JPH07283077A - 薄膜コンデンサ - Google Patents

薄膜コンデンサ

Info

Publication number
JPH07283077A
JPH07283077A JP6098179A JP9817994A JPH07283077A JP H07283077 A JPH07283077 A JP H07283077A JP 6098179 A JP6098179 A JP 6098179A JP 9817994 A JP9817994 A JP 9817994A JP H07283077 A JPH07283077 A JP H07283077A
Authority
JP
Japan
Prior art keywords
thin film
lower electrode
layer
dielectric layer
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6098179A
Other languages
English (en)
Inventor
Michiya Arakawa
美智也 荒川
Toshikatsu Takada
俊克 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP6098179A priority Critical patent/JPH07283077A/ja
Priority to US08/419,408 priority patent/US5600532A/en
Publication of JPH07283077A publication Critical patent/JPH07283077A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials

Abstract

(57)【要約】 (修正有) 【目的】薄膜コンデンサの下部電極層の材質を最適化す
ることによって、絶縁基板上に形成された薄膜コンデン
サの耐熱性を向上する。 【構成】絶縁基板1上に形成された下部電極層2と、こ
の下部電極層上に形成された薄膜誘電体層3と、この薄
膜誘電体層上に形成された上部電極層4とからなる薄膜
コンデンサにおいて、下部電極層のうち、少なくとも該
薄膜誘電体層と接する面をなす下部電極表面層が、62
3K以上の再結晶温度を有する金属、1780K以上の
融点を有する金属、又は所定のNi含有率を有するNi
−Fe合金からなる薄膜コンデンサ。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、絶縁基板の表面に形成
した薄膜コンデンサに関し、特に、薄膜コンデンサの耐
熱性の向上を図るための下部電極層を有する薄膜コンデ
ンサに関する。
【0002】
【従来の技術】近年の集積回路技術の発達により、集積
回路の高速動作のため動作周波数の上昇は著しい。それ
に伴いノイズによる集積回路の誤動作防止のため、デカ
ップリングコンデンサをセラミック基板等の絶縁基板に
装着、あるいは形成することが行われている。このコン
デンサには比較的大きい静電容量が要求されるにも拘わ
らず、絶縁基板自身は小型化をも要求されていること
や、コンデンサの特性の上からも、集積回路に近い絶縁
基板上にコンデンサを形成することが考えられている。
【0003】この場合において、限られた面積中で静電
容量を大きくするために、誘電体層の厚みを薄くするこ
とが必要となり、スパッタリング法やCVD法、ゾル・
ゲル法、LB膜法等の薄膜形成技術により薄膜誘電体層
を形成することが行われる。これらの内、良く知られた
方法としては、特開昭52−53257号公報や特公昭
60−55957号公報等に開示されているように、絶
縁基板上にTa等の陽極酸化可能な金属をスパッタリン
グ等により薄膜形成し、その後、例えば0.1%濃度の
クエン酸溶液等を用いて陽極酸化することにより、Ta
からなる下部電極とTa25からなる誘電体層を形成す
る。その上にスパッタリング等によりTa、Al等の金
属からなる上部電極を形成し、薄膜コンデンサとする手
法が挙げられる。
【0004】
【発明が解決しようとする課題】かかる絶縁基板は、そ
の後にポリイミド等をキュアして絶縁層を形成したり、
半導体素子の装着(ダイアタッチ)や蓋体の封着等のた
めに、300〜500℃程度の熱的処理を受ける。従っ
て、絶縁基板上に形成された薄膜コンデンサにも耐熱性
が要求されることとなる。しかし、上記の従来の手法で
形成された薄膜コンデンサにおいては、例えば誘電体層
のTa25と下部電極のTaが熱により拡散しあって、
導電性を示すようになる。薄膜誘電体は、その厚みが薄
いため、かかる変質によって薄膜誘電体層自身の絶縁性
が低下し、コンデンサとしての特性を十分果たせなくな
る。従って、拡散の生じない温度範囲である300℃以
下の耐熱性しか得ることができなかった。
【0005】かかる問題に対して、本願発明者はTa等
の拡散を防止ことを目的として、下部及び上部電極層に
Ta25と拡散し合わないCu、Ag等を用いて、Ta
25からなる薄膜誘電体層を形成し、コンデンサの耐熱
性を調査した。しかし、このようなコンデンサは、逆に
絶縁性が低下してしまって、短絡不良が生じるなどの不
具合が発生し、結果としてコンデンサとして耐熱性を向
上することができなかった。というのも、電極層のCu
等の結晶が200〜250℃程度で粒成長したため、C
u等の原子が移動し、これと接している薄膜誘電体層に
損傷が生じたためである。また、CuやAgなどは誘電
体層に比べて熱膨張係数も大きく、薄膜誘電体層との間
に熱応力が発生した影響も有ると思われた。
【0006】しかも、この薄膜誘電体層の損傷は、特に
下部電極層の粒成長や熱応力により顕著に発生した。な
ぜならば、上部電極層には、誘電体層の欠陥によるコン
デンサの短絡不良の影響を少なくするため、小電極に分
割して形成したものを用いたからである。即ち、上部電
極層である小電極は電極の大きさが、下部電極層の大き
