JPH0729097B2 - Chemical plating waste liquid treatment method - Google Patents

Chemical plating waste liquid treatment method

Info

Publication number
JPH0729097B2
JPH0729097B2 JP62293843A JP29384387A JPH0729097B2 JP H0729097 B2 JPH0729097 B2 JP H0729097B2 JP 62293843 A JP62293843 A JP 62293843A JP 29384387 A JP29384387 A JP 29384387A JP H0729097 B2 JPH0729097 B2 JP H0729097B2
Authority
JP
Japan
Prior art keywords
waste liquid
treatment
air
chemical plating
plating waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62293843A
Other languages
Japanese (ja)
Other versions
JPH01135587A (en
Inventor
富久雄 矢野
幸二 永吉
文彦 菊池
Original Assignee
吉玉精鍍株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉玉精鍍株式会社 filed Critical 吉玉精鍍株式会社
Priority to JP62293843A priority Critical patent/JPH0729097B2/en
Publication of JPH01135587A publication Critical patent/JPH01135587A/en
Publication of JPH0729097B2 publication Critical patent/JPH0729097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、BOD、COD、重金属、キレート錯体、次亜リン
酸塩などを含む化学めっき廃液(ここに化学めっき廃液
とは、めっき廃液のみならず、めっき工程において発生
する水洗水をも包含するものとする)の処理方法に関す
る。
TECHNICAL FIELD The present invention relates to a chemical plating waste liquid containing BOD, COD, heavy metal, chelate complex, hypophosphite, etc. (Here, the chemical plating waste liquid means not only the plating waste liquid but also the plating waste liquid. , Including the washing water generated in the plating step).

従来技術とその問題点 化学めっき廃液の処理方法としては、従来主に以下の方
法が採用されている(“用水排水便覧改定第2版”、丸
善(株)発行)が、それぞれ改善すべき問題点が存在す
る。
Conventional technology and its problems The following methods have been mainly used as the methods for treating chemical plating waste liquid ("Water Wastewater Handbook Revised 2nd Edition", published by Maruzen Co., Ltd.) There is a point.

(イ)廃液をアルカリ性にして、金属水酸化物を形成さ
せる中和沈澱方法では、廃液が無機のCOD及びEDTA等の
キレート剤を多量に含有しているため、金属水酸化物の
生成が妨げられ、凝集沈澱処理が満足すべき程度に行わ
れ難い。また、BOD及びCODの処理も充分には行われな
い。
(A) In the neutralization precipitation method in which the waste liquid is made alkaline to form metal hydroxide, the waste liquid contains a large amount of inorganic COD and a chelating agent such as EDTA, which prevents the formation of metal hydroxide. Therefore, it is difficult to perform the coagulation-precipitation treatment to a satisfactory degree. In addition, BOD and COD are not sufficiently processed.

(ロ)微生物の存在下に廃液の空気曝気を行う生物学的
酸化方法(活性汚泥法など)では、有機系不純物は、充
分に処理出来るものの、無機系のCOD及び重金属は、ほ
とんど処理できない。
(B) In biological oxidation methods (activated sludge method, etc.) in which the waste liquid is aerated in the presence of microorganisms, organic impurities can be sufficiently treated, but inorganic COD and heavy metals can hardly be treated.

(ハ)廃液を電気的に酸化分解する電解酸化方法によれ
ば、重金属成分の処理は可能であるが、無機系のCOD、E
DTA錯体等のキレート錯体等を十分に処理することが出
来ないので、処理液が高いCOD値を示すことになる。
(C) Although the heavy metal components can be treated by the electrolytic oxidation method of electrically oxidizing and decomposing the waste liquid, inorganic COD, E
Since the chelate complex such as the DTA complex cannot be sufficiently treated, the treatment liquid has a high COD value.

従って、現今の厳しい排出規制に対応すべく、重金属、
BOD、有機系CODおよび無機系COD、キレート錯体(EDTA
など)、リンなどを併せて処理し得る新たな化学めっき
廃液処理法の実現が切望されている。
Therefore, in order to comply with the current strict emission regulations, heavy metals,
BOD, organic COD and inorganic COD, chelate complex (EDTA
, Etc.), and the realization of a new chemical plating waste liquid treatment method that can also treat phosphorus and the like.

