JPH07294779A - Core diameter expanding optical fiber with lens and its production - Google Patents

Core diameter expanding optical fiber with lens and its production

Info

Publication number
JPH07294779A
JPH07294779A JP6089932A JP8993294A JPH07294779A JP H07294779 A JPH07294779 A JP H07294779A JP 6089932 A JP6089932 A JP 6089932A JP 8993294 A JP8993294 A JP 8993294A JP H07294779 A JPH07294779 A JP H07294779A
Authority
JP
Japan
Prior art keywords
optical fiber
lens
core diameter
tec
convex lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6089932A
Other languages
Japanese (ja)
Inventor
Mitsuo Ukechi
光雄 請地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP6089932A priority Critical patent/JPH07294779A/en
Publication of JPH07294779A publication Critical patent/JPH07294779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a single mode fiber which facilitates an aligning work, has a large permissible value of the misalignment of an optical axis with an LD and features good coupling efficiency. CONSTITUTION:A projecting lens 6 is formed on the end face of a core diameter expanding single mode optical fiber (TEC) 4. A hemispherical or aspherical lens is formed as a convex lens 6. The end of the TEC 4 is immersed into a liquid transparent material and is pulled up. The hemispherical lens is formed if the drop sticking to the end face is cured. The lens having an arbitrary shape is formed as well if the drop is pressed to a mold before curing. Such optical fiber is large in the width of a mode field pattern which is the characteristic of the TEC 4 and is improved in light condensing efficiency by the effect of the lens, by which the amplitude of the pattern is increased. The optical fiber which is strong to the misalignment and has the good coupling efficiency is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はレンズ付シングルモー
ド光ファイバとその製造方法に関し、特にレーザダイオ
ードとの光軸の位置ずれに対する結合損失の変動が小さ
く、かつ結合損失自身も小さくする技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens-equipped single-mode optical fiber and a method of manufacturing the same, and more particularly to a technique for reducing the fluctuation of the coupling loss with respect to the positional deviation of the optical axis from the laser diode and also reducing the coupling loss itself.

【0002】[0002]

【従来の技術】レーザダイオード(LDと言う)に対す
るシングルモード光ファイバ(SMFと言う)の光軸調
整において、SMFのコア径が10μm 程度と小さく、
僅かの位置ずれでも結合損失が増大するので、調芯作業
の工数がかなり大きくなる問題があった。図6,に
SMF及びテーパ先球SMF(図5)のLDとの位置ず
れに対する光結合損失の変動を示してある。
2. Description of the Related Art In adjusting the optical axis of a single mode optical fiber (SMF) for a laser diode (LD), the core diameter of the SMF is as small as about 10 μm,
Since the coupling loss increases even with a slight displacement, there is a problem that the number of man-hours for the centering work is considerably increased. FIG. 6 shows the fluctuation of the optical coupling loss with respect to the positional deviation between the SMF and the tapered spherical tip SMF (FIG. 5) with respect to the LD.

【0003】LDとSMFの光学的な結合は、図4に示
すようにそれぞれの光のモードフィールドパターン(光
の電磁界分布のことで直観的、近似的には光の強さの分
布と考えられる)の重なり具合で決まる。C図のように
LD1とSMF2の光軸が一致していれば、それぞれの
モードフィールドパターンは重なる部分(斜線を付した
部分)が多いので結合損失は小さい。しかしD図のよう
に互いの光軸がずれると、重なる部分は急に少なくなる
ので、結合損失は急激に増大し、図6のような変動特
性を示す。図5に形状を示すテーパ先球SMF3ではよ
く調芯すれば結合損失はSMF2より小さいが、しかし
位置ずれに対する結合損失の変動はSMF2の場合より
更に大きくなる(図6)。
The optical coupling between the LD and the SMF is considered to be the mode field pattern of each light (intuitively about the electromagnetic field distribution of light, approximately the distribution of light intensity as shown in FIG. 4). It is determined by the degree of overlap. If the optical axes of LD1 and SMF2 are coincident with each other as shown in FIG. C, there are many overlapping portions (hatched portions) of the respective mode field patterns, and thus the coupling loss is small. However, as shown in FIG. 6D, when the optical axes of the two are shifted from each other, the overlapping portion is suddenly reduced, so that the coupling loss is rapidly increased and the variation characteristic as shown in FIG. 6 is exhibited. In the tapered spherical tip SMF3 having the shape shown in FIG. 5, the coupling loss is smaller than that of the SMF2 when the center is well aligned, but the variation of the coupling loss with respect to the positional deviation is larger than that of the SMF2 (FIG. 6).

