JPH07293564A - Superconductive bearing device - Google Patents

Superconductive bearing device

Info

Publication number
JPH07293564A
JPH07293564A JP10763894A JP10763894A JPH07293564A JP H07293564 A JPH07293564 A JP H07293564A JP 10763894 A JP10763894 A JP 10763894A JP 10763894 A JP10763894 A JP 10763894A JP H07293564 A JPH07293564 A JP H07293564A
Authority
JP
Japan
Prior art keywords
bearing
magnetic
magnetic flux
superconducting
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10763894A
Other languages
Japanese (ja)
Other versions
JP2636168B2 (en
Inventor
Makoto Okano
真 岡野
Noriji Tamada
紀治 玉田
Ko Azuma
洸 我妻
Shuichiro Fuchino
修一郎 淵野
Itaru Ishii
格 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10763894A priority Critical patent/JP2636168B2/en
Publication of JPH07293564A publication Critical patent/JPH07293564A/en
Application granted granted Critical
Publication of JP2636168B2 publication Critical patent/JP2636168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To increase the stiffness of a bearing by connecting a magnetic throttle nozzle to the magnetic resistance of a bearing gap in series, and thereby letting magnetic flux density passing through the magnetic gap be changed to a great extent with respect to the fluctuation of the bearing gap. CONSTITUTION:This invention is concerned with the super conductive magnetic bearing device where a repulsion type super conductive magnetic bearing 2 is formed out of a super conductor exhibiting diamagnetism identical to that of a complete diamagnetic substance or close to it, and concurrently a magnetic throttle nozzle 5 is connected to the magnetic resistance of a bearing gap (h) in series in a magnetic circuit where magnetic flux passes through the bearing gap (n).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、完全反磁性体或はそ
れに近い反磁性を示す超電導体で構成される反発型超電
導磁気軸受において、軸受すきまの変化に対して軸受す
きま内の磁束密度の変化を大きくして軸受剛性を大きく
するようにした超電導軸受装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a repulsion type superconducting magnetic bearing composed of a perfect diamagnetic material or a superconductor exhibiting diamagnetism close to that of a perfect diamagnetic material. The present invention relates to a superconducting bearing device in which the change is increased to increase the bearing rigidity.

【0002】[0002]

【従来の技術】従来の反発型超電導磁気軸受装置として
は、金属系材料を利用したものでは、下部臨界磁界Hc1
以下の領域で完全反発力を利用して磁気軸受を形成する
ことが行われている。
2. Description of the Related Art As a conventional repulsive superconducting magnetic bearing device using a metallic material, a lower critical magnetic field Hc 1
Magnetic bearings are formed using the full repulsive force in the following areas.

【0003】また、酸化物系超電導体を利用したもので
は永久磁石を用いてピン止め状態を利用して磁気軸受を
形成することが行われている。
In the case of using an oxide type superconductor, a permanent magnet is used to form a magnetic bearing by utilizing a pinned state.

【0004】[0004]

【発明が解決しようとする課題】このような従来の超電
導軸受装置では、軸受すきまの変化に対して軸受すきま
内の磁束密度の変化が小さく、そのため軸受剛性が極め
て低い欠点があり、実用面で多くの問題がある。
In such a conventional superconducting bearing device, the change in the magnetic flux density in the bearing clearance is small with respect to the change in the bearing clearance, and therefore, there is a drawback that the bearing rigidity is extremely low. There are many problems.

【0005】[0005]

【課題を解決するための手段】そのため、この発明では
完全反磁性体或はそれに近い反磁性を示す超電導体で反
発型超電導磁気軸受を構成すると共に、該軸受すきまを
磁束が通過する磁気回路には軸受すきまの磁気抵抗に直
列に磁束絞りを設けるようにしたものである。
Therefore, according to the present invention, a repulsive-type superconducting magnetic bearing is constructed of a perfect diamagnetic material or a superconductor showing diamagnetism close to it, and a magnetic circuit in which a magnetic flux passes through the bearing clearance is formed. Is a magnetic flux restriction provided in series with the magnetic resistance of the bearing clearance.