さよりも小さいため、薄膜誘電体層に対する電極層の結
晶粒成長や熱応力の影響に関して、下部電極層の方が大
きくなったためである。
【0007】本発明はかかる問題点を解決するためにな
されたものであって、電極層、特に影響の大きい下部電
極層の材質を最適化することによって、絶縁基板上に形
成された薄膜コンデンサの耐熱性を向上することを目的
とする。
【課題を解決するための手段】
【0008】しかして、その解決手段は、絶縁基板上に
形成された下部電極層と、該下部電極層上に形成された
薄膜誘電体層と、該薄膜誘電体層上に形成された上部電
極層とからなる薄膜コンデンサにおいて、該下部電極層
のうち、少なくとも該薄膜誘電体層と接する面をなす下
部電極表面層が、623K以上の再結晶温度を有する金
属からなることを特徴とする薄膜コンデンサである。ま
た他の解決手段は、絶縁基板上に形成された下部電極層
と、該下部電極層上に形成された薄膜誘電体層と、該薄
膜誘電体層上に形成された上部電極層とからなる薄膜コ
ンデンサにおいて、該下部電極層のうち、少なくとも該
薄膜誘電体層と接する面をなす下部電極表面層が、17
80K以上の融点を有する金属からなることを特徴とす
る薄膜コンデンサである。ここで、下部電極表面層が、
13×10-6/K以下の熱膨張係数を有する金属からな
る場合には、更に高い耐熱性を得ることが出来る。
【0009】また、具体的には、下部電極層のうち、少
なくとも薄膜誘電体層と接する面をなす下部電極表面層
が、Niを30%以上含有するNi−Fe合金からなる
場合には、適当なNiとFeの組成比を選択することに
より、熱膨張係数を適宜選択できて都合がよい。更に、
下部電極層のうち、下部電極表面層、およびこの下部電
極表面層と絶縁基板との間にあって下部電極表面層と接
する下部電極下地層が、Niを30〜70%含有するN
i−Fe合金からなる場合には、500℃以上の耐熱性
を得ることが可能となる。また、下部電極表面層が、N
iを40〜70%含有するNi−Fe合金からなる場合
には、下部電極下地層の材質に拘わらず、500℃以上
の耐熱性を得ることが出来る。
【0010】
【作用】一般に、冷間加工を受けた結晶性材料を適当な
高温で焼きなますと、もとの結晶粒から新しい結晶粒が
生まれ、材料全体が新しい結晶粒で構成されるようにな
る現象は、いわゆる再結晶として知られており、この再
結晶の起こる下限温度は、再結晶温度Trと呼ばれる
(理化学辞典:岩波刊)。ところで、メッキやスパッタ
リング等により形成されたコンデンサの上下電極層を構
成する金属も、加熱により金属結晶粒が粒成長をするた
め、その粒成長を始める温度(以下、粒成長開始温度T
gという)は、この再結晶温度Trに近似した値となる
と考えて良い。
【0011】ここで、再結晶温度Trは、その金属の融
点Tmにほぼ比例すると考えられ、その目安としては、
絶対温度表現での融点Tmの約35〜59%程度の温度
となることが知られている(金属組織学p114〜12
2:丸善刊)。従って、粒成長開始温度Tgも、Trと
ほぼ同じ程度の値を持つと考えられる。例えば、融点T
mが1356KであるCuの再結晶温度Tr、即ち粒成
長開始温度Tgは、およそ473〜503K(=200
〜230℃)であり、融点Tmが1234KであるAg
は、再結晶温度Tr従って粒成長開始温度Tgはおよそ
470K(=200℃)以下である(同金属組織学;表
5・4)。一方、同表によれば、融点Tmが1726K
であるNiでは、再結晶温度Tr即ち粒成長開始温度T
gはTmの46〜54%の803〜933K(=530
〜660℃)程度とされ、融点Tmが2042Kである
Ptでは、同様にTgは723K(=450℃)以下と
されている。
【0012】従って、下部電極層のうち少なくとも薄膜
誘電体層と接する部分である下部電極表面層を、かかる
再結晶温度Tr即ち粒成長開始温度Tgの高い材質で形
成すれば、結晶粒の成長の伴う原子の移動を防止し、あ
るいは低く抑えることが出来る。即ち、再結晶温度T
r、従って粒成長開始温度Tgが623K(=350
℃)以上の値を持つ金属を下部電極表面層に使用すれ
ば、350℃を越える加熱によっても粒成長を起こさな
いか、あるいは起こしてもその程度は小さい。同様に、
1780K(=1507℃)以上の高い融点Tmを有す
る金属は、再結晶温度の金属種類によるばらつきを考慮
して、融点Tmの35%を取った場合でも、再結晶温度
Tr即ち粒成長開始温度Tgが623K(=350℃)
より高く、350℃を越える加熱によっても粒成長を起
こさないか、もしくは起こしてもその程度は小さい。
【0013】更に、下部電極表面層が、13×10-6
℃以下の比較的低い熱膨張係数を有する金属からなる場
合には、加熱による熱膨張差によって、薄膜誘電体層と
の間に発生する熱応力をも低減できる。薄膜誘電体層
は、例えば、Ta25やSi34等の金属酸化物や窒化
物等からなり、一般的に金属よりも低い熱膨張係数を有
するからである。
【0014】一方、下部電極層のうち少なくとも下部電
極表面層が、Niを30%以上含有するNi−Fe合金
からなる場合にも、高い融点、従って高い粒成長開始温
度を有しつつ、NiやFe単体よりも低い熱膨張係数を
持たせることができる。しかも、Niの含有率に応じて
熱膨張係数を大きく変化できるため、薄膜誘電体層や絶
縁基板、下部電極下地層の材質等に応じて、適当なNi
含有率を選んで、コンデンサの耐熱性等を最適化でき
る。
【0015】このうち、下部電極表面層及び下部電極下
地層が、Niを30〜70%含有するNi−Fe合金か
らなる場合には、表面層と下地層間の熱応力をも小さく
できる。また、下部電極表面層が、Niを40〜70%
含有するNi−Fe合金であること特徴とする場合に
は、表面層の熱膨張係数を低くして、薄膜誘電体層のそ
れに近づけることができる一方、極端に熱膨張係数が低
くならないため、下部電極下地層にCu等の熱膨張係数
の高い材料を使用しても、この下地層との間の熱応力に
ついてもあまり大きくなることはない。
【0016】