【0004】そこで、位置ずれに対して結合損失の変動
を小さくしたコア径拡大SMF(TEC;Thermally- d
iffused Expanded Core と言う)が開発された。その位
置ずれに対する結合損失特性を図6のに示す。TEC
4は図7に示すようにSMFのコア径を熱拡散により端
面に近付くほど大きくしたもので、そのモードフィール
ドパターンはSMFに比べて幅が広がる反面、ピークが
小さくなる。そのため図7のC図とD図を見れば分かる
ように、光軸がずれても重なる部分はそれほど変化しな
い。しかし、光軸が一致していても重なる面積はのS
MFやのテーパ先球SMFの場合より少ないので、最
小結合損失はかなり大きくなる。つまり、TEC4は結
合効率がきわめて悪い。
Therefore, the core diameter expansion SMF (TEC: Thermally-d) in which the fluctuation of the coupling loss with respect to the displacement is reduced.
iffused Expanded Core) was developed. The coupling loss characteristic with respect to the displacement is shown in FIG. TEC
As shown in FIG. 7, 4 is a core diameter of the SMF that is increased as it approaches the end surface due to thermal diffusion. The mode field pattern has a wider width than the SMF but has a smaller peak. Therefore, as can be seen from FIGS. 7C and 7D, the overlapping portions do not change much even if the optical axes are deviated. However, even if the optical axes match, the overlapping area is S
Since it is smaller than in the case of MF and the tapered spherical tip SMF, the minimum coupling loss becomes considerably large. That is, TEC4 has extremely poor coupling efficiency.

【0005】TEC4のモードフィールドパターンはピ
ーク値が小さく、光を捕捉する効率が悪いので、結合効
率が低下したと考えられる。そこで、図8に示すよう
に、TEC4の前に球レンズ5を置いて、TEC4のモ
ードフィールドパターンを変換して、光の捕捉効率を改
善することが行われている。このようにすると、LDの
パターンと重なる面積が大きくなって図6のように、
位置ずれに対する結合損失の変動が小さいばかりでな
く、結合損失自身をかなり小さくできる。直観的には球
レンズ5によって効率よくTEC4へ集光できるためと
見ることもできる。
Since the mode field pattern of TEC4 has a small peak value and the efficiency of capturing light is poor, it is considered that the coupling efficiency is lowered. Therefore, as shown in FIG. 8, the spherical lens 5 is placed in front of the TEC 4 to convert the mode field pattern of the TEC 4 to improve the light capturing efficiency. By doing so, the area overlapping the LD pattern becomes large, and as shown in FIG.
Not only the fluctuation of the coupling loss with respect to the positional deviation is small, but also the coupling loss itself can be considerably reduced. Intuitively, it can be seen that the spherical lens 5 can efficiently focus light on the TEC 4.

【0006】[0006]

【発明が解決しようとする課題】従来のコア径拡大光フ
ァイバ(TEC)4は、LD1との結合において、位置
ずれ許容値が大きいと言う利点はあるものの、LD1と
TEC4との間に球レンズ5を設ける必要があるので、
部品点数が増えると共に、TEC4の調芯だけでなく、
球レンズ5の調芯も行わなくてはならず、調芯の作業工
数が大きくなる欠点があった。この発明の目的は、これ
ら従来の欠点を解決して部品点数及び調芯の作業工数を
増やすことなく、位置ずれ許容値が大きく、かつ結合効
率のよいSMFを提供することにある。
The conventional expanded core optical fiber (TEC) 4 has the advantage that the positional deviation tolerance is large in coupling with the LD 1, but a spherical lens is provided between the LD 1 and the TEC 4. Since it is necessary to provide 5,
As the number of parts increases, not only the alignment of TEC4,
The spherical lens 5 must also be aligned, which results in a large number of man-hours for aligning. An object of the present invention is to solve these conventional drawbacks and to provide an SMF having a large positional deviation tolerance and a high coupling efficiency without increasing the number of parts and the man-hour for aligning.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