【0006】ここで、軸受は臨界電流密度Jc の非常に
大きい酸化物超電導体、乃至臨界電流密度Jc の大きい
或は下部臨界磁界Hc1の高い金属超電導体のバルク材を
利用するか、或は磁束の通過する材料表面に超電導薄膜
を形成して構成してもよく。
Here, the bearing uses a bulk material of an oxide superconductor having a very large critical current density Jc or a metal superconductor having a large critical current density Jc or a high lower critical magnetic field Hc 1 , or A superconducting thin film may be formed on the surface of the material through which the magnetic flux passes.

【0007】また、磁気回路に設ける磁束絞りとして
は、ノズル又はスリット等の磁束の通過を制限する手段
を用いることができる。
Further, as the magnetic flux diaphragm provided in the magnetic circuit, means for limiting the passage of the magnetic flux such as a nozzle or a slit can be used.

【0008】[0008]

【作用】即ち、この発明では磁気回路の軸受すきまの磁
気抵抗に直列に磁束を制限するノズル或はスリット等の
磁束絞りを設け、磁気回路全体の磁気抵抗を増加させ、
軸受すきまの変化による磁気抵抗の変化の割合を小さく
して軸受すきまを通る磁束を制限する。
That is, in the present invention, a magnetic flux restriction such as a nozzle or a slit for limiting magnetic flux is provided in series with the magnetic resistance of the bearing clearance of the magnetic circuit to increase the magnetic resistance of the entire magnetic circuit.
The magnetic flux passing through the bearing clearance is limited by reducing the rate of change in magnetic resistance due to the change in bearing clearance.

【0009】この磁束絞りの磁気抵抗により軸受すきま
の変化に対してすきま内の磁束密度変化を大きくする。
このため軸受すきまの大きい時と小さい時の磁束密度の
変化が大きくなり、軸受剛性が大幅に向上する。
Due to the magnetic resistance of the magnetic flux restrictor, the change in the magnetic flux density in the clearance is increased with respect to the change in the bearing clearance.
Therefore, the change in the magnetic flux density when the bearing clearance is large and when it is small becomes large, and the bearing rigidity is significantly improved.

【0010】[0010]

【実施例】以下、この発明を図示の実施例に基づいて詳
細に説明すると、図1はこの発明の一実施例を示す磁束
絞りノズルを設けた反発型超電導スラスト軸受の構造を
示すものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the illustrated embodiments. FIG. 1 shows the structure of a repulsion type superconducting thrust bearing provided with a flux limiting nozzle according to an embodiment of the present invention. .

【0011】図1において、1は、例えば溶融法で作製
したYBa2Cu3O酸化物超電導体で構成された半径rgの軸、
2は同様な材質の超電導体で構成された円板型軸受、h
は軸1の端部と軸受2の軸受面2aとの間の軸受すきまで
ある。
In FIG. 1, reference numeral 1 is an axis of radius r g composed of a YBa 2 Cu 3 O oxide superconductor produced by, for example, a melting method,
2 is a disk type bearing composed of a superconductor made of the same material, h
Is up to the bearing clearance between the end of the shaft 1 and the bearing surface 2a of the bearing 2.

【0012】軸受2内には磁場発生用のコイル3が設け
られ、更に軸受2の外周には磁気抵抗を極力小さくして
有効に磁束を通過させるための強磁性体4が設けられ、
これによってコイル3によって発生した磁束Φが軸受す
きまを通過する磁気回路が形成される。
A coil 3 for generating a magnetic field is provided in the bearing 2, and a ferromagnetic material 4 for effectively passing a magnetic flux is provided on the outer periphery of the bearing 2 to minimize the magnetic resistance.
As a result, a magnetic circuit is formed in which the magnetic flux Φ generated by the coil 3 passes through the bearing clearance.

