JPH07294507A - Analysis of microcystines - Google Patents

Analysis of microcystines

Info

Publication number
JPH07294507A
JPH07294507A JP9126494A JP9126494A JPH07294507A JP H07294507 A JPH07294507 A JP H07294507A JP 9126494 A JP9126494 A JP 9126494A JP 9126494 A JP9126494 A JP 9126494A JP H07294507 A JPH07294507 A JP H07294507A
Authority
JP
Japan
Prior art keywords
column
microcystines
liquid
microcystins
amino acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9126494A
Other languages
Japanese (ja)
Inventor
Takeshi Goto
武 後藤
Masami Matsui
正巳 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9126494A priority Critical patent/JPH07294507A/en
Publication of JPH07294507A publication Critical patent/JPH07294507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To establish an analytical method excellent in the selectivity of microcystines by separating microcystines being toxins contained in water bloom and mixing the separated liquid with an aq. sodium hydroxide soln. under heating to convert microcystines into amino acids. CONSTITUTION:The mobile phase supplied from a liquid supply pump 2 is sent to a column for a liquid chromatograph. When the flow of the mobile phase becomes a steady state, a sample is injected into the column from a sample injector 3 and microcystines in the sample are separated from the coexisting substance in the sample during the passage through the column 4. The separated liquid coming out from the column 4 is mixed with an aq. sodium hydroxide soln. to be heated by an oven 8. Microcystines are hidrolyzed into amino acids. The separated liquid is reacted with the o-phthalaldehyde reagent from a liquid supply pump 11 in a reaction coil 12 to be conditioned in temp. within a column oven 13. Microcystines changed into amino acids are reacted with the reagent to be changed into a fluorescent substance which is, in turn, detected by a fluorescence detector 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アオコ(藍藻類が水中
で異常発生したもの)および湖沼水、河川水などに含ま
れる毒性成分のミクロシスチン類の分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing microcystins, which are toxic components contained in water-bloom (abnormal generation of cyanobacteria in water), lake water, river water and the like.

【0002】[0002]

【従来の技術】富栄養化の進んだ湖沼では藍藻類が発生
し、水面にアオコと呼ばれる水の華を形成するが、この
中には毒素(例えばミクロシスチン類)を生産するもの
がある。湖沼の水は上水道、家畜の飲み水、養魚用とし
て利用されているため、毒素生産の有無を管理するのは
水質管理上重要になってくる。
2. Description of the Related Art In a eutrophic lake, blue-green algae are generated to form a flower of water called a blue-green algae on the surface of the water. Since the water in lakes is used for water supply, drinking water for livestock, and for fish farming, it is important to control the presence or absence of toxin production in terms of water quality control.

【0003】そのため、従来よりアオコ中に含まれる毒
素のミクロシスチン類の分析が試みられており、その一
般的な手法としては、ミクロシスチン類を液体クロマト
グラフ用分離カラムにより分離し、ミクロシスチン類そ
のものがもつUV吸収を紫外分光光度検出器により検出
する方法が知られている。
Therefore, it has been attempted to analyze microcystins, which are toxins contained in water-bloom, and the general method is to separate the microcystins by a separation column for liquid chromatograph. A method is known in which the UV absorption of itself is detected by an ultraviolet spectrophotometric detector.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
手法では、ミクロシスチン類が持つUV吸収の極大波長
の約240nm域には、ミクロシスチン以外にも多くの
有機物がUV吸収を持つため、検出の選択性に乏しく、
実試料を分析したとき他の夾雑成分による妨害を受けや
すかった。
However, according to the conventional method, since many organic substances other than microcystin have UV absorption in the maximum wavelength range of about 240 nm of UV absorption of microcystins, the detection of Poor selectivity,
When real samples were analyzed, they were susceptible to interference by other contaminants.

【0005】そこで、本発明は、ミクロシスチン類の選
択性に優れた新規な分析法を提供することを目的とす
る。
[0005] Therefore, an object of the present invention is to provide a novel assay method having excellent selectivity for microcystins.

【0006】[0006]

【課題を解決するための手段】本件発明者は、鋭意検討
した結果、液体クロマトグラフ用分離カラムにより分離
されたミクロシスチン類を加水分解し、アミノ酸に変化
させた後、該アミノ酸を蛍光物質に変換すれば、ミクロ
シスチン類を選択的に検出できることを見出だし、本発
明をなすに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies and as a result, hydrolyzed microcystins separated by a separation column for a liquid chromatograph to convert them into amino acids, and then converted the amino acids into fluorescent substances. It was found that the microcystins can be selectively detected by conversion, and the present invention has been completed.

