B2 (en) Composite porous film and method for producing the same
JPH09171808A (en) Manufacture of battery separator
JP6888642B2 (en) Porous film wound body and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 14

EXPY Cancellation because of completion of term