【0013】そして、この発明ではこの磁気回路におけ
る軸受すきまの磁気抵抗に直列に軸受2の中心に径r0
ノズル5を設けて軸受すきまを通過する磁束を制限する
ようにする。
According to the present invention, a nozzle 5 having a diameter r 0 is provided in the center of the bearing 2 in series with the magnetic resistance of the bearing clearance in this magnetic circuit to limit the magnetic flux passing through the bearing clearance.

【0014】図2は、図1の等価磁気回路を示すもので
あり、図においてRn は磁束を絞っているノズルの磁気
抵抗、Rg は軸受すきまにおける磁気抵抗、RL はコイ
ルを通過してしまう磁束ΦL に対する磁気抵抗、Φg
軸受すきまを通る磁束、nはコイルの巻き数、Iはコイ
ルを流れる電流である。
FIG. 2 shows the equivalent magnetic circuit shown in FIG. 1. In the figure, R n is the magnetic resistance of the nozzle that restricts the magnetic flux, R g is the magnetic resistance in the bearing clearance, and R L passes through the coil. Φ g is the magnetic resistance against the magnetic flux Φ L that is lost, Φ g is the magnetic flux passing through the bearing clearance, n is the number of turns of the coil, and I is the current flowing through the coil.

【0015】この図から磁束を制限する磁束絞りノズル
5の効果を解析すると、先ず解析に当って、軸受すきま
h は軸受の直径2rg に比べて極めて小さいとし、次のよ
うな仮定を設ける。
When the effect of the magnetic flux throttle nozzle 5 for limiting the magnetic flux is analyzed from this figure, the bearing clearance is first analyzed.
Assuming that h is extremely small compared to the bearing diameter 2r g , the following assumptions are made.

【0016】即ち、(1) 軸受すきま内のすきま方向の磁
束密度変化はないものとする。(2)強磁性体4を通って
ノズル5の手前までの磁気抵抗Rf はRn 及びRg に比
して極めて小さいので、これを無視する。(3) ΦL は軸
受の性能に影響しない無効磁束であるので、これを無視
する。即ち、RL は無限大とする。
That is, (1) It is assumed that there is no change in the magnetic flux density in the bearing clearance in the clearance direction. (2) Since the magnetic resistance R f through the ferromagnetic material 4 to the front of the nozzle 5 is extremely smaller than R n and R g , this is ignored. (3) Φ L is a reactive magnetic flux that does not affect bearing performance, so ignore it. That is, R L is infinite.

【0017】上述の仮定から軸受すきまを通る磁束Φg
は、下記(1)式で示される。
From the above assumption, the magnetic flux Φ g passing through the bearing clearance
Is expressed by the following equation (1).

【0018】[0018]

【式1】 [Formula 1]

【0019】ここに、Rg =lnβ/(2 πμ0h),Rn =ln
/(μ0 πr0 2),β=rg/r0 ,α=Rg/Rn =α0/H,H=h/r0
Where R g = ln β / (2 πμ 0 h), R n = l n
/ (μ 0 πr 0 2 ), β = r g / r 0 , α = R g / R n = α 0 / H, H = h / r 0

【0020】軸受すきま内の磁束密度は、Φg から下記
(2)(3)式で得られる。
The magnetic flux density in the bearing clearance can be obtained from Φ g by the following equations (2) and (3).

【式2】 [Formula 2]

【0021】[0021]

【式3】 [Formula 3]

【0022】負荷容量Fは、下記(4)式で与えられ
る。
The load capacity F is given by the following equation (4).

【式4】 [Formula 4]

【0023】l 2H2/lnβ即ち軸受すきまが小さいとき
には負荷容量F及び軸受剛性Kは下記の(5)(6)式
のようになる。
When l 2 H 2 / ln β, that is, the bearing clearance is small, the load capacity F and the bearing rigidity K are expressed by the following equations (5) and (6).

