JPH07286898A - Method for manufacturing pyroelectric type infrared ray element - Google Patents

Method for manufacturing pyroelectric type infrared ray element

Info

Publication number
JPH07286898A
JPH07286898A JP6101822A JP10182294A JPH07286898A JP H07286898 A JPH07286898 A JP H07286898A JP 6101822 A JP6101822 A JP 6101822A JP 10182294 A JP10182294 A JP 10182294A JP H07286898 A JPH07286898 A JP H07286898A
Authority
JP
Japan
Prior art keywords
substrate
electrode
thin film
forming
pzt thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6101822A
Other languages
Japanese (ja)
Inventor
Koji Tominaga
浩二 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP6101822A priority Critical patent/JPH07286898A/en
Publication of JPH07286898A publication Critical patent/JPH07286898A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To manufacture a high-sensitivity element easily without using a highly accurate etching technology or an epitaxial lower electrode formation technology by using SrTiO3 substrate, diffusion Nb on the substrate and forming a dope layer, and then forming PZT thin film. CONSTITUTION:A substrate 1 is subjected to mirror-surface abrasion so that the surface is the (100) face using SrTiO3 substrate 1 and an electrode mask pattern is formed on the surface by photolithography. Then, Nb is diffused onto an electrode pattern for forming a dope layer 4 and then the electrode mask pattern is eliminated. Then, the PZT thin film 5 is deposited by the CVD method (Chemical Vapor Growth Method) and an upper electrode 6 consisting of a transmission conductive metal material such as Cr is formed on the upper surface and then the lower portion of the substrate 1 is etched to a specific shape before removal. By etching the substrate 1, thermal conductivity can be improved and sensitivity can be improved. Also, since the substrate 1 partially remains, a desired strendth can be maintained. The dope layer 4 becomes a lower electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、赤外線検出センサー
などに組み込まれる焦電型赤外線素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a pyroelectric infrared device incorporated in an infrared detection sensor or the like.

【0002】[0002]

【従来の技術】従来、焦電型赤外線素子を製造するに
は、PZT薄膜を分極方向に配向させるため、格子定数
の近いMgO基板が用いられる。この場合、下部電極を
形成する手法として、(1)MgO基板上のPZT薄膜
を成長させた後、下部電極としてのPtを設ける手法
と、(2)MgO基板の所定の位置に、先にPt膜より
なる下部電極を形成する手法とがある。
2. Description of the Related Art Conventionally, in manufacturing a pyroelectric infrared device, an MgO substrate having a close lattice constant is used in order to orient the PZT thin film in the polarization direction. In this case, as a method of forming the lower electrode, (1) a method of growing PZT thin film on the MgO substrate and then providing Pt as the lower electrode, and (2) a method of forming Pt at a predetermined position of the MgO substrate first. There is a method of forming a lower electrode made of a film.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記
(1)の手法においては、MgO基板の対応する部分を
エッチング処理により全て除去する必要があるが、この
場合、PZT薄膜を傷つけないようにしなければなら
ず、かなりの困難性を伴う。また、前記(2)の手法に
おいては、MgO基板に対してPt膜をエピタキシャル
成長させる必要があり、このための設備や技術が必要と
なる。
However, in the above method (1), it is necessary to completely remove the corresponding portion of the MgO substrate by etching. In this case, the PZT thin film must be protected from damage. No, but with considerable difficulty. Further, in the method (2), it is necessary to epitaxially grow the Pt film on the MgO substrate, and equipment and technology for this purpose are required.

【0004】この発明は、上述の事柄に留意してなされ
たもので、高精度エッチング技術やエピタキシャル下部
電極形成技術がなくても、高感度の焦電型赤外線素子を
簡単に製造することができる方法を提供することを目的
とする。
The present invention has been made in consideration of the above matters, and it is possible to easily manufacture a high-sensitivity pyroelectric infrared device without using a high-precision etching technique or an epitaxial lower electrode forming technique. The purpose is to provide a method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、この発明は、基板の表面にPZT薄膜を形成する焦
電型赤外線素子の製造方法において、前記基板としてS
rTiO3 基板を用い、このSrTiO3 基板上にNb
を拡散させてドープ層を形成した後、PZT薄膜を形成
することを特徴としている。
In order to achieve the above-mentioned object, the present invention provides a method for manufacturing a pyroelectric infrared device in which a PZT thin film is formed on the surface of a substrate.
Using an rTiO 3 substrate, Nb is deposited on the SrTiO 3 substrate.
Is diffused to form a doped layer, and then a PZT thin film is formed.