(1)請求項1の発明のレンズ付コア径拡大光ファイバ
は、コア径拡大シングルモード光ファイバ(シングルモ
ード光ファイバの端部のコア径を、熱拡散により端面に
近付くにつれて大きくした光ファイバ)の端面に、凸レ
ンズを付着したものである。
(1) The lens-equipped core diameter-enlarging optical fiber of the invention of claim 1 is a core diameter-enlarging single-mode optical fiber (an optical fiber whose core diameter at the end of the single-mode optical fiber is increased as it gets closer to the end face due to thermal diffusion). A convex lens is attached to the end surface of the.

【0008】(2)請求項2の発明は、前記(1)項記
載のレンズ付コア径拡大光ファイバにおいて、凸レンズ
の形状が半球状(凸レンズを、光ファイバの光軸を含
み、互いに直交する2つの平面で切ったとき、それぞれ
現れる切断面の外周の曲率半径がほゞ相等しい)にした
ものである。 (3)請求項3の発明は、前記(1)項記載のレンズ付
コア径拡大光ファイバにおいて、凸レンズが非球面レン
ズ(凸レンズを、光ファイバの光軸を含み、互いに直交
する2つの平面で切ったとき、それぞれ現れる切断面の
外周の曲率半径が相異なる)にしたものである。
(2) According to the invention of claim 2, in the optical fiber with expanded core diameter according to item (1), the convex lens has a hemispherical shape (the convex lens includes the optical axis of the optical fiber and is orthogonal to each other). When cut along two planes, the radii of curvature of the outer circumferences of the respective cut surfaces appear to be approximately the same). (3) According to the invention of claim 3, in the lens-enlarged core diameter optical fiber according to claim (1), the convex lens is an aspherical lens (the convex lens includes two optical planes including the optical axis of the optical fiber and orthogonal to each other). When cut, the radius of curvature of the outer circumference of each cut surface is different).

【0009】(4)請求項4のレンズ付コア径拡大光フ
ァイバの製造方法は、コア径拡大シングルモード光ファ
イバの端部を光軸がほゞ垂直となるような姿勢で液状の
透明材料中に浸積し、その姿勢で引き上げ、端面に付着
したしずく(滴)を硬化させて、光ファイバの端面に半
球状のレンズを形成するものである。 (5)請求項5のレンズ付コア径拡大光ファイバの製造
方法は、コア径拡大シングルモード光ファイバの端部を
光軸がほゞ垂直となるような姿勢で液状の透明材料中に
浸積し、その姿勢で引き上げ、端面に付着したしずく
(滴)を硬化する前に、そのしずくを型に押し付けて、
任意形状のレンズを形成するものである。
(4) In the method of manufacturing a core-diameter-enlarged optical fiber with a lens of claim 4, the end portion of the core-diameter-enlarged single-mode optical fiber is in a liquid transparent material in such a posture that the optical axis is almost vertical. It is soaked in, and pulled up in that posture to cure the drops (droplets) adhering to the end face to form a hemispherical lens on the end face of the optical fiber. (5) The method of manufacturing a core diameter-enlarging optical fiber with a lens according to claim 5, wherein the end portion of the core diameter-enlarging single-mode optical fiber is immersed in a liquid transparent material in such a posture that the optical axis is almost vertical. Then, pull it up in that position, press the drop onto the mold before hardening the drop (drop) adhering to the end face,
A lens having an arbitrary shape is formed.