【0024】[0024]

【式5】 [Formula 5]

【0025】[0025]

【式6】 [Formula 6]

【0026】ここに、C1 =πr0 μ022ln β/
(4ln 2),C2 =2C1/r0である。
Where C 1 = πr 0 μ 0 n 2 I 2 ln β /
(4l n 2 ), C 2 = 2C 1 / r 0 .

【0027】以上のように磁束を制限する磁束絞りノズ
ル5を設けることにより、軸受すきまの微小な変化に対
して大きく負荷容量が変化する。即ち、非常に高い軸受
剛性が得られる。
By providing the magnetic flux restricting nozzle 5 for limiting the magnetic flux as described above, the load capacity greatly changes with respect to a minute change in the bearing clearance. That is, very high bearing rigidity can be obtained.

【0028】磁束絞りノズル5のない場合には、上述の
仮定では、軸受剛性はゼロになるが、実際にはすきまが
大きいところでRf の磁気抵抗が磁束Φg を制限するの
で、剛性は発揮する.しかし、すきまの大きな変化に対
して磁束密度変化が少ないので、極めて低い。
In the case where there is no magnetic flux throttle nozzle 5, the bearing rigidity becomes zero under the above assumption, but the magnetic resistance of R f actually limits the magnetic flux Φ g at a large clearance, so that the rigidity is exhibited. Do. However, since the change in the magnetic flux density is small with respect to the large change in the clearance, it is extremely low.

【0029】図3、図4は図1の磁束絞りノズルを設け
た円板型超電導スラスト軸受にrg0 を設定して計算
した場合の軸受すきまと負荷容量との関係及び軸受すき
まと軸受剛性の関係を示すものである。
FIGS. 3 and 4 show the relationship between the bearing clearance and the load capacity and the bearing clearance calculated when r g and α 0 are set in the disk type superconducting thrust bearing provided with the magnetic flux restriction nozzle of FIG. It shows the relationship of bearing rigidity.

【0030】これによれば、現状のピン止め状態を用い
た超電導軸受では、同程度の大きさの軸受で、0.1 ×10
6 N/m 程度の軸受剛性が最大であり、磁束絞りノズルで
磁束を制限すると軸受剛性がかなり向上することが分か
る。
According to this, in the present superconducting bearing using the pinned state, a bearing of about the same size is 0.1 × 10
The bearing rigidity is about 6 N / m, and it can be seen that the bearing rigidity is significantly improved by limiting the magnetic flux with the flux limiting nozzle.

【0031】また、α0 即ち軸受すきまと磁束絞りノズ
ルの磁気抵抗の比に関係するファクターを適当に決める
ことにより、軸受すきまに応じて負荷容量及び軸受剛性
を選ぶことができる。
Further, by appropriately determining a 0, that is, a factor related to the ratio of the bearing clearance and the magnetic resistance of the magnetic flux restriction nozzle, the load capacity and the bearing rigidity can be selected according to the bearing clearance.

【0032】更に、α0 を小さくすると、即ち磁束絞り
ノズルの磁気抵抗を大きくすると、すきまの小さいとこ
ろで軸受剛性が高くなり、一般的な産業規模の軸受に匹
敵する程度となる。
Further, when α 0 is made small, that is, when the magnetic resistance of the magnetic flux restricting nozzle is made large, the bearing rigidity becomes high at a small clearance, which is comparable to that of a general industrial scale bearing.

【0033】図5、図6、図7は磁束絞りを軸受面に設
けた実用的な構造の数例を示す。図5及び図6は、スラ
スト軸受の場合、図7は、ジャーナル軸受の場合であ
る。
FIG. 5, FIG. 6 and FIG. 7 show several examples of practical structures in which a magnetic flux diaphragm is provided on the bearing surface. 5 and 6 show the case of the thrust bearing, and FIG. 7 shows the case of the journal bearing.

【0034】なお、図5においては軸受面の内周に沿っ
て複数のノズル5,…を設けているが、図6では軸受面
の内周に沿ってスリット部6を設ける。
Although a plurality of nozzles 5, ... Are provided along the inner circumference of the bearing surface in FIG. 5, the slit portion 6 is provided along the inner circumference of the bearing surface in FIG.