【実施例】以下、本発明について、図1〜4を参照しつ
つ、説明する。 [実施例1]アルミナ92%からなり、50mm□×2
mm厚の絶縁セラミック基板1の一主面1a上全体に、
スパッタリングによりTi(0.2μm厚)およびCu(0.5
μm厚)からなる下部電極接続層2aを形成して、更に
その上に、Cu(7μm厚)からなる下部電極下地層2b
およびNi(3μm厚)からなる下部電極表面層2cを電
解メッキにより形成して、2aから2cの3層からなる
下部電極層2を形成する(図1参照)。
【0017】ここで、下部電極接続層2aは、絶縁基板
1との密着性の向上及び導電性を付与して電解メッキを
可能とするために設けられるものである。また、下部電
極下地層2bは、下部電極層全体の厚みを厚くするとと
もに、抵抗率の低い金属を使用することにより、コンデ
ンサの下部電極層2自身のもつ抵抗を低くして、コンデ
ンサの電気的特性を向上するために設けられるものであ
る。上記実施例においては、電極のインダクタンスの低
下をも図るため、低抵抗である上に、非磁性金属である
Cuを用い、形成方法としては、厚みを厚くしやすい電
解メッキ法を用いた。下部電極表面層2cは、下部電極
下地層2bと接して形成されて下部電極2の表面部分を
なし、上記実施例においては、再結晶温度が高い金属、
即ち粒成長開始温度の高いNiを用いて構成されてい
る。
【0018】尚、下部電極下地層2b及び下部電極表面
層2cの厚みは、要求される下部電極層2の抵抗値や下
地層2bと表面層2cの材質等によって適宜決定され
る。本実施例においては、下地層2bに用いたCuの熱
膨張係数が比較的大きく、また厚い(7μm厚)ため、
表面層2cの厚みも厚め(3μm厚)にすることで、両
者の熱膨張差によって表面層2cにクラックが生じるの
を防止している。また、下地層2b及び表面層2cを、
電解メッキにより形成することにより、絶縁基板1の表
面1a上に存在するポア、キズ等の欠陥を、メッキ粒子
が埋めるようにして成長するので、欠陥によって凹凸部
分のある基板に比べ、表面層2cの表面は平坦にされて
いる。
【0019】ついで、下部電極層2上に反応性スパッタ
リングによりTa25(0.3μm厚)からなる薄膜誘電体
層3を形成する(図2参照)。更に、Mo(0.3μm厚)
及びCu(0.5μm厚)からなる上部電極接続層4aをス
パッタリングにより形成し、フォトリソグラフィー技術
により、開口部が1.27mm□の大きさで、隣接するパタ
ーンとの間隔が1.27mmであるレジストパターンを形成
する。
【0020】その後、この開口部にCu(5μm厚)から
なる上部電極下地層4bおよびNi(2μm厚)からなる
上部電極表面層4cを電解メッキにより形成して、4a
から4cの3層からなる上部電極層4とし、最後にレジ
ストを除去した上で、Mo−Cuスッパッタリング膜の
うち不要部分をエッチングにより除去して、目的とする
薄膜コンデンサ10を完成した(図3参照)。この場
合、上部電極層4が分割されているため、薄膜コンデン
サ10としては、一枚の絶縁基板1上に縦16ヶ、横1
6ヶの合計256個の小コンデンサが形成されたことと
なる。
【0021】小コンデンサを形成する理由は、薄膜誘電
体層3若しくは下部電極層2に欠陥が存在すると、コン
デンサが短絡不良となり易く、1つのコンデンサに1ヶ
所でも欠陥が存在すれば、コンデンサ全体が短絡状態と
なってしまうため、コンデンサの歩留りが低下する。そ
こで、上部電極を分割して小コンデンサをいくつも製作
し、欠陥のない良好なコンデンサのみを選択・結合し
て、所望の静電容量を有するコンデンサを構成すること
により、信頼性や歩留りの向上を図るためである。
【0022】ここで、上部電極接続層4aは、薄膜誘電
体層3との密着性の向上及び導電性を付与して電解メッ
キを可能とするために設けられるものである。上部電極
下地層4bは、下部電極下地層2bと同様に上部電極層
4全体の厚みを厚くするとともに、抵抗率の低い金属を
使用することにより、コンデンサの上部電極層4自身の
もつ抵抗を低くして、コンデンサの電気的特性を向上す
るために設けられるものである。一方、上部電極表面層
4cは、下部電極表面層2cとは異なり、薄膜誘電体層
との関係を考慮する必要は少なく、むしろ、上部電極層
4の酸化を防止するため、及びMo−Cuのスパッタリ
ング膜を選択的にエッチングするためにNiを用いたも
のである。以上から判るように、本実施例では、上部電
極下地層4bや上部電極表面層4cは、下部電極層2に
比べて大きさが小さいので、これらの材質の粒成長開始
温度や熱膨張係数の大きさは、下部電極層2に比較して
問題となりにくい。
【0023】その他、上記と同様にして、下部電極表面
層2cの材質のみをPt、Ni−W合金(Ni=60
%)とした薄膜コンデンサについても製作し試料とし
た。また、比較例として、下部電極表面層2cの材質の
みを、Cu、Agとした場合についても試料を製作し
た。尚、上記Niメッキ及びNi−W合金メッキにおい
ては、その成分であるNiに不可避的に含有される不純
物としてCoが数%含有されている。
【0024】次に、完成した薄膜コンデンサ10の耐熱
性を以下の方法により調査した。まず、上記により完成
した薄膜コンデンサ10の下部電極層2を共通電極と
し、小電極に分割された上部電極層4それぞれとの間
で、絶縁抵抗を測定するとともに、電極の剥がれ等を外
観検査し、良好なコンデンサを選択しておく。次いで、
薄膜コンデンサ10をオーブンに入れて、図4に示す温
度スケジュールにて、最高温度が350℃の加熱を行
い、下記する検査を行った後に、500℃の加熱の合計
2種類を行う。
【0025】尚、ここで最高温度を350℃としたの
は、半導体素子をAu−Snはんだでダイアタッチする
場合、エポキシ樹脂をキュアして絶縁層を形成する場合
や基板を電子機器へ装着する時のはんだ付け温度を想定
したためである。一方、最高温度を500℃としたの
は、薄膜コンデンサ10を形成した後に、薄膜コンデン
サ10の上や絶縁基板1の裏面1bなどに、ポリイミド
やガラス等の絶縁層等を形成して多層配線基板等を製造
する場合のキュア工程や焼き付け工程などにおいて加え
られる温度や、Au−Ge、Au−Siロウでダイアタ
ッチを行う場合を想定したものである。
【0026】350℃及び500℃の各加熱後、試料を
取り出して、試験前には良好であった薄膜コンデンサに
ついて、上記と同様に、薄膜コンデンサ10の絶縁抵抗
及び剥がれ等の有無を検査した。ここで、絶縁抵抗につ
いては、試験の前後共に、25V、3秒で、30MΩ以
上の絶縁抵抗であることを合格の条件とし、コンデンサ
の外観については、電極や誘電体層の「剥がれ」や「ふ
くれ」等の観察されないことを、合格の条件とした。
【0027】最高温度が350℃の場合の結果を表1の
試料番号1から5に示す。尚、本試料においては、小コ
ンデンサは256ヶ作成されたのであるが、基板等の欠
陥により耐熱調査の前から短絡等しているコンデンサが
あったので、試料数は、220ヶ前後となった。
【表1】 表1より、下部電極表面層2cの材質が、再結晶温度T
rが350℃以上である試料番号1〜3の場合、及び1
780K以上の融点Tmを持つ金属からなる試料番号2
及び3については、比較例としてCuやAgを用いた番
号4、5の試料と異なり、絶縁抵抗及び外観とも良好で
あり、350℃程度の加熱に耐えられることが判る。こ
れは、再結晶温度Trが高い金属は、同様な値を持つと
考えられる粒成長開始温度Tgが高いこと、あるいは融
点Tmの高い金属は、再結晶温度Trも粒成長開始温度
Tgも高いことによるものである。例えばNiの場合、
再結晶温度Trが530〜660℃であるため、粒成長
開始温度Tgも同様な値を持つ。従って、350℃程度
の加熱では、粒成長は起こらないかあるいはその程度が
小さく、薄膜誘電体層3を損傷するまでには至らないた
めと考えられる。
【0028】一方、試料番号2のPtの場合は、融点T
mが高く、再結晶温度Trが450℃以下と高いので、
やはり、350℃程度の加熱では、粒成長は起こらない
かあるいはその程度が小さく、薄膜誘電体層3を損傷す
るまでには至らないためと考えられる。このことは、試
料番号3のNi−W合金の場合でも同じである。
【0029】同様に、最高温度が500℃の場合の結果
を表2に示す。
【表2】 表2においては、上記表1の場合と若干異なり、Niを
用いた試料番号1の場合には、不具合が生じている。こ
れは、Niの再結晶温度TrはPtの場合よりも高いも
のの、Niの熱膨張係数が、13×10-6/℃以上と大
きいため、加熱により薄膜誘電体層3のTa25との熱
膨張差が大きくなって、結果として薄膜誘電体層3に損
傷が生じたためと考えられる。
【0030】一方、表面層2cにPtを用いた試料番号
2の場合には、再結晶温度Tr(450℃以下)を越え
た500℃の加熱がなされているが、加熱した500℃
とPtの再結晶温度Trとの温度差が小さい上に、表面
層2cの熱膨張係数が13×10-6/℃以下であるた
め、薄膜誘電体層3との熱膨張差がそれほど大きくなら
ず、不具合が生じなかったと考えられる。同様に、Ni
−W合金を用いた試料番号3の場合には、再結晶温度T
rは明確でないが、Ni及びW共に再結晶温度Trが高
い(Ni:530〜660℃、W:1200℃以下)た
め、Ni−W合金の再結晶温度Trも高いことが予想さ
れる。しかも、融点Tmも、1783K(=1510
℃)と高いので、500℃の加熱によって再結晶は起こ
らない、あるいは起こりにくいと考えられる。その上、
Ni−W合金の熱膨張係数はかなり低いので、薄膜誘電
体層3との熱膨張差がそれほど大きくならず、不具合が
生じなかったと考えられる。
【0031】従って、表面層2cにNiなどを用いた場
合、コンデンサ完成後に、350℃程度の加熱ならば耐
えられる。特に、Niは安価であり、酸化しにくいため
下部電極層形成後、薄膜誘電体層を形成するまでの間の
取り扱いも容易となる。一方、500℃程度の加熱に耐
えるためには、Pt、Ni−W合金等を用いる必要があ
り、このうちPtは、価格は高いが、非磁性であり電極
等の持つインダクタンスを低減できる点で有利である。
更に、上記実施例では調査しなかったが、その他の金属
として、Ni−Mo、Pd、Cr、これらの合金等を用
いても良い。Pdは、若干高価であるが、酸化しない利
点がある。またCrは硬い電極が得られるが、均一なメ
ッキが得にくく、膜厚が1μm程度より厚くなると割れ
を生じる場合がある。下部電極表面層の材質をどのよう
なものとするかは、要求されるコンデンサの特性や価
格、下部電極下地層の材質等を勘案して、適宜選択すれ
ば良い。
【0032】ここで、熱膨張係数は、表1及び2では原
則として0〜100℃の範囲の熱膨張係数(平均値)を
表示した。というのは、0〜350℃または0〜500
℃の場合の値は、使用した金属について明確に示された
文献等が見あたらないこと。及び、一般的に熱膨張曲線
は、直線的あるいは指数関数的に単調に増加するため、
0〜100℃において、大きな熱膨張係数を有する材料
は、350℃または500℃までの温度範囲でも、大き
な熱膨張係数を有するであろうことは、十分推測できる
からである。従って、本発明においては、熱膨張係数と
しては、0〜100℃の熱膨張係数を用いることとす
る。
【0033】[実施例2]ところで、Ni−Fe合金に
ついては、Niの含有量により熱膨張係数が大きく変化
できる性質(図5参照:Ni−Fe合金の熱膨張係数;
技術評論社刊、「続一歩先をいく機械材料選び」より引
用)が知られている。そこで、前記実施例1と同様な薄
膜コンデンサにおいて、下部電極下地層2bの材質をC
uからNi−Fe合金に変更し、下部電極表面層2cの
材質と同じとして、即ち、Cuからなる下地層2bを形
成することなく、Niの含有量を適宜変化したNi−F
e合金を用いて、厚さ10μmの表面層2cを電解メッ
キにより形成して、薄膜コンデンサ10を製作した。そ
の後、前記実施例1と同様な方法によって、薄膜コンデ
ンサ10の耐熱性を調査した。尚、Ni−Fe合金につ