問題点を解決するための手段 本発明者は、上記の如き技術の現状に鑑みて鋭意研究を
重ねた結果、化学めっき廃液を公知の電解酸化処理及び
凝集沈澱処理に供した後、特定のミクロ多孔体の存在下
に空気混合を行い、次いで大量の空気を混在させた状態
で紫外線照射とオゾン処理とを行う場合には、化学めっ
き廃液の高度の処理を行い得ることを見出した。即ち、
本発明は、化学めっき廃液の処理方法において、被処理
廃液を電解酸化処理及び凝集沈澱処理に供し、次いでミ
クロ多孔体の存在下に該被処理廃液に空気を混合させた
後、更に紫外線照射とオゾン処理とを行うことを特徴と
する化学めっき廃液の処理方法を提供するものである。
Means for Solving the Problems The present inventor has conducted extensive studies in view of the current state of the art as described above, and as a result, after subjecting the chemical plating waste liquid to known electrolytic oxidation treatment and coagulation precipitation treatment, a specific microscopic It has been found that when the air mixing is performed in the presence of the porous body, and then the ultraviolet irradiation and the ozone treatment are performed in a state where a large amount of air is mixed, the chemical plating waste liquid can be highly treated. That is,
The present invention provides a method for treating a chemical plating waste liquid, in which the waste liquid to be treated is subjected to electrolytic oxidation treatment and coagulation sedimentation treatment, and then air is mixed with the waste liquid to be treated in the presence of a microporous body, and then UV irradiation is further performed. The present invention provides a method for treating a chemical plating waste liquid, which is characterized by performing ozone treatment.

以下、図面に示す本発明のフローチャートを参照しつ
つ、本発明を更に詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to the flowchart of the present invention shown in the drawings.

第1図は、電解酸化処理工程を示すフローチャートであ
り、該工程自体は、公知の方法と特に異なるところはな
い。また、本発明方法においては、化学ニッケルめっき
廃液、化学銅めっき廃液、化学銀めっき廃液等の全ての
化学めっき廃液が処理可能であり、以下これらを単に廃
液と称するものとする。廃液(A)は、pH調整槽(1)
に導入され、硫酸、塩酸、硝酸等の鉱酸等のpH調整剤
(B)により、通常pH3〜5程度に調整される。pH調製
剤としては、硫酸がより好ましい。pH調整槽(1)に
は、攪拌機(3)及びpH検出装置(5)を設けておき、
自動的にpH調整を行うことが好ましい。pH調整を終えた
廃液は、ライン(7)及びポンプ(9)を経て、電解酸
化処理槽(11)に送られる。電解酸化処理槽(11)は、
陽極(13)及び陰極(15)が備えられている。陽極及び
陰極の材料としては、特に限定されず、通常前者として
過酸化鉛、黒鉛等か使用され、後者としてはステンレス
スチール板、鉄板、黄銅板等が使用される。電解効率の
点からは、陽極材として過酸化鉛を使用し、陰極材とし
てステンレススチールを使用することが好ましい。電解
酸化処理条件は、廃液の種類及び不純物濃度、要求され
る処理程度等により異なるが、通常陽極における電流密
度を2〜8A/dm2程度とすることが好ましい。また、電解
酸化処理に際しては、空気攪拌機構(17)により、廃液
の攪拌を行なうことが好ましい。
FIG. 1 is a flowchart showing the electrolytic oxidation treatment step, and the step itself is not particularly different from the known method. Further, in the method of the present invention, all chemical plating waste liquids such as chemical nickel plating waste liquid, chemical copper plating waste liquid, chemical silver plating waste liquid, etc. can be treated, and these will be simply referred to as waste liquids hereinafter. The waste liquid (A) is the pH adjusting tank (1)
The pH is usually adjusted to about 3 to 5 with a pH adjusting agent (B) such as a mineral acid such as sulfuric acid, hydrochloric acid or nitric acid. As a pH adjuster, sulfuric acid is more preferable. The pH adjusting tank (1) is provided with a stirrer (3) and a pH detecting device (5),
It is preferable to adjust the pH automatically. The waste liquid whose pH has been adjusted is sent to the electrolytic oxidation treatment tank (11) via the line (7) and the pump (9). The electrolytic oxidation treatment tank (11)
An anode (13) and a cathode (15) are provided. The material for the anode and the cathode is not particularly limited, and lead peroxide, graphite or the like is usually used as the former, and stainless steel plate, iron plate, brass plate or the like is used as the latter. From the viewpoint of electrolysis efficiency, it is preferable to use lead peroxide as the anode material and stainless steel as the cathode material. The electrolytic oxidation treatment conditions differ depending on the type of waste liquid, the concentration of impurities, the required treatment level, etc., but it is usually preferable to set the current density at the anode to about 2 to 8 A / dm 2 . Further, during the electrolytic oxidation treatment, it is preferable to stir the waste liquid by the air stirring mechanism (17).