【0035】また、磁束がノズル5及びスリット部6を
通過するためには、図5及び図6に示すようなノズル5
及びスリット部6を通って軸受面を遮断する弱結合部7
を必ず作る必要がある。
In order for the magnetic flux to pass through the nozzle 5 and the slit portion 6, the nozzle 5 as shown in FIGS.
And a weakly coupled portion 7 that blocks the bearing surface through the slit portion 6
Must be made.

【0036】図8は、図6の構成において、超電導バル
ク体に代えて磁束の通過する材料表面に超電導薄膜8を
形成して反発型超電導軸受を構成した例を示すものであ
る。
FIG. 8 shows an example in which a superconducting thin film 8 is formed on the surface of a material through which magnetic flux passes in place of the superconducting bulk body in the structure of FIG.

【0037】図9は、軸受面にその内周に沿ってその一
部に臨界電流密度の低い超電導体9を配置した構造の一
例を示すものであり、臨界電流密度が低いため、超電導
体9のみに磁束が侵入し、その部分で磁束の変化に応じ
た損失を起こさせ、軸受の安定性を向上させることがで
きる。
FIG. 9 shows an example of a structure in which a superconductor 9 having a low critical current density is arranged on a part of the bearing surface along the inner circumference thereof. Since the critical current density is low, the superconductor 9 is It is possible to improve the stability of the bearing by causing the magnetic flux to enter only in that area and causing a loss corresponding to the change in the magnetic flux at that portion.

【0038】なお、この部分は超電導体でなくとも磁束
の変化に応じて損失を伴うようにアルミニウムや銅など
の金属を用いてもよい。
It should be noted that this portion may be made of a metal such as aluminum or copper so as to cause a loss in accordance with a change in magnetic flux, instead of a superconductor.

【0039】[0039]

【発明の効果】以上要するに、この発明によれば軸受す
きまの磁気抵抗に直列に磁気絞りを設けてあるため、軸
受すきまの変動に対して軸受すきまを通過する磁束密度
が大きく変化し、このため軸受剛性を向上させることが
できる。
In summary, according to the present invention, since the magnetic aperture of the bearing clearance is provided in series with the magnetic resistance of the bearing clearance, the magnetic flux density passing through the bearing clearance greatly changes due to the variation of the bearing clearance. The bearing rigidity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例を示す磁束絞りノズルを
設けた反発型超電導スラスト軸受の縦断側面図(a)と
その平面図(b)
FIG. 1 is a vertical sectional side view (a) and a plan view (b) of a repulsive-type superconducting thrust bearing provided with a magnetic flux restriction nozzle according to an embodiment of the present invention.

【図2】 図1の等価磁気回路2 is an equivalent magnetic circuit of FIG.

【図3】 図1の磁束絞りノズルを設けた円板型超電導
スラスト軸受にrg0 を設定して計算した場合の軸受
すきまと負荷容量との関係を示す図
Figure 3 is a graph showing a relation of Figure 1 flux diaphragm disc type provided with a nozzle superconducting thrust bearing r g, the bearing clearance when calculated by setting the alpha 0 and the load capacitance

【図4】 同上の軸受すきまと軸受剛性の関係を示す図FIG. 4 is a diagram showing a relationship between the bearing clearance and the bearing rigidity in the above.

【図5】 スラスト軸受の軸受面に磁束絞りを設けた実
用的な構造例を示す縦断斜視図
FIG. 5 is a vertical perspective view showing a practical structure example in which a magnetic flux throttle is provided on a bearing surface of a thrust bearing.

【図6】 スラスト軸受の軸受面に磁束絞りを設けた他
の実用的な構造例を示す縦断斜視図
FIG. 6 is a vertical cross-sectional perspective view showing another practical structure example in which a magnetic flux diaphragm is provided on the bearing surface of the thrust bearing.