【0006】[0006]

【作用】この発明においては、基板としてPZTと格子
定数が近いSrTiO3 単結晶基板を用い、この基板上
にNbを拡散させてドープ層を形成した後、PZT薄膜
を形成するようにしているので、PZT薄膜を分極方向
に強く配向させることができる。そして、SrTiO3
基板にNbのドープ層が形成されているので、そのまま
下部電極とすることができる。したがって、従来のよう
に、下部電極形成のためにエッチングしなくてもよく、
また、基板に対してPt膜をエピタキシャル成長させた
りする必要がない。
In the present invention, a SrTiO 3 single crystal substrate having a lattice constant close to that of PZT is used as a substrate, and Nb is diffused on this substrate to form a doped layer, and then a PZT thin film is formed. , PZT thin films can be strongly oriented in the polarization direction. And SrTiO 3
Since the Nb-doped layer is formed on the substrate, the lower electrode can be used as it is. Therefore, unlike the conventional case, it is not necessary to perform etching for forming the lower electrode,
Further, it is not necessary to epitaxially grow the Pt film on the substrate.

【0007】[0007]

【実施例】図1および図2は、この発明の焦電型赤外線
素子の製造方法を示すもので、これらの図を参照しなが
ら製造手順を説明する。なお、各図において、各部は誇
張して表されており、数値の大きさの通り表示されてな
い。
1 and 2 show a method of manufacturing a pyroelectric infrared device according to the present invention. The manufacturing procedure will be described with reference to these drawings. In addition, in each figure, each part is exaggerated and is not displayed according to the size of the numerical value.

【0008】(1)まず、図1(A)に示すように、基
板として例えば厚さ0.5mm、5mm四方のSrTi
3 基板1を用い、このSrTiO3 基板1を(10
0)面に鏡面研磨し、その表面上にフォトリソグラフィ
によって電極マスクパターン2を形成する。
(1) First, as shown in FIG. 1A, as a substrate, for example, SrTi having a thickness of 0.5 mm and a square of 5 mm is used.
Using the O 3 substrate 1, the SrTiO 3 substrate 1 (10
The surface 0) is mirror-polished, and the electrode mask pattern 2 is formed on the surface by photolithography.

【0009】(2)次いで、図1(B)に示すように、
電極マスクパターン2上にNb3を拡散させ、同図
(C)に示すように、ドープ層4を形成する。その後、
電極マスクパターン2は除去される。
(2) Next, as shown in FIG.
Nb3 is diffused on the electrode mask pattern 2 to form a doped layer 4 as shown in FIG. afterwards,
The electrode mask pattern 2 is removed.

【0010】(3)そして、図2(A)に示すように、
CVD法(化学気相成長法)によりPZT薄膜5を例え
ば5μm程度の厚みに堆積する。このPZT薄膜5は、
CVD法により成長させると、c軸方向に配向成長す
る。
(3) Then, as shown in FIG.
The PZT thin film 5 is deposited to a thickness of, for example, about 5 μm by the CVD method (chemical vapor deposition method). This PZT thin film 5 is
When it is grown by the CVD method, it grows oriented in the c-axis direction.

【0011】(4)図2(B)に示すように、PZT薄
膜5の上面にCrなど透過性導電性金属材料よりなる上
部電極6を形成し、次いで、同図(C)に示すように、
SrTiO3 基板1の下部を所定形状になるようにエッ
チング処理して除去する。符号7はエッチング処理によ
って除去された部分を示す。
(4) As shown in FIG. 2B, an upper electrode 6 made of a transparent conductive metal material such as Cr is formed on the upper surface of the PZT thin film 5, and then as shown in FIG. ,
The lower part of the SrTiO 3 substrate 1 is etched so as to have a predetermined shape and removed. Reference numeral 7 indicates a portion removed by the etching process.

【0012】前記SrTiO3 基板1のエッチングを施
すことにより、熱伝導性が改良され、感度が向上する。
また、SrTiO3 基板1の一部が残されているので、
所望の強度が維持される。
By etching the SrTiO 3 substrate 1, the thermal conductivity is improved and the sensitivity is improved.
Moreover, since a part of the SrTiO 3 substrate 1 is left,
The desired strength is maintained.

【0013】そして、上述のように、SrTiO3 基板
1がNbドープを施されているので、これを下部電極と
することができる。つまり、従来のように特別に下部電
極を形成するためのエッチングを施す必要がなくなる。
As described above, since the SrTiO 3 substrate 1 is Nb-doped, it can be used as the lower electrode. In other words, it is not necessary to perform etching for forming the lower electrode, which is required in the conventional case.

【0014】上記PZT薄膜5の組成は、PbZrx
1-x 3 〔0≦x≦0.52〕が好ましい。これは、
x≦0.52であると、PZT薄膜は正方晶であり、c
軸方向が分極方向である。したがって、c軸配向膜を形
成することにより、高感度の焦電型赤外線素子を得るこ
とができる。
The composition of the PZT thin film 5 is PbZr x T
i 1-x O 3 [0 ≦ x ≦ 0.52] is preferable. this is,
When x ≦ 0.52, the PZT thin film is tetragonal, and c
The axial direction is the polarization direction. Therefore, by forming the c-axis alignment film, a highly sensitive pyroelectric infrared device can be obtained.