いて、各組成における融点を確認することが出来なかっ
た。しかし、融点TmはNi(1726K)及びFe
(1810K)にたいして、さほど異ならないと思わ
れ、粒成長開始温度TgもNiの場合の530〜660
℃と同程度と考えられる。
【0034】最高温度が350℃及び500℃の場合の
結果を表3に示す。
【表3】 表3から判るように、Ni−Fe合金のNi含有量が3
0%以上の場合には、これを用いた薄膜コンデンサは、
350℃以上の耐熱性を有することが判る。これは、前
述のようにNi−Fe合金の粒成長温度Trが600℃
程度であろうこと、及び熱膨張係数が低いことのためと
考えられる。尚、Ni含有量が25%以下の場合には、
合金の結晶構造がマルテンサイト構造に変化して、熱膨
張係数が大きくなるので、クラックが発生したと思われ
る。
【0035】更に表3によれば、Ni−Fe合金のNi
含有量が30〜70%の場合には、最高温度が500℃
の場合にも耐えられる耐熱性を有していることが判る。
これは、Ni含有量が70%を越える場合には、熱膨張
係数がNiに近づくために、薄膜誘電体層3と熱膨張差
が大きくなるからであり、70%以下であれば、このよ
うな熱膨張差が許容できる範囲内あるためと考えられ
る。従って、このような組成を持つNi−Fe合金を用
いれば、500℃以上の耐熱性を有する薄膜コンデンサ
を安価に形成することが可能となる。尚、本実施例で
は、下地層2bとして、表面層2cと同一材質のNi−
Fe合金を使用し、結局、下地層と表面層の区別無く、
一つの層(表面層)を形成したが、下地層2bと表面層
2cを各々適当な組成のNi−Fe合金を用いて構成し
ても良い。このような場合にも両者間に発生する熱応力
は、それほど大きくはならず、しかも、薄膜誘電体層3
との間の熱膨張差の小さくできるからである。
【0036】[実施例3]更に、Ni−Fe合金につい
て、下部電極下地層2bとの関係について検討するた
め、前記実施例1と同様な薄膜コンデンサにおいて、下
部電極下地層2bを実施例1と同様に7μm厚のCuメ
ッキ層とし、下部電極表面層2cの材質を、Niの含有
量を適宜変化したNi−Fe合金を用いて薄膜コンデン
サ10を製作し、前記実施例1と同様な方法によって、
薄膜コンデンサ10の耐熱性を調査した。
【0037】最高温度が350℃及び500℃の場合の
結果を表4に示す。
【表4】 表4を見ると、350℃の加熱の場合には、Ni含有量
が30%以上であれば、良好な耐熱性を有している。こ
れは、実施例2と同様に、Ni−Fe合金が、粒成長を
起こさず、その上比較的低い熱膨張係数を有しているた
め、薄膜誘電体層3との熱膨張差があまり大きくならな
いためであると考えられる。
【0038】また、表4から、500℃の加熱の場合に
は、更に狭いNi含有量が40〜70%の範囲で、良好
な結果が得られることを示している。これは、薄膜誘電
体層3及び下部電極下地層2bの両者に対して、下部電
極表面層2cが適切な熱膨張係数を有していたためであ
ると考えられる。即ち、Ni含有量が35%程度の場合
には、図5からも判るように、熱膨張係数の極端に低下
する領域に該当する。従って、薄膜誘電体層3との熱膨
張差に関しては問題ないが、Cuからなる下地層2bと
の熱膨張差が大きくなる。このため、両者の厚み等の関
係によって、下地層2bと表面層2cとの間に、クラッ
クを生じたものと考えられる。これは、Ni含有率が3
5%の試料番号23では、すべて不良となったのに対
し、Ni含有量30%の試料番号24では、ある程度の
歩留りを有していることからも理解できる。
【0039】以上より、実施例2及び3の結果、表3及
び表4を総合すると。以下のようになる。即ち、表面層
2cにNi−Fe合金を使用する場合、350℃の加熱
では、Ni含有量が30%以上あれば良い。一方、50
0℃の加熱では、Ni含有量が40%未満及び、70%
を越える場合には、下部電極層にクラックが生じること
がある。しかし、Ni含有量が40〜70%の場合に
は、下地層2bの材質に拘わらず、500℃以上の耐熱
性が得られ、30〜70%の領域では、下地層2bの熱
膨張係数が表面層2cと同じあるい近似している場合に
は、500℃の耐熱性が得られることが判る。
【0040】Ni−Fe合金は、価格も安く、メッキ層
(下部電極表面層)も均一に形成できるうえ、熱膨張係
数を、薄膜誘電体層の種類や厚み、下部電極下地層の材
質等に応じて組成や厚みを変化することができる。従っ
て、特に本発明の下部電極表面層として適当である。
尚、本実施例の場合も、前記と同様に、Ni−Fe合金
のうちNi成分については、不純物としてCoが数%存
在している。従って、ここに言う、Niの含有量(重量
比)には、Coを含めた場合の比率を指す。
【0041】[実施例4]更に、薄膜誘電体3を、Ta
25に代えてTiO2及びSrTiO3を反応性スパッタ
リングにより形成した場合について、下部電極表面層2
cをNi−Fe合金(Ni50%)とし、前記実施例1
と同様な手法により薄膜コンデンサ10を形成し耐熱性
を調査した(試料番号27、28)。また、TiO2
びSrTiO3を誘電体として用い、実施例1の比較例
(番号4)と同様に下部電極表面層2cにCuを用いた
場合についても製作し調査した(試料番号29、3
0)。その結果を表5に示す。
【表5】 表5の結果より明らかなように、薄膜誘電体としてTa
25の他に、TiO2及びSiTiO3を用いた場合であ
っても、下部電極表面層にCu等の再結晶温度Trの低
い金属の代えて、Ni−Fe合金のようなTrの高い金
属を用いることによって粒成長を防止し、更に薄膜誘電
体層との熱膨張差を低減して耐熱性を高めることが出来
る。
【0042】尚、使用できる薄膜誘電体は、上記3種に
限らず種々のものを使用することができ、例えばSiO
2、Si34、(Sr,Br)TiO3等が挙げられる。こ
れらの内、Ta25、TiO2、SrTiO3及び(Sr,
Br)TiO3は、比較的誘電率が高いので、大容量コン
デンサ用として有利である。このうち、SrTiO3
び(Sr,Br)TiO3は、特に誘電率が高い。また例え
ば、Ta25は+250ppm/℃程度の正の容量温度
係数を持ち、一方、TiO2は−700ppm/℃、S
rTiO3は−3000ppm/℃程度の負の容量温度
係数を持つので、要求されるコンデンサの特性や製法等
に応じて、適当な誘電体材料を選択すればよい。例え
ば、半導体素子等を動作させると、発生した熱が伝わっ
てコンデンサ10の温度も上昇する。従って、半導体素
子が動作している状態の方がコンデンサ10の静電容量
が高くなるTa25は、ノイズ除去用のデカップリング
コンデンサとして好ましい。
【0043】その他、上記各実施例では、下部電極下地
層2bや下部電極表面層2c、上部電極下地層4bや上
部電極表面層4cは、電解メッキによって形成したが、
その他の手段、例えば、蒸着やスパッタリング、CVD
等の手段によっても良く、また、無電解メッキによって
形成しても良い。電解メッキによれば、処理が容易で、
簡単な装置で大量生産に適する。また無電解メッキとす
れば、電気的に独立(絶縁)したパターン上にも電極が
形成できる利点がある。更に、電解、無電解メッキ共
に、厚みを増すことが容易であるうえ、絶縁基板にポア
やキズ等の欠陥による段差が有る場合に、段差を埋めて
なだらかにするようにしてメッキ層が成長するレベリン
グ特性を有するので、絶縁基板の欠陥に起因して、上下
電極層が接触したり、異常に近接したりするために生ず
る、コンデンサの短絡不良を低減できる効果を有する。
従って、少なくとも下部電極表面層をメッキ法により形
成するれば、メッキのレベリング特性により、絶縁基板
のキズ等に起因する短絡不良等を低減し、更にコンデン
サの絶縁性や歩留り等を向上することが可能である。
【0044】一方、スパッタリング等の手段によれば、
各層の厚みを厚くするのは困難であるが、ガラス基板の
ように絶縁基板の表面の欠陥が少ない場合若しくは小さ
い場合には、下部電極2の形成に続けて、誘電体層3及
び上部電極4を形成できるので、結果としてコストを低
下できる利点がある。
【0045】また、下部電極接続層2aや上部電極接続
層4aは、上記実施例では、スパッタリングにより設け
たが、蒸着、CVD等の手段を用いても良く、また無電
解メッキのための活性化処理として、例えば、PdCl
等の溶液を適用することによって代用しても良い。
【0046】また、上記各実施例においては、絶縁基板
1は、アルミナ製のセラミック基板を用いたが、耐熱性
を有する絶縁基板であれば、アルミナに限定されるもの
ではなく、例えば、AlN、ムライト、ガラスセラミッ
ク、炭化珪素、フォルステライトやガラス等を用いたセ
ラミック基板でも良い。尚、この内で、AlN、ムライ
ト、ガラスセラミック、炭化珪素等は熱膨張係数がアル
ミナより小さいため、下部電極下地層2bにCu等を用
いても良いが、要求される耐熱温度によっては、電極の
抵抗値等に留意しつつNi−Fe合金を用いる等、適宜
材質を変更して用いればよい。
【0047】なお、本発明においては、下部電極表面層
2cについてのみ、PtやNi−Fe合金等を用いた
が、同様に上部電極層4において、薄膜誘電体層3に近
接して形成される上部電極下地層4bについても、上記
と同様にPtやなNi−Fe合金等を用いれば、更に誘
電体層3の損傷を防止できることは明らかである。これ
は、特に上部電極を分割しない場合や、分割した小電極
の大きさが大きい場合に有効である。また、上記実施例
において挙げたPt,Ni−W合金、Ni−Fe合金の
他、Ni−Fe合金にCoやCrを第3成分として添加
した、コバール(29Ni-17Co-Fe)に代表されるFe−Ni
−Co合金や、Fe−Ni−Cr合金等を用いても良
い。これらの合金場合にも、低熱膨張率が得られ、その
組成の変化によってその値を変化できるからである。但
し、メッキによって電極層を構成する場合には、構成成
分が多いほどメッキ液の管理・制御難しくなる嫌いがあ
り、電極の特性等を考慮して、適宜選択すれば良い。
【0048】
【効果】以上より明らかなように、本発明によれば、再
結晶温度Tr又は融点Tmの高い金属からなる下部電極
表面層を用いることで、加熱時の下部電極表面層の粒成
長を防止して、加熱しても下部電極表面層の粒成長に伴
う原子の移動による薄膜誘電体層の損傷を防ぎ、もって
耐熱性の高い薄膜コンデンサを形成することが出来る。
更に、下部電極表面層に熱膨張係数の低い金属を用いる
ことによって、薄膜誘電体層との熱膨張差を低減し、よ
り高い耐熱性を持たせることもできる。
【0049】また、下部電極表面層が、Niを30%以
上含有するNi−Fe合金からなる場合には、薄膜誘電
体層や絶縁基板等の材質に応じて、適当なNi含有率を
選んで、コンデンサの耐熱性等を最適化でき、しかも安
価とすることが出来る。下部電極表面層及び下部電極下
地層が、Niを30〜70%含有するNi−Fe合金か
らなる場合には、薄膜誘電体層との熱応力を低減できる
上、表面層と下地層の間の熱応力が発生しないかあるい
は小さくできるので、更に高い500℃以上の耐熱性を
得ることが可能となる。また、下部電極表面層が、Ni
を40〜70%含有するNi−Fe合金の場合には、下
部電極下地層の材質に拘わらず、500℃以上の耐熱性
を得ることが可能である。
【図面の簡単な説明】
【図1】絶縁基板に下部電極層2を形成した状態を示す
断面図である。
【図2】図1の下部電極層上に薄膜誘電体層3を形成し
た状態を示す断面図である。
【図3】図2の薄膜誘電体層3上に上部電極層を形成し
た状態を示す断面図である。
【図4】耐熱性を調査するためのオーブン温度の加熱ス
ケジュールを示すグラフである。
【図5】Ni−Fe合金のNi含有量による熱膨張係数
の変化を示すグラフである。
【符号の説明】
1.絶縁基板 2.下部電極層 2a.下部電極接続層 2b.下部電極下地層 2c.下部電極表面層 3.薄膜誘電体層 4.上部電極層 4a.上部電極接続層 4b.上部電極下地層 4c.上部電極表面層 10.薄膜コンデンサ