電解酸化処理では、重金属成分の析出回収、BODおよびC
OD成分の酸化分解、ならびに還元剤の酸化(例えば次亜
リン酸塩のリン酸化など)が行なわれる。
In electrolytic oxidation treatment, precipitation and recovery of heavy metal components, BOD and C
Oxidative decomposition of the OD component and oxidation of the reducing agent (for example, phosphorylation of hypophosphite) are performed.

電解酸化処理を終えた廃液は、電磁弁(19)及びポンプ
(23)を備えたライン(21)を経て、凝集処理槽(25)
に導入される(第2図を併せて参照)。凝集処理槽(2
5)においては、公知のpH調整剤(C)により廃液のpH
を8.5〜11程度に調整しつつ、凝集剤(D)を注入す
る。pH調整剤(C)としては、凝集剤としての作用をも
備えた公知の水酸化カルシウム、水酸化ナトリウム、炭
酸ナトリウム、硫酸第2鉄等が通常使用される。凝集剤
としても、特に限定されるものでないが、公知のアニオ
ン系高分子凝集剤、ノニオン系高分子凝集剤等の有機系
材料及び硫酸アルミニウム、ポリ塩化アルミニウム等の
無機系材料が使用される。凝集処理槽(25)にも、攪拌
機(27)及びpH検出装置(29)を設けておき、自動的に
pH調整を行うことが好ましい。
The waste liquid that has undergone electrolytic oxidation treatment passes through a line (21) equipped with a solenoid valve (19) and a pump (23), and then a coagulation treatment tank (25).
(See also FIG. 2). Coagulation tank (2
In 5), the pH of the waste liquid is adjusted by the known pH adjuster (C).
Is adjusted to about 8.5 to 11, and the coagulant (D) is injected. As the pH adjuster (C), known calcium hydroxide, sodium hydroxide, sodium carbonate, ferric sulfate, etc., which also have an action as a coagulant, are usually used. The aggregating agent is also not particularly limited, but known anionic polymer aggregating agents, nonionic polymer aggregating agents, and other organic materials and inorganic materials such as aluminum sulfate and polyaluminum chloride are used. The aggregating tank (25) is also equipped with a stirrer (27) and a pH detector (29) to automatically
It is preferable to adjust the pH.