【0015】[0015]

【発明の効果】以上説明したように、この発明において
は、SrTiO3 基板を用いるとともに、この基板上に
Nbを拡散させてドープ層を形成した後、PZT薄膜を
形成するようにしているので、PZT薄膜を分極方向に
強く配向させることができる。したがって、従来のMg
O基板をを用いた場合のように高度なエッチング技術を
必要とせず、また、基板に対してPt膜をエピタキシャ
ル成長させたりする必要がなく、非常に簡易な手法で容
易に所望の感度を有する焦電型赤外線素子を得ることが
できる。したがって、高感度の赤外線センサーを安価に
得ることができる。
As described above, in the present invention, the SrTiO 3 substrate is used, and Nb is diffused on the substrate to form the doped layer, and then the PZT thin film is formed. It is possible to strongly orient the PZT thin film in the polarization direction. Therefore, conventional Mg
It does not require a high-level etching technique as in the case of using an O substrate, and does not need to epitaxially grow a Pt film on the substrate. An electric infrared device can be obtained. Therefore, a highly sensitive infrared sensor can be obtained at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る焦電型赤外線素子の
製造方法の一例の第1ステップを示す図である。
FIG. 1 is a diagram showing a first step of an example of a method for manufacturing a pyroelectric infrared device according to an embodiment of the present invention.

【図2】前記第1ステップの次に行われる第2ステップ
を示す図である。
FIG. 2 is a diagram showing a second step performed after the first step.

【符号の説明】[Explanation of symbols]

1…SrTiO3 基板、3…Nb、4…ドープ層、5…
PZT薄膜。
1 ... SrTiO 3 substrate, 3 ... Nb, 4 ... Doped layer, 5 ...
PZT thin film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の表面にPZT薄膜を形成する焦電
型赤外線素子の製造方法において、前記基板としてSr
TiO3 基板を用い、このSrTiO3 基板上にNbを
拡散させてドープ層を形成した後、PZT薄膜を形成す
ることを特徴とする焦電型赤外線素子の製造方法。
1. A method of manufacturing a pyroelectric infrared device comprising forming a PZT thin film on the surface of a substrate, wherein the substrate is Sr.
A method for manufacturing a pyroelectric infrared device, comprising: using a TiO 3 substrate, diffusing Nb on the SrTiO 3 substrate to form a doped layer, and then forming a PZT thin film.
JP6101822A 1994-04-16 1994-04-16 Method for manufacturing pyroelectric type infrared ray element Pending JPH07286898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6101822A JPH07286898A (en) 1994-04-16 1994-04-16 Method for manufacturing pyroelectric type infrared ray element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6101822A JPH07286898A (en) 1994-04-16 1994-04-16 Method for manufacturing pyroelectric type infrared ray element

Publications (1)

Publication Number Publication Date
JPH07286898A true JPH07286898A (en) 1995-10-31

Family

ID=14310815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6101822A Pending JPH07286898A (en) 1994-04-16 1994-04-16 Method for manufacturing pyroelectric type infrared ray element

Country Status (1)

Country Link
JP (1) JPH07286898A (en)

Similar Documents

Publication Publication Date Title
JP2798361B2 (en) Superconducting field effect device having grain boundary channel and method of manufacturing the same
EP0708986B1 (en) Pyrodetector element with an epitaxially grown pyroelectric layer and process for producing the same
KR20030029114A (en) Microelectronic piezoelectric structure
JP2001267645A (en) Ferroelectric thin film element, sensor and method of manufacturing ferroelectric thin film element
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
JP2003031815A (en) Field-effect transistor structure having double layer perovskite oxide electrode and method for forming it
JPH07286898A (en) Method for manufacturing pyroelectric type infrared ray element
US6482538B2 (en) Microelectronic piezoelectric structure and method of forming the same
JP2753170B2 (en) Crystallization method of ferroelectric film
US5663081A (en) Method for making a high-temperature superconducting field-effect transistor with thick superconducting channel layer
JPH01117376A (en) Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof
JPS60193324A (en) Manufacture of semiconductor substrate
US5420101A (en) Structures super conductor tracks and process for making them
JP3116048B2 (en) Semiconductor device having ferroelectric layer and method of manufacturing the same
KR970010737B1 (en) Thin film infrared sensor
JPH0989651A (en) Thin-film infrared sensor
KR930004024B1 (en) Manufacturing method of super conductor ic
GB2310318A (en) Ferroelectric device
US4620209A (en) Mosaic pattern of infrared detectors of different cut off wave lengths
JP2739582B2 (en) Manufacturing method of electro-optical device
JPS5821868A (en) Manufacture of thin polycrystalline silicon film transistor
US20090278212A1 (en) Integrated Device
JP2531222Y2 (en) Pyroelectric sensor
JPH0384947A (en) Manufacture of semiconductor substrate
KR0168958B1 (en) Pyroelectric infrared sensor