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】絶縁基板上に形成された下部電極層と、該
    下部電極層上に形成された薄膜誘電体層と、該薄膜誘電
    体層上に形成された上部電極層とからなる薄膜コンデン
    サにおいて、該下部電極層のうち、少なくとも該薄膜誘
    電体層と接する面をなす下部電極表面層が、623K以
    上の再結晶温度を有する金属からなることを特徴とする
    薄膜コンデンサ。
  2. 【請求項2】絶縁基板上に形成された下部電極層と、該
    下部電極層上に形成された薄膜誘電体層と、該薄膜誘電
    体層上に形成された上部電極層とからなる薄膜コンデン
    サにおいて、該下部電極層のうち、少なくとも該薄膜誘
    電体層と接する面をなす下部電極表面層が、1780K
    以上の融点を有する金属からなることを特徴とする薄膜
    コンデンサ。
  3. 【請求項3】前記下部電極表面層が、13×10-6/K
    以下の熱膨張係数を有する金属からなることを特徴とす
    る請求項1または2に記載の薄膜コンデンサ。
  4. 【請求項4】絶縁基板上に形成された下部電極層と、該
    下部電極層上に形成された薄膜誘電体層と、該薄膜誘電
    体層上に形成された上部電極層とからなる薄膜コンデン
    サにおいて、該下部電極層のうち、少なくとも該薄膜誘
    電体層と接する面をなす下部電極表面層が、Niを30
    %以上含有するNi−Fe合金からなることを特徴とす
    る薄膜コンデンサ。
  5. 【請求項5】前記下部電極層のうち、前記下部電極表面
    層、および該下部電極表面層と前記絶縁基板との間にあ
    って該下部電極表面層と接する下部電極下地層が、Ni
    を30〜70%含有するNi−Fe合金からなることを
    特徴とする請求項4に記載の薄膜コンデンサ。
  6. 【請求項6】前記下部電極表面層が、Niを40〜70
    %含有するNi−Fe合金からなること特徴とする請求
    項4に記載の薄膜コンデンサ。
JP6098179A 1994-04-11 1994-04-11 薄膜コンデンサ Pending JPH07283077A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6098179A JPH07283077A (ja) 1994-04-11 1994-04-11 薄膜コンデンサ
US08/419,408 US5600532A (en) 1994-04-11 1995-04-10 Thin-film condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6098179A JPH07283077A (ja) 1994-04-11 1994-04-11 薄膜コンデンサ

Publications (1)

Publication Number Publication Date
JPH07283077A true JPH07283077A (ja) 1995-10-27

Family

ID=14212806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6098179A Pending JPH07283077A (ja) 1994-04-11 1994-04-11 薄膜コンデンサ

Country Status (2)

Country Link
US (1) US5600532A (ja)
JP (1) JPH07283077A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007320A1 (en) * 2001-07-12 2003-01-23 Hitachi, Ltd. Thin film capacitor, and electronic circuit component
JP2007300002A (ja) * 2006-05-01 2007-11-15 Tdk Corp 電子部品
JP2018107337A (ja) * 2016-12-27 2018-07-05 大日本印刷株式会社 電子部品およびその製造方法
JP2020504436A (ja) * 2016-09-27 2020-02-06 パーキンエルマー・ヘルス・サイエンシーズ・カナダ・インコーポレイテッドPerkinelmer Health Sciences Canada, Inc. コンデンサ及び無線周波発生器、ならびにこれらを使用する他のデバイス

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244677B2 (en) 1998-02-04 2007-07-17 Semitool. Inc. Method for filling recessed micro-structures with metallization in the production of a microelectronic device
EP1019954B1 (en) 1998-02-04 2013-05-15 Applied Materials, Inc. Method and apparatus for low-temperature annealing of electroplated copper micro-structures in the production of a microelectronic device
US6324048B1 (en) 1998-03-04 2001-11-27 Avx Corporation Ultra-small capacitor array
US6632292B1 (en) * 1998-03-13 2003-10-14 Semitool, Inc. Selective treatment of microelectronic workpiece surfaces
TW593731B (en) * 1998-03-20 2004-06-21 Semitool Inc Apparatus for applying a metal structure to a workpiece
US6565729B2 (en) * 1998-03-20 2003-05-20 Semitool, Inc. Method for electrochemically depositing metal on a semiconductor workpiece
US6497801B1 (en) * 1998-07-10 2002-12-24 Semitool Inc Electroplating apparatus with segmented anode array
US6297154B1 (en) * 1998-08-28 2001-10-02 Agere System Guardian Corp. Process for semiconductor device fabrication having copper interconnects
KR100695660B1 (ko) * 1999-04-13 2007-03-19 세미툴 인코포레이티드 개선된 처리 유체 유동을 갖는 처리 챔버를 구비하는가공편 프로세서
US7264698B2 (en) * 1999-04-13 2007-09-04 Semitool, Inc. Apparatus and methods for electrochemical processing of microelectronic workpieces
US7585398B2 (en) * 1999-04-13 2009-09-08 Semitool, Inc. Chambers, systems, and methods for electrochemically processing microfeature workpieces
US6916412B2 (en) * 1999-04-13 2005-07-12 Semitool, Inc. Adaptable electrochemical processing chamber
US7160421B2 (en) * 1999-04-13 2007-01-09 Semitool, Inc. Turning electrodes used in a reactor for electrochemically processing a microelectronic workpiece
US7020537B2 (en) * 1999-04-13 2006-03-28 Semitool, Inc. Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece
US7438788B2 (en) * 1999-04-13 2008-10-21 Semitool, Inc. Apparatus and methods for electrochemical processing of microelectronic workpieces
US7189318B2 (en) * 1999-04-13 2007-03-13 Semitool, Inc. Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece
US6368475B1 (en) * 2000-03-21 2002-04-09 Semitool, Inc. Apparatus for electrochemically processing a microelectronic workpiece
US20030038035A1 (en) * 2001-05-30 2003-02-27 Wilson Gregory J. Methods and systems for controlling current in electrochemical processing of microelectronic workpieces
US6285542B1 (en) 1999-04-16 2001-09-04 Avx Corporation Ultra-small resistor-capacitor thin film network for inverted mounting to a surface
US6780374B2 (en) 2000-12-08 2004-08-24 Semitool, Inc. Method and apparatus for processing a microelectronic workpiece at an elevated temperature
US6471913B1 (en) 2000-02-09 2002-10-29 Semitool, Inc. Method and apparatus for processing a microelectronic workpiece including an apparatus and method for executing a processing step at an elevated temperature
US20050183959A1 (en) * 2000-04-13 2005-08-25 Wilson Gregory J. Tuning electrodes used in a reactor for electrochemically processing a microelectric workpiece
AU2001259504A1 (en) * 2000-05-24 2001-12-03 Semitool, Inc. Tuning electrodes used in a reactor for electrochemically processing a microelectronic workpiece
AU2001282879A1 (en) * 2000-07-08 2002-01-21 Semitool, Inc. Methods and apparatus for processing microelectronic workpieces using metrology
US7090751B2 (en) * 2001-08-31 2006-08-15 Semitool, Inc. Apparatus and methods for electrochemical processing of microelectronic workpieces
US7290315B2 (en) * 2004-10-21 2007-11-06 Intel Corporation Method for making a passive device structure
US7375412B1 (en) * 2005-03-31 2008-05-20 Intel Corporation iTFC with optimized C(T)
US7453144B2 (en) * 2005-06-29 2008-11-18 Intel Corporation Thin film capacitors and methods of making the same
JP2007266573A (ja) * 2006-02-28 2007-10-11 Sanyo Electric Co Ltd 固体電解コンデンサ及び固体電解コンデンサの製造方法
US8047073B2 (en) * 2007-05-14 2011-11-01 Samsung Sdi Co., Ltd. Capacitive liquid level detector for direct methanol fuel cell systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969197A (en) * 1974-02-08 1976-07-13 Texas Instruments Incorporated Method for fabricating a thin film capacitor
JPS5253257A (en) * 1975-10-27 1977-04-28 Nippon Electric Co Thin film capacitor
DE3063506D1 (en) * 1979-08-31 1983-07-07 Fujitsu Ltd A tantalum thin film capacitor and process for producing the same
GB8321410D0 (en) * 1983-08-09 1983-09-07 Way D R Golf practicising devices
CA1307330C (en) * 1988-09-20 1992-09-08 Katsunori Ueno High voltage through type capacitor and manufacturing method therefor
KR920700460A (ko) * 1989-09-21 1992-02-19 마에다 가쯔노스께 필름콘덴서 및 그의 제조방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007320A1 (en) * 2001-07-12 2003-01-23 Hitachi, Ltd. Thin film capacitor, and electronic circuit component
US7294905B2 (en) 2001-07-12 2007-11-13 Hitachi, Ltd. Thin film capacitor and electronic circuit component
JP2007300002A (ja) * 2006-05-01 2007-11-15 Tdk Corp 電子部品
JP2020504436A (ja) * 2016-09-27 2020-02-06 パーキンエルマー・ヘルス・サイエンシーズ・カナダ・インコーポレイテッドPerkinelmer Health Sciences Canada, Inc. コンデンサ及び無線周波発生器、ならびにこれらを使用する他のデバイス
JP2018107337A (ja) * 2016-12-27 2018-07-05 大日本印刷株式会社 電子部品およびその製造方法

Also Published As

Publication number Publication date
US5600532A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
JPH07283077A (ja) 薄膜コンデンサ
US5685968A (en) Ceramic substrate with thin-film capacitor and method of producing the same
US5665459A (en) Low-temperature fired ceramic circuit substrate and thick-film paste for use in fabrication thereof
JPH09180957A (ja) 積層型セラミックコンデンサ
US5156903A (en) Multilayer ceramic substrate and manufacture thereof
EP0247617A2 (en) Multilayer ceramic substrate with circuit patterns
JPS62199043A (ja) 薄膜回路及びその製造法
JP2002026528A (ja) 導電性ペーストおよび多層セラミック基板
WO2005093118A1 (ja) 高耐熱導電性薄膜の製造方法、該製造方法によって得られる高耐熱導電性薄膜、および積層膜、並びに該積層膜を備えるデバイス
JP2003109838A (ja) セラミック電子部品
JPS625358B2 (ja)
JPH09162452A (ja) セラミック素子及びその製造方法
JP3857219B2 (ja) 配線基板およびその製造方法
JPH0878279A (ja) チップ型電子部品の外部電極形成方法
JP3792642B2 (ja) 配線基板およびその製造方法
JP2565351B2 (ja) 電子回路部品
JP2931910B2 (ja) 回路基板
JP4310852B2 (ja) 電子部品
JP2524129B2 (ja) セラミツク配線基板
JPS62222054A (ja) 炭化珪素焼結体上への金属薄膜の形成方法
JP3677381B2 (ja) 配線基板
JP2541823B2 (ja) セラミック配線基板
JPH04273417A (ja) 積層セラミックコンデンサ
JP2002075705A (ja) 抵抗体基板
JP2000030971A (ja) チップ型電子部品及びその製造方法