凝集処理を終えた廃液は、ライン(31)を経て沈澱槽
(38)に送られ、上澄み液とスラッジとに分離される。
上澄み液は、ライン(35)を経て貯槽(37)に送られ
る。また、スラッジは、ライン(39)を経てフィルター
プレス(41)に送られ、脱水液は、ポンプ(43)を備え
たライン(45)を通って、貯槽(37)に送られる。貯槽
(37)に溜められた廃液は、次いで、ライン(47)を経
て、濾過装置(49)に送られ、例えば、1μm以上の浮
遊物質(SS)が除去される。この凝集沈澱処理では、残
留重金属成分、BODおよびCOD成分ならびにリン酸などが
水酸化物として沈澱除去される。
The waste liquid that has undergone the coagulation treatment is sent to the settling tank (38) through the line (31) and separated into a supernatant liquid and a sludge.
The supernatant liquid is sent to the storage tank (37) via the line (35). The sludge is sent to the filter press (41) through the line (39), and the dehydrated liquid is sent to the storage tank (37) through the line (45) equipped with the pump (43). The waste liquid stored in the storage tank (37) is then sent to the filtration device (49) through the line (47) to remove, for example, suspended matter (SS) of 1 μm or more. In this coagulation and precipitation treatment, residual heavy metal components, BOD and COD components, phosphoric acid, etc. are precipitated and removed as hydroxides.

濾過を終えた廃液は、ライン(51)を通って、紫外線及
びオゾン処理槽(53)に導入される。紫外線及びオゾン
処理槽(53)は、紫外線式オゾン発生装置(55)を備
え、且つ空気混合装置(57)と接続されている。紫外線
及びオゾン処理槽(53)に溜められた廃液は、ポンプ
(61)を備えたライン(59)を経て、空気混合装置(5
7)に送られる。空気混合装置(57)には、ミクロ多孔
体が充填されており、且つ空気供給ライン(63)が接続
されている。ミクロ多孔体としては、細孔径0.5〜10μ
m程度(より好ましくは1〜2μm程度)の細孔を多数
備え、気孔率40〜70%程度、圧縮強度1000〜3000kg/cm2
程度、曲げ強度500〜900kg/cm2程度のセラミック系乃至
ガラス系材料及びプラスチック系材料などが挙げられ
る。ミクロ多孔体の一例としては、特公昭62−25618号
公報に記載された方法で製造されたものが挙げられる。
空気混合装置(57)においては、空気供給ライン(63)
から送られてくる空気が、ミクロ多孔体の細孔を経て廃
液中に吹き込まれ、廃液と効率良く混合される。空気圧
は、特に限定されるものではないが、ゲージ圧で通常1.
0〜2.0kg/cm2程度で良い。また、空気混合量も特に限定
されないが、混合の効率が極めて良好なので、通常飽和
状態ないし気液混合状態となる。大量の空気を混合され
た廃液は、空気混合装置(57)からライン(65)を経
て、紫外線及びオゾン処理槽(53)に循環される。
The waste liquid that has been filtered is introduced into the ultraviolet and ozone treatment tank (53) through the line (51). The ultraviolet and ozone treatment tank (53) includes an ultraviolet ozone generator (55) and is connected to the air mixer (57). The waste liquid stored in the ultraviolet and ozone treatment tanks (53) passes through a line (59) equipped with a pump (61) and then an air mixing device (5
Sent to 7). The air mixing device (57) is filled with the microporous body and is connected to the air supply line (63). As a microporous material, the pore size is 0.5-10μ
It has a large number of pores of about m (more preferably about 1 to 2 μm), porosity of about 40 to 70%, compressive strength of 1000 to 3000 kg / cm 2.
Examples include ceramic-based or glass-based materials and plastic-based materials having a bending strength of about 500 to 900 kg / cm 2 . An example of the microporous body is one manufactured by the method described in JP-B-62-25618.
In the air mixing device (57), the air supply line (63)
The air sent from is blown into the waste liquid through the pores of the microporous body and is efficiently mixed with the waste liquid. The air pressure is not particularly limited, but it is usually 1.
0 to 2.0 kg / cm 2 is enough. The amount of air mixed is not particularly limited either, but since the mixing efficiency is extremely good, it is usually in a saturated state or a gas-liquid mixed state. The waste liquid mixed with a large amount of air is circulated from the air mixing device (57) through the line (65) to the ultraviolet and ozone treatment tank (53).