【0010】[0010]

【実施例】この発明では図1に示すように、コア径拡大
シングルモード光ファイバ(TEC)4の端面に、透明
材料より成りクラッド4bの外径とほゞ等しい外径の凸
レンズ6が付着される。凸レンズ6は図1の例では半球
状、つまり凸レンズ6をTEC4の光軸を含み、互いに
直交する2つの平面で切ったとき、それぞれ現れる切断
面の外周の曲率半径がほゞ相等しい半円となる。このよ
うなレンズ付TECのモードフィールドパターンは、従
来の図8の球レンズ5と組み合わせたTEC4のパター
ンとほゞ同じ特性が得られ、光軸がずれても重なる面積
はそれほど変化なく、かつ重なる面積が常に大きい。従
って光軸のずれに強く、かつLD1の光を効率よく集光
できる特徴がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, as shown in FIG. 1, a convex lens 6 made of a transparent material and having an outer diameter substantially equal to the outer diameter of a clad 4b is attached to the end surface of a core diameter expanding single mode optical fiber (TEC) 4. It In the example of FIG. 1, the convex lens 6 is a hemisphere, that is, when the convex lens 6 is cut along two planes that include the optical axis of the TEC 4 and are orthogonal to each other, a semicircle having a substantially equal radius of curvature on the outer circumference of each cut surface appears. Become. The mode field pattern of such a TEC with a lens has almost the same characteristics as the pattern of the TEC 4 combined with the conventional spherical lens 5 of FIG. 8, and the overlapping area does not change so much even if the optical axis shifts, and the pattern overlaps. The area is always large. Therefore, there is a feature that the light of the LD 1 can be efficiently condensed while being strong against the deviation of the optical axis.

【0011】半球状の凸レンズ6を付着させるには、図
2に製造工程を示すように、容器7中に溶融ガラス、熱
硬化性樹脂または光硬化性樹脂などの液状の透明材料8
を用意し(A図)、TEC4をほゞ垂直に保持して透明
材料8中に端部をつけ(B図)、一定時間経過後引き上
げると、TEC4の端面にしずく(滴)9が形成される
(C図)。この状態でしずく9を硬化させると半球状の
凸レンズ6が形成される(D図)。
In order to attach the hemispherical convex lens 6, as shown in the manufacturing process in FIG. 2, a liquid transparent material 8 such as a molten glass, a thermosetting resin or a photocurable resin is placed in a container 7.
Is prepared (Fig. A), the TEC 4 is held almost vertically and the end is attached in the transparent material 8 (Fig. B), and after a certain time elapses, a drop (drop) 9 is formed on the end face of the TEC 4. (Figure C). When the drops 9 are hardened in this state, hemispherical convex lenses 6 are formed (FIG. D).

【0012】ところで、LD1の光は図3に示すよう
に、その光軸をZ軸方向にとると、X,Y,Z直交座標
のY軸方向(垂直方向)の光の広がりは大きく、それに
直角なX軸方向(水平方向)の光の広がりは小さいと言
う性質があるので、凸レンズ6による集光効率は、TE
C4の光軸をZ軸方向にしたとき、凸レンズ6のYZ平
面で切った断面の外周の曲率半径をXZ平面で切った断
面の外周の曲率半径より大きくなるようにした非球面レ
ンズの場合に最もよくなる。
By the way, as shown in FIG. 3, when the optical axis of the light from the LD 1 is in the Z-axis direction, the spread of the light in the Y-axis direction (vertical direction) of the X, Y, Z orthogonal coordinates is large, and Since the spread of light in the X-axis direction (horizontal direction) at a right angle is small, the light collection efficiency of the convex lens 6 is TE.
In the case of an aspherical lens in which the radius of curvature of the outer circumference of the cross section of the convex lens 6 taken along the YZ plane is set to be larger than the radius of curvature of the outer circumference of the cross section taken along the XZ plane when the optical axis of C4 is in the Z axis direction. Get the best.

【0013】凸レンズ6を非球面レンズに成形するに
は、図2CのTECの端面に付着したしずく9が硬化す
る前に、非球面レンズ状の型(図示せず)にしずく9を
押し付け、その状態で硬化させればよい。このような型
を用いる製造方法は非球面レンズのみならず球面レンズ
(半球状レンズを含む)を形成する場合にも勿論有効で
あり、一般に任意形状のレンズを形成できる。
In order to form the convex lens 6 into an aspherical lens, the dripping 9 is pressed against an aspherical lens-shaped mold (not shown) before the dripping 9 adhered to the end surface of the TEC in FIG. 2C is cured. It may be cured in the state. The manufacturing method using such a mold is of course effective not only for forming an aspherical lens but also for forming a spherical lens (including a hemispherical lens), and in general, a lens having an arbitrary shape can be formed.

【0014】[0014]

【発明の効果】この発明によれば、コア径拡大シングル
モード光ファイバ(TEC)4の端面に凸レンズ6が形
成されているので、LD1の光を効率よくTEC4へ集
光できる。TEC4を用いているのでモードフィールド
パターンの幅が広くなり、光軸の位置ずれ許容値が大き
くなる。また凸レンズ6の効果によって集光効率が向上
して、結合効率の高いシングルモード光ファイバ(SM
F)が得られる。
According to the present invention, since the convex lens 6 is formed on the end surface of the core diameter expanding single mode optical fiber (TEC) 4, the light of the LD 1 can be efficiently condensed on the TEC 4. Since the TEC 4 is used, the width of the mode field pattern is widened, and the positional deviation tolerance of the optical axis is increased. Further, the effect of the convex lens 6 improves the light collection efficiency, and the single mode optical fiber (SM
F) is obtained.

【0015】しかも、従来の球レンズ5を別個に用いる
図8の場合と異なり、レンズ部分とファイバとが一体化
しているので、部品点数の増加はなく、またレンズ部分
を個別に調芯する必要もない。よって調芯工数を大幅に
軽減できる。
Further, unlike the case of FIG. 8 in which the conventional spherical lens 5 is separately used, since the lens portion and the fiber are integrated, the number of parts does not increase, and the lens portions need to be individually aligned. Nor. Therefore, the number of man-hours for alignment can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のレンズ付コア径拡大シングルモード
光ファイバ10とレーザダイオード(LD)1との光結
合を説明するための模式図。
FIG. 1 is a schematic diagram for explaining optical coupling between a lens-equipped core diameter expansion single mode optical fiber 10 and a laser diode (LD) 1 of the present invention.

【図2】この発明のレンズ付コア径拡大シングルモード
光ファイバの製造工程を示す図。
FIG. 2 is a view showing a manufacturing process of a lens-equipped core diameter-enlarging single-mode optical fiber of the present invention.

【図3】レーザダイオードの出射光の広がりパターンを
説明するための原理的な斜視図。
FIG. 3 is a principle perspective view for explaining a spread pattern of emitted light of a laser diode.

【図4】従来のSMF(シングルモード光ファイバ)2
とLD1との光結合を説明するための模式図。
FIG. 4 Conventional SMF (single mode optical fiber) 2
FIG. 3 is a schematic diagram for explaining optical coupling between the LD1 and LD1.

【図5】従来のテーパ先球SMFの断面図。FIG. 5 is a cross-sectional view of a conventional tapered spherical tip SMF.

【図6】従来及びこの発明のSMFのLDとの位置ずれ
に対する結合損失の変動特性を示す図。
FIG. 6 is a diagram showing a variation characteristic of a coupling loss with respect to a positional deviation between an SMF of the related art and the present invention and an LD.

【図7】従来のTEC(コア径拡大SMF)のLDとの
光結合を説明するための模式図。
FIG. 7 is a schematic diagram for explaining optical coupling with a LD of a conventional TEC (expanded core diameter SMF).

【図8】従来のLDとTECの間に球レンズを設けた場
合の光結合を説明するための模式図。
FIG. 8 is a schematic diagram for explaining optical coupling when a spherical lens is provided between a conventional LD and TEC.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 コア径拡大シングルモード光ファイバ
(シングルモード光ファイバの端部のコア径を、熱拡散
により端面に近付くにつれて大きくした光ファイバ)の
端面に、凸レンズが付着されていることを特徴とするレ
ンズ付コア径拡大光ファイバ。
1. A convex lens is attached to an end surface of a single-mode optical fiber with an expanded core diameter (an optical fiber whose core diameter at the end of the single-mode optical fiber is increased as it approaches the end surface due to thermal diffusion). Expanded core diameter optical fiber with lens.
【請求項2】 請求項1記載のレンズ付コア径拡大光フ
ァイバにおいて、前記凸レンズの形状が半球状(前記凸
レンズを、光ファイバの光軸を含み、互いに直交する2
つの平面で切ったとき、それぞれ現れる切断面の外周の
曲率半径がほゞ相等しい)であることを特徴とする。
2. The expanded core diameter optical fiber with lens according to claim 1, wherein the shape of the convex lens is hemispherical (the convex lens includes the optical axis of the optical fiber and is orthogonal to each other.
When cut in two planes, the radii of curvature of the outer circumferences of the respective cut surfaces that appear are approximately equal).
【請求項3】 請求項1記載のレンズ付コア径拡大光フ
ァイバにおいて、前記凸レンズが非球面レンズ(前記凸
レンズを、光ファイバの光軸を含み、互いに直交する2
つの平面で切ったとき、それぞれ現れる切断面の外周の
曲率半径が相異なる)であることを特徴とする。
3. The expanded core diameter optical fiber with lens according to claim 1, wherein the convex lens is an aspherical lens (the convex lens includes the optical axis of the optical fiber and is orthogonal to each other.
When cut in two planes, the radius of curvature of the outer circumference of each cut surface appears differently).
【請求項4】 コア径拡大シングルモード光ファイバの
端部を光軸がほゞ垂直となるような姿勢で液状の透明材
料中に浸積し、その姿勢で引き上げ、端面に付着したし
ずく(滴)を硬化させて、光ファイバの端面に半球状の
レンズを形成することを特徴とするレンズ付コア径拡大
光ファイバの製造方法。
4. An end of a single-mode optical fiber with an expanded core diameter is immersed in a liquid transparent material in such a posture that the optical axis is almost vertical, and is pulled up in that posture to make drops (droplets) attached to the end face. ) Is hardened to form a hemispherical lens on the end face of the optical fiber.
【請求項5】 コア径拡大シングルモード光ファイバの
端部を光軸がほゞ垂直となるような姿勢で液状の透明材
料中に浸積し、その姿勢で引き上げ、端面に付着したし
ずく(滴)の硬化する前に、そのしずくを型に押し付け
て、任意形状のレンズを形成することを特徴とするレン
ズ付コア径拡大光ファイバの製造方法。
5. An end of a single-mode optical fiber with an expanded core diameter is immersed in a liquid transparent material in such a posture that the optical axis is almost vertical, and is pulled up in that posture to make drops (droplets) attached to the end face. 2.) A method for manufacturing an optical fiber with an enlarged core diameter, comprising: forming a lens having an arbitrary shape by pressing the drips onto a mold before curing the above.
JP6089932A 1994-04-27 1994-04-27 Core diameter expanding optical fiber with lens and its production Pending JPH07294779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6089932A JPH07294779A (en) 1994-04-27 1994-04-27 Core diameter expanding optical fiber with lens and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6089932A JPH07294779A (en) 1994-04-27 1994-04-27 Core diameter expanding optical fiber with lens and its production

Publications (1)

Publication Number Publication Date
JPH07294779A true JPH07294779A (en) 1995-11-10

Family

ID=13984477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6089932A Pending JPH07294779A (en) 1994-04-27 1994-04-27 Core diameter expanding optical fiber with lens and its production

Country Status (1)

Country Link
JP (1) JPH07294779A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030086153A (en) * 2002-05-03 2003-11-07 (주) 포코 The joint part manufacturing method of optical fiber and that make out of the above statement
JP2004117915A (en) * 2002-09-26 2004-04-15 Kyocera Corp Fiber stub, optical receptacle and optical module using the same
JP2005321751A (en) * 2004-05-07 2005-11-17 Kwangju Inst Of Science & Technology Optical fiber for illumination and manufacturing method therefor
JP2006221159A (en) * 2005-01-17 2006-08-24 Murata Mfg Co Ltd Optical transmitter module and manufacturing method thereof
CN100381844C (en) * 2002-04-12 2008-04-16 住友电气工业株式会社 Optical fibre component, optical module and photo-communication system
US7805035B2 (en) 2006-07-31 2010-09-28 Hitachi Cable, Ltd. Forming method of refractive index matching film
JP2015022247A (en) * 2013-07-23 2015-02-02 ソニー株式会社 Optical communication fiber, optical communication module, and optical communication system
CN115826252A (en) * 2022-09-26 2023-03-21 哈尔滨工程大学 Optical fiber self-accelerating light beam generating device and preparation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381844C (en) * 2002-04-12 2008-04-16 住友电气工业株式会社 Optical fibre component, optical module and photo-communication system
KR20030086153A (en) * 2002-05-03 2003-11-07 (주) 포코 The joint part manufacturing method of optical fiber and that make out of the above statement
JP2004117915A (en) * 2002-09-26 2004-04-15 Kyocera Corp Fiber stub, optical receptacle and optical module using the same
JP2005321751A (en) * 2004-05-07 2005-11-17 Kwangju Inst Of Science & Technology Optical fiber for illumination and manufacturing method therefor
JP2006221159A (en) * 2005-01-17 2006-08-24 Murata Mfg Co Ltd Optical transmitter module and manufacturing method thereof
US7805035B2 (en) 2006-07-31 2010-09-28 Hitachi Cable, Ltd. Forming method of refractive index matching film
JP2015022247A (en) * 2013-07-23 2015-02-02 ソニー株式会社 Optical communication fiber, optical communication module, and optical communication system
CN104345407A (en) * 2013-07-23 2015-02-11 索尼公司 Optical communication fiber, optical communication module, and optical communication system
US9374169B2 (en) 2013-07-23 2016-06-21 Sony Corporation Optical communication fiber, optical communication module, and optical communication system
CN115826252A (en) * 2022-09-26 2023-03-21 哈尔滨工程大学 Optical fiber self-accelerating light beam generating device and preparation method
CN115826252B (en) * 2022-09-26 2023-08-25 哈尔滨工程大学 Preparation method of optical fiber self-acceleration light beam generating device

Similar Documents

Publication Publication Date Title
US5446816A (en) Optical fiber having a lens formed at an end thereof
US4714315A (en) Method for connecting elements of optical communication technology to one another or to elements of releasable plug connections
US6963682B2 (en) Beam altering fiber lens device and method of manufacture
US5511140A (en) Molded plastic optical fiber-optoelectronic converter subassembly
JP3067968B2 (en) Optical fiber interface for coupling light source and method of manufacturing the same
CN1650207A (en) Beam bending apparatus and method of manufacture
KR20030045658A (en) Optical package substrate, optical device, optical module, and method for molding optical package substrate
JPS61503019A (en) Microlens manufacturing method
JP2000091642A (en) Manufacture of optical module
JPH07294779A (en) Core diameter expanding optical fiber with lens and its production
JP2003107277A (en) Optical element for optical connector
US7515789B2 (en) Conical-wedge-shaped lensed fiber and the method of making the same
JP2000304966A (en) Connector for optical waveguide, and optical coupling device
US6826329B2 (en) Plastic optical fiber with a lens, light-emitting/receiving apparatus with the plastic optical fiber with a lens, and method of fabricating the plastic optical fiber with a lens
US20030165290A1 (en) Optical signal altering lensed apparatus and method of manufacture
US4528446A (en) Optoelectronic lens array with an integrated circuit
JPS6360413A (en) Coupling method for light emitting element and optical fiber and optical waveguide type coupling device
JP3973699B2 (en) Optical fiber fixing member, optical fiber fixing member manufacturing method, optical fiber array, and optical fiber array manufacturing method
JP4073208B2 (en) Lens and optical component assembly
JP3921556B2 (en) Method for forming microlens on end face of optical fiber
JP2004191493A (en) Optical element
JP2002318318A (en) Optical waveguide, method for manufacturing the waveguide, and optical module using the optical waveguide
JPWO2018037960A1 (en) Optical connector manufacturing method
JP2595070Y2 (en) Optical waveguide connection structure
US20020094419A1 (en) Method for fabricating microlens in batch and product manufactured the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981117