【0007】すなわち、本発明は、アオコ中に含まれる
毒素のミクロシスチン類を液体クロマトグラフ用カラム
によって分離する工程と、該分離液を水酸化ナトリウム
水溶液と混合・加熱し、ミクロシスチン類をアミノ酸に
変換させる工程と、該アミノ酸を蛍光誘導体化試薬と反
応させて、発蛍光物質に誘導体化させる工程と、誘導体
化された発蛍光物質を検出する工程とからなるミクロシ
スチン類の分析法である。
That is, according to the present invention, a step of separating microcystins, which are toxins contained in water-bloom, by a column for liquid chromatography, and mixing and heating the separated liquid with an aqueous sodium hydroxide solution, the microcystins are separated by Is a method for analyzing microcystins, which comprises a step of converting the amino acid into a fluorescent derivatizing reagent by reacting the amino acid with a fluorescent derivatizing reagent, and a step of detecting the derivatized fluorescent substance. .

【0008】ここで、液体クロマトグラフ用カラムとし
ては、例えばオクタデシル基を感応基とするODSカラ
ムを用いることができるが、これには限定されず、ミク
ロシスチン類を分離できるものならば何でも良い。ま
た、移動相としては、例えばリン酸緩衝液、メタノール
を用いることができる。
Here, as the liquid chromatographic column, for example, an ODS column having an octadecyl group as a sensitive group can be used, but the column is not limited to this and any column capable of separating microcystins may be used. As the mobile phase, for example, a phosphate buffer solution or methanol can be used.

【0009】分離されたミクロシスチン類と混合させる
水酸化ナトリウム水溶液の濃度は、特に限定されない
が、0.1M前後の範囲が好ましい。また、加熱温度
は、ミクロシスチン類の加水分解という見地からは温度
をできる限り上げるのが好ましいが、170℃を越える
と移動相内で気泡が発生するので、160℃前後の範囲
が好ましい。
The concentration of the aqueous sodium hydroxide solution to be mixed with the separated microcystins is not particularly limited, but is preferably in the range of about 0.1M. Further, the heating temperature is preferably as high as possible from the viewpoint of hydrolysis of microcystins, but when it exceeds 170 ° C., bubbles are generated in the mobile phase, so that the heating temperature is preferably around 160 ° C.

【0010】蛍光誘導体化試薬としては、例えば、O−
フタルアルデヒド(OPA)を用いることができ、OP
AはN−アセチル−L−システインとアルカリ性下で反
応させる。OPAの濃度は、通常のアミノ酸分析で使用
される範囲のものをそのまま用いることができる。
Examples of fluorescent derivatization reagents include O-
Phthalaldehyde (OPA) can be used, OP
A is reacted with N-acetyl-L-cysteine under alkaline conditions. Regarding the concentration of OPA, the concentration within the range used in ordinary amino acid analysis can be used as it is.

【0011】誘導体化された発蛍光物質は、公知の蛍光
検出器で検出される。
The derivatized fluorescent substance is detected by a known fluorescence detector.

【0012】[0012]

【作用】本発明では、液体クロマトグラフ用カラムから
の分離液中に含まれるミクロシスチン類は、水酸化ナト
リウム水溶液と混合・加熱することにより加水分解さ
れ、アミノ酸を生成する。生成したアミノ酸は蛍光誘導
体化試薬と反応して発蛍光物質に変化するので、蛍光検
出器で検出する。
In the present invention, the microcystins contained in the separated liquid from the liquid chromatograph column are hydrolyzed by mixing and heating with an aqueous solution of sodium hydroxide to produce an amino acid. Since the produced amino acid reacts with the fluorescent derivatization reagent and changes into a fluorescent substance, it is detected by a fluorescence detector.

【0013】[0013]

【実施例】本発明の方法を実施する装置の概略図を図1
に示す。図中、1は移動相溜、2は移動相送液ポンプ、
3は試料注入器、4は液体クロマトグラフ用カラム、5
は水酸化ナトリウム水溶液溜、6は水酸化ナトリウム水
溶液送液ポンプ、7はカラム4からの分離液と水酸化ナ
トリウム水溶液とを混合する混合コイル、8は混合コイ
ル7を収容するオーブン、9は冷却水槽、10はOPA
試薬槽、11はOPA試薬送液ポンプ、12はOPA試
薬と分離液を反応させる反応コイル、13は液体クロマ
トグラフ用カラム4と反応コイル12を収容するカラム
オーブン、14は蛍光検出器、15はデータ処理器、1
6は廃液溜を各々示す。
1 is a schematic diagram of an apparatus for carrying out the method of the present invention.
Shown in. In the figure, 1 is a mobile phase reservoir, 2 is a mobile phase liquid delivery pump,
3 is a sample injector, 4 is a liquid chromatograph column, 5
Is a sodium hydroxide aqueous solution reservoir, 6 is a sodium hydroxide aqueous solution feed pump, 7 is a mixing coil for mixing the separated liquid from the column 4 and the sodium hydroxide aqueous solution, 8 is an oven containing the mixing coil 7, and 9 is cooling Water tank, 10 is OPA
A reagent tank, 11 is an OPA reagent feed pump, 12 is a reaction coil for reacting the OPA reagent with the separation liquid, 13 is a column oven containing the liquid chromatography column 4 and the reaction coil 12, 14 is a fluorescence detector, and 15 is a fluorescence detector. Data processor, 1
6 shows the waste liquid reservoirs, respectively.

【0014】かかる装置において、移動相送液ポンプ2
から供給された移動相は、試料注入器3を経由して液体
クロマトグラフ用カラム4に送られる。移動相の流れが
定常状態になった後、試料を試料注入器3より注入し、
注入された試料中のミクロシスチン類は、カラム4を通
過する過程で試料中の共存物質から分離される。
In such a device, the mobile phase liquid feed pump 2
The mobile phase supplied from is sent to the liquid chromatograph column 4 via the sample injector 3. After the mobile phase flow has reached a steady state, a sample is injected from the sample injector 3,
Microcystins in the injected sample are separated from coexisting substances in the sample in the process of passing through the column 4.

【0015】カラム4から出た分離液は、送液ポンプ6
から供給された水酸化ナトリウム水溶液と混合され、そ
の混合管はオーブン8で例えば160℃に加熱される。
この工程でミクロシスチン類は加水分解され、アミノ酸
へと変化する。その後、分離液は一旦冷却水槽9により
室温付近まで冷却される。
The separated liquid discharged from the column 4 is fed by a liquid feed pump 6
Is mixed with the sodium hydroxide aqueous solution supplied from the above, and the mixing tube is heated in the oven 8 to 160 ° C., for example.
In this process, microcystins are hydrolyzed and converted into amino acids. Then, the separated liquid is once cooled to near room temperature by the cooling water tank 9.

【0016】次の段階で、分離液は送液ポンプ11から
供給されたOPA試薬と反応コイル12で反応させら
れ、その反応コイル12はカラムオーブン13内で45
℃に温調される。この工程で、すでにアミノ酸に変化し
たミクロシスチン類はOPA試薬と反応して発蛍光物質
に変化する。
In the next step, the separated liquid is reacted with the OPA reagent supplied from the liquid feed pump 11 in the reaction coil 12, and the reaction coil 12 in the column oven 13
The temperature is adjusted to ℃. In this step, the microcystins that have already been converted to amino acids react with the OPA reagent and change to fluorescent substances.

【0017】最後の段階で、発蛍光物質に変化した分離
液は蛍光検出器14に導かれ、検出される。このとき検
出された蛍光強度は電気信号に変換されてデータ処理器
15へ送られ、クロマトグラムとして記録される。な
お、検出後の発蛍光物質は、廃液溜16に捨てられる。
At the final stage, the separated liquid converted into the fluorescent substance is guided to the fluorescence detector 14 and detected. The fluorescence intensity detected at this time is converted into an electric signal, sent to the data processor 15, and recorded as a chromatogram. The fluorescent substance after detection is discarded in the waste liquid reservoir 16.

【0018】以上の装置を用いて、次の分析条件により
アオコ中のミクロシスチン類を分析した。 <分析条件> カラム4 :STR ODS−II(4.6mmI.D.
−150mml) 移 動 相:50mMりん酸(ナトリウム)緩衝溶液
(pH3.0)/メタノール=9/11 移動相流量:0.8ml/min オーブン4 :45℃ NaOH :0.1M NaOH流量:0.2ml/min 混合コイル7:0.8mmI.D.−8mml オーブン8 :160℃ OPA試薬 :A液とB液の混合液 A液:N−アセチル−L−システイン500mgを含む
0.05Mほう酸(ナトリウム)緩衝溶液(pH 9.2)5
00ml B液:O−フタルアルデヒド400mgを含むエタノー
ル溶液7ml OPA流量 :0.2ml/min 反応コイル12:0.5mmI.D.−1mml 検 出 器 :蛍光検出器 Ex=345nm,Em=
450nm
Using the above apparatus, microcystins in water-bloom were analyzed under the following analytical conditions. <Analysis conditions> Column 4: STR ODS-II (4.6 mm ID.
-150 mml) Mobile phase: 50 mM phosphate (sodium) buffer solution (pH 3.0) / methanol = 9/11 Mobile phase flow rate: 0.8 ml / min Oven 4: 45 ° C NaOH: 0.1 M NaOH flow rate: 0. 2 ml / min mixing coil 7: 0.8 mmI. D. -8 mL Oven 8: 160 ° C. OPA Reagent: Mixture of Solution A and Solution B Solution A: 0.05 M borate (sodium) buffer solution (pH 9.2) containing 500 mg of N-acetyl-L-cysteine 5
00 ml B solution: ethanol solution containing 400 mg of O-phthalaldehyde 7 ml OPA flow rate: 0.2 ml / min Reaction coil 12: 0.5 mm I.D. D. -1 mlm Detector: Fluorescence detector Ex = 345 nm, Em =
450 nm

【0019】<分析結果>上述の条件で分析した結果を
図2に示す。図中、PRがミクロシスチンPR、YRが
ミクロシスチンYR、LRがミクロシスチンLRを示
す。図より明らかなように、本発明によれば夾雑物質の
影響を受けずに、ミクロシスチン類を選択的に検出でき
ることがわかる。
<Analysis Results> The results of analysis under the above conditions are shown in FIG. In the figure, PR indicates microcystin PR, YR indicates microcystin YR, and LR indicates microcystin LR. As is clear from the figure, according to the present invention, microcystins can be selectively detected without being affected by contaminants.

【0020】[0020]

【発明の効果】本発明によれば、試料中に含まれるミク
ロシスチン類以外の有機物は、蛍光物質を生成しないの
で、ミクロシスチン類のみを選択的に高感度に検出でき
る。
According to the present invention, since organic substances other than microcystins contained in a sample do not generate fluorescent substances, only microcystins can be selectively detected with high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための装置の概略図1 is a schematic diagram of an apparatus for performing the method of the present invention.

【図2】本発明の方法によりアオコ中のミクロシスチン
類を分析した分析結果を示す図
FIG. 2 is a diagram showing the results of analysis of microcystins in water-bloom by the method of the present invention.

【符号の説明】[Explanation of symbols]

1:移動相溜 3:試料注入器 4:液体クロマトグラフ用カラム 5:水酸化ナトリウ
ム水溶液溜 7:混合コイル 9:冷却水槽 10:OPA試薬槽 14:蛍光検出器
1: Mobile Phase Reservoir 3: Sample Injector 4: Liquid Chromatographic Column 5: Sodium Hydroxide Aqueous Solution Reservoir 7: Mixing Coil 9: Cooling Water Tank 10: OPA Reagent Tank 14: Fluorescence Detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アオコ中などに含まれる毒素のミクロシ
スチン類を液体クロマトグラフ用カラムによって分離す
る工程と、該分離液を水酸化ナトリウム水溶液と混合・
加熱し、ミクロシスチン類をアミノ酸に変化させる工程
と、該アミノ酸を蛍光誘導体化試薬と反応させて、発蛍
光物質に誘導体化させる工程と、誘導体化された発蛍光
物質を検出する工程とからなるミクロシスチン類の分析
法。
1. A step of separating microcystins, which are toxins contained in water-bloom, etc., by a column for liquid chromatography, and mixing the separated liquid with an aqueous sodium hydroxide solution.
The method comprises the steps of heating and converting microcystins into amino acids, reacting the amino acids with a fluorescent derivatization reagent to derivatize the fluorescent substance, and detecting the derivatized fluorescent substance. Analysis method for microcystins.
JP9126494A 1994-04-28 1994-04-28 Analysis of microcystines Pending JPH07294507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9126494A JPH07294507A (en) 1994-04-28 1994-04-28 Analysis of microcystines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9126494A JPH07294507A (en) 1994-04-28 1994-04-28 Analysis of microcystines

Publications (1)

Publication Number Publication Date
JPH07294507A true JPH07294507A (en) 1995-11-10

Family

ID=14021572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9126494A Pending JPH07294507A (en) 1994-04-28 1994-04-28 Analysis of microcystines

Country Status (1)

Country Link
JP (1) JPH07294507A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079365A (en) * 2001-09-07 2003-03-18 Kanegafuchi Chem Ind Co Ltd Method for detecting environmentally harmful chemical substance in high sensitivity
KR100381718B1 (en) * 2000-06-26 2003-04-26 한국생명공학연구원 The colorimetric quantification of microcystin using protein phosphatase
CN103163001A (en) * 2013-03-27 2013-06-19 云南省环境监测中心站 Method for extracting and purifying microcystic toxins LR and RR by taking cyanobacterial bloom in Dian Lake as raw material
CN110186886A (en) * 2019-05-29 2019-08-30 扬州大学 The inversion method of Microcystins in Water MC-LR concentration
CN112525873A (en) * 2020-11-12 2021-03-19 滨州医学院 Fluorescent chemical sensor for detecting microcystin-LR and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381718B1 (en) * 2000-06-26 2003-04-26 한국생명공학연구원 The colorimetric quantification of microcystin using protein phosphatase
JP2003079365A (en) * 2001-09-07 2003-03-18 Kanegafuchi Chem Ind Co Ltd Method for detecting environmentally harmful chemical substance in high sensitivity
CN103163001A (en) * 2013-03-27 2013-06-19 云南省环境监测中心站 Method for extracting and purifying microcystic toxins LR and RR by taking cyanobacterial bloom in Dian Lake as raw material
CN110186886A (en) * 2019-05-29 2019-08-30 扬州大学 The inversion method of Microcystins in Water MC-LR concentration
CN110186886B (en) * 2019-05-29 2022-02-11 扬州大学 Inversion method of microcystin MC-LR concentration in water body
CN112525873A (en) * 2020-11-12 2021-03-19 滨州医学院 Fluorescent chemical sensor for detecting microcystin-LR and preparation method thereof
CN112525873B (en) * 2020-11-12 2023-03-24 滨州医学院 Fluorescent chemical sensor for detecting microcystin-LR and preparation method thereof

Similar Documents

Publication Publication Date Title
Rocha et al. Flow analysis strategies to greener analytical chemistry. An overview
Miró et al. Application of flowing stream techniques to water analysis: Part III. Metal ions: Alkaline and alkaline-earth metals, elemental and harmful transition metals, and multielemental analysis
Filik et al. A novel fiber optic spectrophotometric determination of nitrite using Safranin O and cloud point extraction
Zhang et al. Review of separation methods for the determination of ammonium/ammonia in natural water
Zhou et al. Development of integrated chemiluminescence flow sensor for the determination of adrenaline and isoprenaline
García‐Campaña et al. Detection in the liquid phase applying chemiluminescence
Mattos et al. Study of mass-transfer efficiency in pervaporation processes
JPH07294507A (en) Analysis of microcystines
Miró et al. Flow-through sorptive preconcentration with direct optosensing at solid surfaces for trace-ion analysis
Frenzel et al. Sample preparation techniques for ion chromatography
CN108982421B (en) Analysis and detection method of neomycin sulfate
Malejko et al. A novel flow-injection method for the determination of Pt (IV) in environmental samples based on chemiluminescence reaction of lucigenin and biosorption
Cassella et al. Determination of sulfide in waters by flow-injection solid phase spectrophotometry
Qin et al. Flow-injection chemiluminescence sensor for the determination of free chlorine in tap water
Qin Flow injection chemiluminescence-based chemical sensors
CN105136698A (en) Volatile compound determination method and apparatus thereof
Canizares et al. Flow-through fluorimetric sensor for the determination of aluminium at the nanogram per milliliter level
Van Steenderen et al. Automated chemical analysis for measuring microgram levels of organic carbon in potable waters
TWI844937B (en) Method and device for detecting urea
Yujie et al. Analysis of free aniline in chrome-free leather accelerated aging
de Castro et al. Solid interfaces as analytical problem solvers in flow injection analysis
JP3839641B2 (en) Hydroxide ion separation and analysis method and ion chromatography apparatus
Yokotsuka et al. An automated method for fluorometric measurement of proline in grapes and wines
JPS61254852A (en) Method and instrument for analyzing histamine
CN117470944A (en) Method for recognizing hydrazine hydrate by adopting photoionization ion mobility spectrometry