紫外線及びオゾン処理槽(53)内に配置された紫外線式
オゾン発生装置(55)には、ライン(67)から空気が供
給され、発生したオゾンを含む空気が、ライン(69)を
経て、空気を高濃度で混合された廃液中に吹き込まれ
る。従って、紫外線及びオゾン処理槽(53)内では、オ
ゾンによる酸化に加えて、紫外線式オゾン発生装置(5
5)からの紫外線による酸化および廃液中に高濃度に吹
き込まれた空気中の酸素による酸化が行なわれる。同時
に廃液中に吹き込まれた空気中の酸素が紫外線によりオ
ゾン化し、そのオゾンによる酸化も行なわれる。これら
の酸化により、残留BODおよびCOD成分ならびにキレート
錯体(EDTAなど)が分解される。なお、紫外線及びオゾ
ン処理槽(53)の内面を鏡面としておく場合には、紫外
線による酸化促進効果をより高めることができる。
Air is supplied from the line (67) to the ultraviolet type ozone generator (55) arranged in the ultraviolet and ozone treatment tank (53), and the air containing the generated ozone passes through the line (69) to the air. Is blown into the waste liquid mixed with high concentration. Therefore, in the ultraviolet and ozone treatment tank (53), in addition to oxidation by ozone, an ultraviolet ozone generator (5
Oxidation by the ultraviolet light from 5) and oxygen in the air blown into the waste liquid at a high concentration are carried out. At the same time, oxygen in the air blown into the waste liquid is turned into ozone by ultraviolet rays, and the ozone also oxidizes. These oxidations decompose residual BOD and COD components as well as chelate complexes (such as EDTA). In addition, when the inner surface of the ultraviolet ray and ozone treatment tank (53) is a mirror surface, the effect of promoting the oxidation by the ultraviolet ray can be further enhanced.

発明の効果 本発明によれば、化学めっき廃液中の重金属成分、BO
D、有機系CODおよび無機系COD、キレート錯体(EDTAな
ど)、リンなどの高度の処理が可能となる。
Effects of the Invention According to the present invention, heavy metal components, BO
High-level treatment of D, organic COD and inorganic COD, chelate complex (such as EDTA) and phosphorus becomes possible.

実施例 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
Examples The following examples are given to further clarify the features of the present invention.

実施例1 第1図乃至第3図に示すフローチャートに従って、化学
ニッケルめっき廃液を処理した。
Example 1 The chemical nickel plating waste liquid was treated according to the flowcharts shown in FIGS. 1 to 3.

(i)先ず、化学ニッケルめっき廃液を硫酸により、pH
約4とした後、電解酸化処理槽において、陽極電流密度
6A/dm2の条件下に電解酸化処理した。電解酸化処理中に
は、空気吹き込みによる攪拌を行なった。
(I) First, the chemical nickel plating waste liquid is treated with sulfuric acid to adjust the pH.
After setting to about 4, in the electrolytic oxidation treatment tank, the anode current density
The electrolytic oxidation treatment was performed under the condition of 6 A / dm 2 . During the electrolytic oxidation treatment, stirring by blowing air was performed.

第1表に電解酸化処理時間とCOD濃度(処理率)との関
係を示す。
Table 1 shows the relationship between electrolytic oxidation treatment time and COD concentration (treatment rate).

(ii)次いで、12時間電解酸化処理した廃液を凝集処理
槽に送り、pHを調整した後、アニオン系高分子凝集剤
(“スミフロック”、住友化学(株)製)を添加し、フ
ロックを形成させた。該凝集処理した廃液を沈澱槽に送
り、上済み液とスラッジとに分離し、該スラッジを更に
フィルタープレスにより脱水し、脱水液を上記上済み液
に加えた。次いで、該上済み液を濾過して、1μm以上
の浮遊物を除去した液を得た。
(Ii) Next, the waste liquid electrolytically treated for 12 hours is sent to a flocculation tank to adjust the pH, and then an anionic polymer flocculant (Sumifloc, manufactured by Sumitomo Chemical Co., Ltd.) is added to form flocs. Let The coagulation-treated waste liquid was sent to a settling tank, separated into an upper liquid and sludge, the sludge was further dehydrated by a filter press, and the dehydrated liquid was added to the upper liquid. Then, the supernatant liquid was filtered to obtain a liquid from which suspended matter of 1 μm or more was removed.