【図7】 ジャーナル軸受の軸受面に磁束絞りを設けた
実用的な構造例を示す縦断斜視図
FIG. 7 is a vertical perspective view showing a practical structure example in which a magnetic flux throttle is provided on the bearing surface of a journal bearing.

【図8】 スラスト軸受の軸受面に磁束絞りを設けた更
に他の実用的な構造例を示す縦断斜視図
FIG. 8 is a vertical cross-sectional perspective view showing still another practical structure example in which a magnetic flux diaphragm is provided on the bearing surface of the thrust bearing.

【図9】 スラスト軸受の軸受面に磁束絞りを設けた更
に他の実用的な構造例を示す縦断斜視図
FIG. 9 is a vertical cross-sectional perspective view showing still another practical structure example in which a magnetic flux diaphragm is provided on the bearing surface of the thrust bearing.

【符号の説明】[Explanation of symbols]

1は超電導体で構成された軸 2は超電導体で構成された軸受 2aは軸受面 h は軸受すきま 3は磁場発生用のコイル 4は強磁性体 5はノズル 6はスリット部 7は弱結合部 8は超電導薄膜 9は臨界電流密度の低い超電導体 1 is a shaft composed of a superconductor 2 is a bearing composed of a superconductor 2a is a bearing surface h is a bearing clearance 3 is a coil for generating a magnetic field 4 is a ferromagnetic material 5 is a nozzle 6 is a slit portion 7 is a weak coupling portion 8 is a superconducting thin film 9 is a superconductor with a low critical current density

───────────────────────────────────────────────────── フロントページの続き (72)発明者 淵野 修一郎 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 石井 格 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuichiro Fuchino 1-4 Umezono, Tsukuba-shi, Ibaraki Electronic Technology Research Institute, Industrial Technology Institute (72) Katsura Ishii 1-4 1-4 Umezono, Tsukuba-shi, Ibaraki Industrial Technology Research Institute, AIST

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 完全反磁性体或はそれに近い反磁性を示
す超電導体で反発型超電導磁気軸受を構成すると共に、
該軸受すきまを磁束が通過する磁気回路には軸受すきま
の磁気抵抗に直列に磁束絞りを設けることを特徴とする
超電導磁気軸受装置。
1. A repulsive-type superconducting magnetic bearing is made of a superconductor having a perfect diamagnetic substance or a diamagnetism close to it.
A superconducting magnetic bearing device, wherein a magnetic flux restrictor is provided in series with a magnetic resistance of the bearing clearance in a magnetic circuit through which magnetic flux passes through the bearing clearance.
【請求項2】 臨界電流密度Jc の非常に大きい酸化物
超電導体、乃至臨界電流密度Jc の大きい或は下部臨界
磁界Hc1の高い金属超電導体のバルク材を利用するか、
或は磁束の通過する材料表面に超電導薄膜を形成して反
発型超電導磁気軸受を構成する特許請求の範囲第1項記
載の超電導磁気軸受装置。
2. A bulk material of an oxide superconductor having a very high critical current density Jc or a metal superconductor having a high critical current density Jc or a high lower critical magnetic field Hc 1 is used,
The superconducting magnetic bearing device according to claim 1, wherein a superconducting thin film is formed on the surface of a material through which magnetic flux passes, thereby forming a repulsive superconducting magnetic bearing.
【請求項3】 磁束絞りがノズル又はスリットである特
許請求第1項記載の超電導軸受装置。
3. The superconducting bearing device according to claim 1, wherein the magnetic flux restrictor is a nozzle or a slit.
【請求項4】 軸受すきまの軸受面に臨界電流密度の低
い超電導体或は金属を一部配置した特許請求の範囲第1
項記載の超電導軸受装置。
4. A superconductor or metal having a low critical current density is partially disposed on the bearing surface of the bearing clearance.
The superconducting bearing device according to the item.
JP10763894A 1994-04-21 1994-04-21 Superconducting bearing device Expired - Lifetime JP2636168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10763894A JP2636168B2 (en) 1994-04-21 1994-04-21 Superconducting bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10763894A JP2636168B2 (en) 1994-04-21 1994-04-21 Superconducting bearing device

Publications (2)

Publication Number Publication Date
JPH07293564A true JPH07293564A (en) 1995-11-07
JP2636168B2 JP2636168B2 (en) 1997-07-30

Family

ID=14464272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10763894A Expired - Lifetime JP2636168B2 (en) 1994-04-21 1994-04-21 Superconducting bearing device

Country Status (1)

Country Link
JP (1) JP2636168B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747426A (en) * 1995-06-07 1998-05-05 Commonwealth Research Corporation High performance magnetic bearing systems using high temperature superconductors
DE102008028588A1 (en) 2008-06-18 2009-12-24 Schaeffler Kg Magnetic bearings with high-temperature superconducting elements
WO2010094263A3 (en) * 2009-02-17 2011-03-03 Schaeffler Technologies Gmbh & Co. Kg Superconducting bearing and method for the assembly thereof
WO2011048019A1 (en) * 2009-10-20 2011-04-28 Schaeffler Technologies Gmbh & Co. Kg Superconducting bearing and method for the assembly thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670094B2 (en) * 2004-09-28 2011-04-13 財団法人国際超電導産業技術研究センター Superconducting bearing and magnetic levitation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747426A (en) * 1995-06-07 1998-05-05 Commonwealth Research Corporation High performance magnetic bearing systems using high temperature superconductors
DE102008028588A1 (en) 2008-06-18 2009-12-24 Schaeffler Kg Magnetic bearings with high-temperature superconducting elements
US8618707B2 (en) 2008-06-18 2013-12-31 Schaeffler Technologies AG & Co. KG Magnetic bearing with high-temperature superconductor elements
WO2010094263A3 (en) * 2009-02-17 2011-03-03 Schaeffler Technologies Gmbh & Co. Kg Superconducting bearing and method for the assembly thereof
WO2011048019A1 (en) * 2009-10-20 2011-04-28 Schaeffler Technologies Gmbh & Co. Kg Superconducting bearing and method for the assembly thereof
US8875382B2 (en) 2009-10-20 2014-11-04 Schaeffler Technologies AG & Co. KG Method of assembling superconductor bearing

Also Published As

Publication number Publication date
JP2636168B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
EP0585351B1 (en) Magnet-superconductor systems having high thrust and high stability
US5220232A (en) Stacked magnet superconducting bearing
Yonnet et al. Stacked structures of passive magnetic bearings
Brandt Rigid levitation and suspension of high‐temperature superconductors by magnets
US5196748A (en) Laminated magnetic structure for superconducting bearings
US3026151A (en) Bearing construction
US5798679A (en) Magnetic flux bending devices
DE4436831A1 (en) Unit for magnetic orientation of rotor shaft
US5319333A (en) Superconducting homogeneous high field magnetic coil
US4190817A (en) Persistent current superconducting method and apparatus
JPH07293564A (en) Superconductive bearing device
Wolsky et al. The new superconductors
US5654683A (en) Method for obtaining large levitation pressure in superconducting magnetic bearings
JP3640230B2 (en) Thin film magnetic field sensor
US5355275A (en) Current limiting device for electromagnetic coil employing gap containing superconductive shield
US4564564A (en) Superconducting magnet wire
Marinescu et al. Passive axial stabilization of a magnetic radial bearing by superconductors
US3239725A (en) Superconducting device
JP2004039949A (en) Superconductive member and magnetic levitation device
JP3022094B2 (en) Magnetic sensor
US5247271A (en) Superconducting solenoid coil
JPH05272539A (en) Superconducting magnetic bearing device
Hamajima et al. SMES coil configurations with reduced stray field
JP2764546B2 (en) Superconducting bearing device
Fukuyama et al. Static and dynamic characteristics of superconducting magnetic bearings using MPMG Y-Ba-Cu-O

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term