第2表に水酸化カルシウム及び水酸化ナトリウムにより
pH調整した場合、硫酸第2鉄によりpH調整した場合、並
びにpH調整を行わない場合の凝集沈澱処理後のそれぞれ
の結果を併せて示す。
Table 2 shows calcium hydroxide and sodium hydroxide
The results of the pH adjustment, the pH adjustment with ferric sulfate, and the coagulation-precipitation treatment without pH adjustment are also shown.

(iii)次いで、上記(ii)において、水酸化カルシウ
ム及び水酸化ナトリウムによりpH調整した後、凝集沈澱
処理した廃液を、ミクロ多孔体(特公昭62−25618号公
報に開示された方法により製造した長さ250mm、直径10m
m程度の筒状体:細孔径約1μm、気孔率約50%)を充
填した空気混合装置に送り、空気を約1.5kg/cm2(ゲー
ジ圧)で吹き込んで、気液混合状態とした後、紫外線及
びオゾン処理槽に導き、最終的に処理した。
(Iii) Then, in the above (ii), after adjusting the pH with calcium hydroxide and sodium hydroxide, a coagulation-precipitation-treated waste liquid was produced by the method disclosed in Japanese Patent Publication No. 62-25618. Length 250 mm, diameter 10 m
m-cylindrical body: sent to an air mixing device filled with a pore size of about 1 μm and a porosity of about 50%, and blown with air at about 1.5 kg / cm 2 (gauge pressure) to make a gas-liquid mixed state , UV and ozone treatment tank, and finally treated.

第3表に処理時間と処理率との関係を示す。Table 3 shows the relationship between processing time and processing rate.

本発明方法によれば、COD処理率を99.3%にまで高める
ことが可能である。
According to the method of the present invention, the COD treatment rate can be increased to 99.3%.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第3図は、本発明方法の概要を示すフローチ
ャートである。 (1)…pH調整槽 (3)…攪拌機 (5)…pH検出装置 (9)…ポンプ (11)…電解酸化処理槽 (13)…陽極 (15)…陰極 (17)…空気撹拌機構 (19)…電磁弁 (23)…ポンプ (25)…凝集処理槽 (27)…撹拌機 (29)…pH検出装置 (33)…沈澱槽 (37)…貯槽 (41)…フィルタープレス (43)…ポンプ (49)…過装置 (53)…紫外線及びオゾン処理槽 (55)…紫外線式オゾン発生装置 (57)…空気混合装置 (61)…ポンプ
1 to 3 are flowcharts showing the outline of the method of the present invention. (1) ... pH adjusting tank (3) ... Stirrer (5) ... pH detector (9) ... Pump (11) ... Electrolytic oxidation treatment tank (13) ... Anode (15) ... Cathode (17) ... Air stirring mechanism ( 19)… Solenoid valve (23)… Pump (25)… Coagulation tank (27)… Agitator (29)… pH detector (33)… Precipitation tank (37)… Storage tank (41)… Filter press (43) … Pump (49)… Transit device (53)… UV and ozone treatment tank (55)… UV ozone generator (57)… Air mixing device (61)… Pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】化学めっき廃液の処理方法において、被処
理廃液を電解酸化処理及び凝集沈澱処理に供し、次いで
ミクロ多孔体の存在下に該被処理廃液に空気を混合させ
た後、更に紫外線照射とオゾン処理とを行うことを特徴
とする化学めっき廃液の処理方法。
1. A method for treating a chemical plating waste liquid, which comprises subjecting the waste liquid to be treated to electrolytic oxidation treatment and coagulating sedimentation treatment, mixing the waste liquid to be treated with air in the presence of a microporous body, and further irradiating with ultraviolet rays. A method for treating a chemical plating waste liquid, which comprises:
JP62293843A 1987-11-19 1987-11-19 Chemical plating waste liquid treatment method Expired - Fee Related JPH0729097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62293843A JPH0729097B2 (en) 1987-11-19 1987-11-19 Chemical plating waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62293843A JPH0729097B2 (en) 1987-11-19 1987-11-19 Chemical plating waste liquid treatment method

Publications (2)

Publication Number Publication Date
JPH01135587A JPH01135587A (en) 1989-05-29
JPH0729097B2 true JPH0729097B2 (en) 1995-04-05

Family

ID=17799873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62293843A Expired - Fee Related JPH0729097B2 (en) 1987-11-19 1987-11-19 Chemical plating waste liquid treatment method

Country Status (1)

Country Link
JP (1) JPH0729097B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020060792A (en) * 2001-01-12 2002-07-19 금성이엔씨 주식회사 Method for treating waste water using electrolysis
KR100341208B1 (en) * 2002-01-04 2002-06-22 장영호 Apparatus and method for removing pollutants in outflow water of abandoned mine by surface electrochemical reaction
JP5954687B2 (en) * 2012-05-11 2016-07-20 三菱レイヨン株式会社 Waste water treatment apparatus and waste water treatment method
CN114477524A (en) * 2022-01-11 2022-05-13 云南云铜锌业股份有限公司 Method for removing COD (chemical oxygen demand) in flue gas wastewater of zinc leaching residue rotary kiln by ozone pretreatment
CN116444089A (en) * 2023-05-17 2023-07-18 蚌埠学院 Method and system for catalytic oxidation of high-salt organic wastewater by combining electric assistance with ultraviolet light

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103694A (en) * 1975-03-11 1976-09-13 Chiyoda Kenkyu Kaihatsu Kk EKITAINOSHIGAISENSHOSHASHORIHOHO OYOBI SOCHI
JPS5380760A (en) * 1976-12-25 1978-07-17 Sumitomo Const Method of treating waste water containing mercury
JPS5384362A (en) * 1976-12-29 1978-07-25 Mitsutoshi Matsuoka Device for continuously purifying waste water
JPS541270A (en) * 1977-06-07 1979-01-08 Minsei Kagaku Kenkiyuushiyo Kk Method of removing and collecting hexahydric chromium from chromium plating waste solution
JPS578958Y2 (en) * 1980-07-09 1982-02-20
US4512900A (en) * 1983-12-13 1985-04-23 International Business Machines Corporation Method for treating waste compositions

Also Published As

Publication number Publication date
JPH01135587A (en) 1989-05-29

Similar Documents

Publication Publication Date Title
TW449574B (en) Method of wastewater treatment by electrolysis and oxidization
KR101742755B1 (en) Wastewater activated sludge treatment system for nitrogen and phosphorus removal
JPH0631298A (en) Sophisticated treatment method for waste chemical plating liquid
JPH0729097B2 (en) Chemical plating waste liquid treatment method
JP3801004B2 (en) Method and apparatus for treating organic wastewater
KR100372849B1 (en) Advanced apparatus for treating wastewater using the electrolysis and coagulation
JPS6211634B2 (en)
JP2000176468A (en) Sewage treatment and device therefor
JP2621090B2 (en) Advanced wastewater treatment method
JP2002254079A (en) Wastewater treatment process
JPH09150159A (en) Cod-related component removing method for the component containing water
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
JPS6339307B2 (en)
JP2000263049A (en) Method and apparatus for cleaning barn effluent
JPH11347592A (en) Method for treating sewage containing hardly decomposable organic matter
KR100297928B1 (en) Method of nitrogen removal in wastewater with photocatalytic technology
KR100650333B1 (en) Device and method of advanced disposal and stink removal disposal of dirty waste water by using electrolysis and rotation filtration
JP4648872B2 (en) Wastewater treatment method for wastewater containing high concentration organic matter
JP2603895B2 (en) Treatment of hypophosphite ions in plating aging solution
JPH1076296A (en) Treatment method for drainage containing poorly decomposable organic substance
JPS607951B2 (en) How to treat organic wastewater
JPH081167A (en) Water treatment apparatus
JPH1015591A (en) High-degree treatment of waste water
JPH09253695A (en) Method for treating waste water containing hardly decomposable organic matter
JPS59186696A (en) Treatment of waste water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees