JPH0728063A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0728063A
JPH0728063A JP16908893A JP16908893A JPH0728063A JP H0728063 A JPH0728063 A JP H0728063A JP 16908893 A JP16908893 A JP 16908893A JP 16908893 A JP16908893 A JP 16908893A JP H0728063 A JPH0728063 A JP H0728063A
Authority
JP
Japan
Prior art keywords
liquid crystal
display
electrode
display device
display electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16908893A
Other languages
Japanese (ja)
Other versions
JP3234357B2 (en
Inventor
Tokuo Koma
徳夫 小間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16908893A priority Critical patent/JP3234357B2/en
Publication of JPH0728063A publication Critical patent/JPH0728063A/en
Application granted granted Critical
Publication of JP3234357B2 publication Critical patent/JP3234357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prevent the roughness of a display screen of the liquid crystal display device of a perpendicularly oriented ECB mode due to appearance of disclination and to improve a visual angle characteristic by controlling the orientation direction of liquid crystal molecules. CONSTITUTION:This liquid crystal display device is provided with orientation control electrodes 6 integrated with gate lines 18 along the influence of gate potentials is exerted equally on the four sides of pixel and orientation control windows 7 as the parts where electrodes do not exist are formed on counter display electrodes to control the electric field of a liquid crystal layer and to specify the inclination directions of the liquid crystal molecules.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ECB(Electrically
Controlled Birefringence:電圧制御復屈折)方式の
液晶表示装置に関し、特に、液晶分子の配向を制御する
ことにより、良好な視角特性と高表示品位を達成した液
晶表示装置に関する。
The present invention relates to an ECB (Electrically
The present invention relates to a liquid crystal display device of a controlled birefringence (voltage controlled birefringence) system, and more particularly to a liquid crystal display device which achieves good viewing angle characteristics and high display quality by controlling the alignment of liquid crystal molecules.

【0002】[0002]

【従来の技術】液晶表示装置は小型、薄型、低消費電力
などの利点があり、OA機器、AV機器などの分野で実
用化が進んでいる。特に、スイッチング素子として、正
スタガー型の薄膜トランジスタ(以下、TFTと略す)
を用いたアクティブマトリクス型は、構造が簡単である
ので大画面の動画表示に適し、ディスプレイに使用され
ている。
2. Description of the Related Art Liquid crystal display devices have advantages such as small size, thin shape, and low power consumption, and are being put to practical use in fields such as OA equipment and AV equipment. Particularly, as a switching element, a positive stagger type thin film transistor (hereinafter abbreviated as TFT)
The active matrix type using is suitable for displaying a large-screen moving image because of its simple structure and is used for a display.

【0003】液晶表示装置は、図5に示されるように、
所定の導体パターンを有するTFT基板(2)及び対向
基板(4)が、数μmの厚さを持つ液晶層(3)を挟ん
で貼り合わされ、更にこれを、偏光軸方向が互いに直行
する2枚の偏光板(1)(5)で挟み込むことによって
構成される。特に、両基板(2)(4)表面に垂直配向
処理を行い、液晶層(3)として、負の誘電率異方性を
持つ液晶を用いることにより、液晶分子の初期配向を基
板に対して垂直方向に設定したものはDAP(Deformat
ion of Vertically Aligned Phases)型と呼ばれる。
A liquid crystal display device, as shown in FIG.
A TFT substrate (2) having a predetermined conductor pattern and a counter substrate (4) are attached to each other with a liquid crystal layer (3) having a thickness of several μm sandwiched therebetween, and further, the two substrates whose polarization axis directions are orthogonal to each other. It is constituted by sandwiching between the polarizing plates (1) and (5). In particular, by performing vertical alignment treatment on the surfaces of both substrates (2) and (4) and using liquid crystal having a negative dielectric constant anisotropy as the liquid crystal layer (3), the initial alignment of liquid crystal molecules with respect to the substrates is performed. The one set in the vertical direction is the DAP (Deformat
Ion of Vertically Aligned Phases) type.

【0004】例えば、TFT基板(2)側から入射され
た白色光は、第1の偏光板(1)により直線偏光に変化
する。電圧無印加時には、この入射直線偏光は液晶層
(3)中で複屈折をうけないので、第2の偏光板(5)
によって遮断され表示は黒となる(ノーマリ・ブラック
・モード)。そして、液晶層(3)に所定の電圧を印加
し、液晶分子を傾斜させることにより、入射直線偏光が
複屈折を受け楕円偏光となり、光が偏光板(5)を透過
するするようになる。
For example, white light incident from the TFT substrate (2) side is converted into linearly polarized light by the first polarizing plate (1). When no voltage is applied, this incident linearly polarized light does not undergo birefringence in the liquid crystal layer (3), so the second polarizing plate (5)
Is cut off and the display becomes black (normally black mode). Then, by applying a predetermined voltage to the liquid crystal layer (3) and inclining the liquid crystal molecules, the incident linearly polarized light undergoes birefringence to become elliptically polarized light, and the light passes through the polarizing plate (5).

【0005】透過光強度は印加電圧に依存するため、印
加電圧を調整することにより、階調表示が可能となる。
そのため、更にカラーフィルターを液晶パネル内、また
は液晶パネル外の所定の位置に設けることにより、所望
のカラー表示が得られる。続いて、従来の構造を図6を
参照しながら説明する。ここでは、偏光板(1)(5)
の図示は省略した。まずガラス基板(10)上に表示電
極(11)がマトリクス状に、ドレインライン(12)
が表示電極(11)の列間に、いずれもITOなどによ
って形成されている。表示電極(11)及びドレインラ
イン(12)の一部は、延在されて互いに近接し、それ
ぞれ、TFTのソース電極(13)及びドレイン電極
(14)となっている。ソース電極(13)及びドレイ
ン電極(14)上には、それぞれのコンタクト層として
+a−Si層(15s)(15d)が設けられ、両N+
a−Si層(15s)(15d)上には、能動層として
a−Si層(16)が被覆形成されている。更に、全面
にはSiNxなどのゲート絶縁膜(17)が積層されて
いる。前記表示電極(11)の行間に対応するゲート絶
縁膜(17)上にはAlなどのゲートライン(18)が
形成されており、ゲートライン(18)と前記ドレイン
ライン(12)の交差部では、a−Si層(16)に対
応する部分において、ゲートライン(18)の一部がT
FTのゲート電極(19)となっている。更に全面に
は、第1の垂直配向膜(20)が形成されて、TFT基
板(2)が構成される。
Since the intensity of transmitted light depends on the applied voltage, gradation display can be performed by adjusting the applied voltage.
Therefore, a desired color display can be obtained by further providing a color filter inside or outside the liquid crystal panel at a predetermined position. Next, the conventional structure will be described with reference to FIG. Here, the polarizing plate (1) (5)
Is omitted. First, the display electrodes 11 are arranged in a matrix on the glass substrate 10 and the drain lines 12 are formed.
Are formed of ITO or the like between the columns of the display electrodes (11). A part of the display electrode (11) and a part of the drain line (12) are extended to be close to each other, and are a source electrode (13) and a drain electrode (14) of the TFT, respectively. On the source electrode (13) and the drain electrode (14) is, N + a-Si layer (15s) (15d) is provided as each of the contact layer, both N +
An a-Si layer (16) is formed as an active layer on the a-Si layers (15s) (15d) by coating. Further, a gate insulating film (17) such as SiNx is laminated on the entire surface. A gate line (18) of Al or the like is formed on the gate insulating film (17) corresponding to the rows of the display electrodes (11), and at the intersection of the gate line (18) and the drain line (12). , A part of the gate line (18) is T in the portion corresponding to the a-Si layer (16).
It is the gate electrode (19) of the FT. Further, a first vertical alignment film (20) is formed on the entire surface to form a TFT substrate (2).

【0006】一方、対向ガラス基板(21)上には、前
記表示電極(11)と共に液晶を駆動するITOの対向
表示電極(22)、及び第2の垂直配向膜(23)が形
成されて、対向基板(4)となる。また、前記配向膜
(20)(23)としてポリイミド膜を用い、これにラ
ビング処理を行うことにより、液晶層(3)中の液晶分
子長軸が基板に垂直な方向に対して、10度以内のプレ
チルト角を有する構造になる。この構造では、所定の電
圧を印加することにより、液晶分子は配向膜(20)
(23)表面に従って、ラビング方向に沿った方向に傾
斜する。
On the other hand, on the counter glass substrate (21), the counter electrode (22) of ITO for driving liquid crystal together with the display electrode (11) and the second vertical alignment film (23) are formed. It becomes the counter substrate (4). Further, by using a polyimide film as the alignment films (20) and (23) and subjecting it to a rubbing treatment, the major axis of the liquid crystal molecules in the liquid crystal layer (3) is within 10 degrees with respect to the direction perpendicular to the substrate. The structure has a pretilt angle of. In this structure, by applying a predetermined voltage, the liquid crystal molecules are aligned in the alignment film (20).
(23) The surface is inclined in the direction along the rubbing direction.

【0007】[0007]

【発明が解決しようとする課題】続いて、従来の液晶表
示装置の問題点について図7を参照しながら説明する。
上の説明では省略したが、TFT基板(2)または対向
基板(4)には、画素間の光漏れや、a−Si層への光
入射を防止するために、Crなどの遮光膜が設けられて
いる。TFT基板(2)側から入射された光は、一部が
遮光膜により遮断され、遮光領域(103)として黒色
になり、残りが開口部(102)で透過率が制御されて
所望の表示が行われる。ところが、開口部(102)に
おいても、ディスクリネーション(101a)(101
b)と呼ばれる黒領域が生じる問題がある。ディスクリ
ネーションとは、セル中で、液晶の配向ベクトルが互い
に異なる領域が複数存在するとき、その境界線上で、液
晶分子の配向方向が乱れ、他の領域とは異なる透過率を
有する領域である。図7のように画素ごとに異なる形状
のディスクリネーション(101a)(101b)が多
発すると、画面にざらつきが生じたり、期待のカラー表
示が得られないといった問題が招かれる。
Next, problems of the conventional liquid crystal display device will be described with reference to FIG.
Although omitted in the above description, a light shielding film such as Cr is provided on the TFT substrate (2) or the counter substrate (4) in order to prevent light leakage between pixels and light incident on the a-Si layer. Has been. A part of the light incident from the TFT substrate (2) side is blocked by the light-shielding film, the light-shielding region (103) becomes black, and the rest of the light is controlled by the opening (102) to have a desired display. Done. However, even in the opening (102), the disclinations (101a) (101
There is a problem that a black area called b) occurs. Disclination is a region in which the alignment direction of liquid crystal molecules is disturbed on the boundary line when a plurality of regions having different liquid crystal alignment vectors exist in the cell, and the transmittance is different from other regions. . When the disclinations (101a) (101b) having different shapes for each pixel frequently occur as shown in FIG. 7, problems occur such that the screen becomes rough and the expected color display cannot be obtained.

【0008】配向ベクトルが不均一になる原因として、
ガラス基板(10)上の配線やTFTによる段差のた
め、この部分で配向処理が不完全になり、液晶の連続体
性により傾斜方向の異常が、ある領域にわたって存在す
ることが考えられる。また、セル内での電界に起因する
場合もある。ドレインライン(12)と表示電極(1
1)が同極性であるとき、セル中での電気力線は図8に
示すようになる。誘電率異方性が負の場合、液晶分子は
印加電圧が上がるにしたがって、分子長軸が電気力線に
対して垂直方向に傾斜する。そのため、所定の電圧を印
加すると、液晶分子は表示電極(11)上では、画素の
中央方向へ傾斜していく。同様に、ドレインライン(1
2)と表示電極(11)が異極性であるとき、電気力線
は図9のようになる。ドレインライン(12)と表示電
極(11)の間の電界に起因する液晶分子の傾斜方向
は、表示電極(11)の左右両側の領域で逆になる。そ
のため、表示領域中に、配向ベクトルが異なる領域の境
界線が出現し、ディクリネーション(101a)とな
る。
The cause of the non-uniform orientation vector is
It is conceivable that the alignment process is incomplete at this portion due to the step due to the wiring or the TFT on the glass substrate (10), and an abnormality in the tilt direction may exist over a certain region due to the continuity of the liquid crystal. It may also be caused by the electric field in the cell. Drain line (12) and display electrode (1
When 1) has the same polarity, the lines of electric force in the cell are as shown in FIG. When the dielectric anisotropy is negative, the liquid crystal molecules have their long axes tilted in the direction perpendicular to the lines of electric force as the applied voltage increases. Therefore, when a predetermined voltage is applied, the liquid crystal molecules incline toward the center of the pixel on the display electrode (11). Similarly, drain line (1
When the display electrode (11) and the display electrode (11) have different polarities, the lines of electric force are as shown in FIG. The tilt directions of the liquid crystal molecules due to the electric field between the drain line (12) and the display electrode (11) are opposite in the left and right regions of the display electrode (11). Therefore, in the display area, a boundary line of areas having different orientation vectors appears, and becomes a declination (101a).

【0009】同様に、ゲートライン(18)と表示電極
(11)との間にも図10及び図11に示される電気力
線が生じている。特にこの場合、表示電極(11)の端
部において、液晶分子はゲートライン(18)の大きな
負電位の影響を受けて、表示電極(11)の中央へ向か
って傾斜する。図10はゲートライン(18)と表示電
極(11)が同極性の場合、図11は異極性の場合であ
る。
Similarly, the lines of electric force shown in FIGS. 10 and 11 also occur between the gate line (18) and the display electrode (11). Especially in this case, at the end of the display electrode (11), the liquid crystal molecules are tilted toward the center of the display electrode (11) under the influence of the large negative potential of the gate line (18). 10 shows the case where the gate line (18) and the display electrode (11) have the same polarity, and FIG. 11 shows the case where they have the different polarities.

【0010】また特に、ドレインライン(12)とゲー
トライン(18)の交差部近傍では、図8から図11に
示されるドレインライン(12)とゲートライン(1
8)のそれぞれの電界による影響が、液晶層(3)中に
重なって及ぶため、開口部(102)の角部で液晶分子
の配向が乱れ、これが黒領域となってディスクリネーシ
ョン(101b)が出現する。
Particularly, in the vicinity of the intersection of the drain line (12) and the gate line (18), the drain line (12) and the gate line (1) shown in FIGS.
Since the influence of each electric field of 8) overlaps in the liquid crystal layer (3), the alignment of the liquid crystal molecules is disturbed at the corners of the opening (102), which becomes a black region and becomes a disclination (101b). Appears.

【0011】また、プレチルト角を有する構造では、液
晶分子の傾斜方向が、ラビング処理を受けたポリイミド
配向膜(20)(23)に従って、同一方向に傾斜す
る。そのため、画素中央部でのディスクリネーション
(101a)の発生は抑制されるが、開口部(102)
端に生ずるディスクリネーション(101b)は防げな
い。更に、ラビングの際に発生する静電気によって、T
FTの特性が変化し、静電破壊が起こることもある。ま
た、液晶分子の傾斜方向が一律に等しいため、コントラ
スト比の視角依存性が大きいという問題もある。
In the structure having the pretilt angle, the tilt directions of the liquid crystal molecules are tilted in the same direction according to the rubbing-treated polyimide alignment films (20) and (23). Therefore, the occurrence of disclination (101a) in the central portion of the pixel is suppressed, but the opening (102)
The disclination (101b) that occurs at the edge cannot be prevented. Furthermore, due to static electricity generated during rubbing, T
The characteristics of FT may change and electrostatic breakdown may occur. Further, since the tilt directions of the liquid crystal molecules are uniformly the same, there is a problem that the viewing angle dependence of the contrast ratio is large.

【0012】[0012]

【課題を解決するための手段】本発明は、前述の課題に
鑑みて成され、透明な絶縁性基板上にマトリクス状に配
置された表示電極と、表示電極の行間に設けられたゲー
トラインと、表示電極の列間に設けられたドレインライ
ンと、ゲートラインとドレインラインの交点に設けら
れ、表示電極に信号を供給する正スタガー型の薄膜トラ
ンジスタとを少なくとも有する薄膜トランジスタ基板
と、対向表示電極を少なくとも有する対向基板が、液晶
層を挟んで貼り合わされて成る液晶表示装置であって、
前記表示電極の行方向に対向する2辺に沿って、前記ゲ
ートラインと接続する配向制御電極が設けられた構造、
または、前記構造において、対向表示電極には、表示電
極に対応する領域において、所定の部分が取り除かれた
部分である配向制御窓が設けられた構造によって前述の
課題を解決するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and includes display electrodes arranged in a matrix on a transparent insulating substrate, and gate lines provided between rows of the display electrodes. A drain line provided between columns of display electrodes, a thin film transistor substrate having at least a positive staggered thin film transistor provided at an intersection of the gate line and the drain line and supplying a signal to the display electrode, and a counter display electrode at least. A liquid crystal display device comprising a counter substrate having the liquid crystal layer sandwiched between the liquid crystal display device,
A structure in which an alignment control electrode connected to the gate line is provided along two sides of the display electrode facing each other in the row direction,
Alternatively, in the above structure, the above-mentioned problem is solved by a structure in which the counter display electrode is provided with an alignment control window which is a part where a predetermined part is removed in a region corresponding to the display electrode.

【0013】[0013]

【作用】ゲートライン(18)と一体の配向制御電極
(6)を、表示電極(11)の行方向に対向する2辺に
沿って設けることにより、図8及び図9に示されるドレ
インライン(12)の表示電極(11)への影響が打ち
消されて、図10及び図11に示されるゲートライン
(18)による影響が大きくなってくる。これにより、
ゲートライン(18)の大きな負電位による電界が、表
示電極(11)の4辺について等しく影響を及ぼすた
め、配線部付近の液晶分子の配向を4辺について同等に
制御できる。このため、図7に示される開口部(10
2)の端部に発生していたディスクリネーション(10
1b)を防ぐことができる。
The alignment control electrode (6) integrated with the gate line (18) is provided along two sides of the display electrode (11) which face each other in the row direction, so that the drain line (6) shown in FIGS. The effect of 12) on the display electrode (11) is canceled out, and the effect of the gate line (18) shown in FIGS. 10 and 11 becomes large. This allows
The electric field due to the large negative potential of the gate line (18) exerts the same influence on the four sides of the display electrode (11), so that the alignment of the liquid crystal molecules near the wiring portion can be controlled equally on the four sides. Therefore, the opening (10
Disclination that occurred at the end of 2) (10
1b) can be prevented.

【0014】また、対向表示電極(22’)に設けられ
た配向制御窓(7)は、ITOが除かれた部分であるた
め、配向制御窓(7)に対応する液晶層(3)中では、
電気力線が存在しない。よって、この領域の液晶分子は
傾斜せず、電圧無印加時の垂直配向状態を保つ。このた
め、液晶の連続体性により、従来不規則に発生していた
ディスクリネーションが、全画素について配向制御窓
(7)の位置に従って固定される。特に、図4に示され
るように配向制御窓(7)をX字形のパターンにとる
と、ディスクリネーションが、配向制御窓(7)と一致
する。これに、配向制御電極(6)及びゲートライン
(18)の作用も加わると、1画素における液晶分子の
傾斜方向が4方向に同等になる。そのため、透過率の視
角依存性が減少し、良好な視角特性が得られる。
Further, since the alignment control window (7) provided in the counter display electrode (22 ') is a portion where ITO is removed, in the liquid crystal layer (3) corresponding to the alignment control window (7). ,
There are no lines of electric force. Therefore, the liquid crystal molecules in this region do not tilt and maintain the vertical alignment state when no voltage is applied. Therefore, due to the continuity of the liquid crystal, the disclination, which has conventionally been irregularly generated, is fixed according to the position of the alignment control window (7) for all pixels. In particular, if the orientation control window (7) has an X-shaped pattern as shown in FIG. 4, the disclination coincides with the orientation control window (7). If the action of the alignment control electrode (6) and the gate line (18) is also added to this, the tilt directions of the liquid crystal molecules in one pixel become equal to four directions. Therefore, the viewing angle dependency of the transmittance is reduced, and good viewing angle characteristics can be obtained.

【0015】[0015]

【実施例】以下で、本発明の一実施例を説明する。図1
は上面図、図2は図1のA−A’線に沿う断面図、図3
は図1のB−B’線に沿う断面図である。共通するもの
については、従来例の図6と同じ符号を使用している。
EXAMPLE An example of the present invention will be described below. Figure 1
Is a top view, FIG. 2 is a sectional view taken along the line AA ′ of FIG. 1, and FIG.
FIG. 2 is a sectional view taken along the line BB ′ of FIG. 1. For the common elements, the same reference numerals as in FIG. 6 of the conventional example are used.

【0016】ガラス基板(10)上に、例えばITOを
約1000Åの膜厚にスパッタリングなどにより積層
し、所定のパターニングを行うことにより、表示電極
(11)がマトリクス状に形成され、ドレインライン
(12)が表示電極(11)の列間に形成される。な
お、後に形成されるゲートライン(18)との交点部で
は、表示電極(11)及びドレインライン(12)の一
部が延在されて、互いに近接し、それぞれTFTのソー
ス電極(13)及びドレイン電極(14)とされる。
On the glass substrate (10), for example, ITO is laminated in a film thickness of about 1000 Å by sputtering or the like, and a predetermined patterning is performed to form the display electrodes (11) in a matrix, and the drain lines (12). ) Are formed between the columns of display electrodes (11). At the intersection with the gate line (18) to be formed later, a part of the display electrode (11) and the drain line (12) are extended to be close to each other, and the source electrode (13) of the TFT and the drain electrode (12) are respectively formed. It serves as a drain electrode (14).

【0017】次に、燐がドープされたa−Si(以下、
+a−Siと略す)を、CVDなどで300Åの厚さ
に成膜し、パターニングでソース電極(13)上及びド
レイン電極(14)上に残すことにより、N+a−Si
層(15s)(15d)が形成される。続いて、ノンド
ープのa−SiをCVDなどで500〜1000Å程度
の厚さに成膜し、パターニングでTFT部に残すことに
より、両N+a−Si層(15s)(15d)を覆うa
−Si層(16)が形成される。更に全面には、ゲート
絶縁膜(17)として、SiNxなどがCVDにより2
000Å〜4000Åの膜厚に形成される。
Next, phosphorus-doped a-Si (hereinafter, referred to as
N + a-Si) is deposited to a thickness of 300 Å by CVD or the like and left on the source electrode (13) and the drain electrode (14) by patterning to form N + a-Si.
Layers (15s) (15d) are formed. Subsequently, non-doped a-Si is deposited to a thickness of about 500 to 1000 Å by CVD or the like, and is left in the TFT portion by patterning to cover both N + a-Si layers (15s) (15d).
-Si layer (16) is formed. Further, SiNx or the like is deposited on the entire surface by CVD as a gate insulating film (17).
It is formed to a film thickness of 000Å to 4000Å.

【0018】次に、ゲート絶縁膜(17)上にAl、C
r、Taなどの導電材料をスパッタリングなどにより、
1000〜5000Å程度の膜厚に形成し、パターニン
グすることにより、前記表示電極(11)の行間にゲー
トライン(18)、ゲートライン(18)の一部である
ゲート電極(19)、そして、図1及び図3に示される
ようにゲートライン(18)から前記表示電極(11)
の行方向に対向する辺に沿って延在される配向制御電極
(6)が形成される。そして液晶分子の初期配向を、基
板に対して垂直に規定するための、第1の垂直配向膜
(20)が形成されて、TFT基板(2)が完成され
る。
Next, Al and C are formed on the gate insulating film (17).
By using a conductive material such as r or Ta by sputtering,
The gate lines (18) are formed between the rows of the display electrodes (11), the gate electrodes (19) which are a part of the gate lines (18), and formed by patterning the film with a film thickness of about 1000 to 5000Å. 1 and the display electrode 11 from the gate line 18 as shown in FIG.
The orientation control electrodes (6) are formed so as to extend along the sides facing each other in the row direction. Then, the first vertical alignment film (20) for defining the initial alignment of the liquid crystal molecules perpendicularly to the substrate is formed, and the TFT substrate (2) is completed.

【0019】一方、対向ガラス基板(21)上には、全
面にITOの対向表示電極(22’)がスパッタリング
により形成される。そして、対向表示電極(22’)
の、TFT基板(2)上の表示電極(11)の対角線に
対応する部分をエッチング除去することにより、対向表
示電極(22’)中に、X字形に切り抜かれた配向制御
窓(7)が設けられる。更に、全面に第2の垂直配向膜
(23)が形成されて、対向基板(4)となる。
On the other hand, a counter display electrode (22 ') of ITO is formed on the entire surface of the counter glass substrate (21) by sputtering. And the counter display electrode (22 ')
By etching away the portion corresponding to the diagonal line of the display electrode (11) on the TFT substrate (2), an alignment control window (7) cut out in an X shape is formed in the counter display electrode (22 '). It is provided. Further, a second vertical alignment film (23) is formed on the entire surface to serve as a counter substrate (4).

【0020】以上に説明してきた構造の2枚の基板
(2)(4)が、図5に示されるように5〜8μmの間
隙をもって貼り合わされ、この間隙に負の誘電率異方性
をもつネマティック液晶の液晶層(3)が設けられる。
更に、これらを互いに直交する方向の偏光軸をもつ2枚
の偏光板(1)(5)で挟み込むことにより、本発明の
実施例である液晶表示装置が構成される。
The two substrates (2) and (4) having the structure described above are bonded together with a gap of 5 to 8 μm as shown in FIG. 5, and the gap has a negative dielectric anisotropy. A liquid crystal layer (3) of nematic liquid crystal is provided.
Further, by sandwiching these with two polarizing plates (1) and (5) having polarization axes orthogonal to each other, a liquid crystal display device according to an embodiment of the present invention is constructed.

【0021】この構造の液晶表示装置を駆動すると、ゲ
ートライン(18)及び配向制御電極(6)の大きな負
電位による電気力線が、全期間にわたり、画素の4辺に
ついて図10または図11に示される形状で一定にな
る。負の誘電率異方性をもつ液晶分子に、その分子長軸
に対して鋭角に横切る電気力線が生じると、液晶分子は
最短で直角に近付く方向に傾斜する。そのため、本発明
の構造で、表示電極(11)の4辺において同じ形状の
電気力線を生じさせることにより、液晶分子はこれに従
って4辺について同等に傾斜する。更に、対向表示電極
(22’)中にの配向制御窓(7)に対応する領域で
は、電気力線は存在しないので、液晶分子は電圧無印加
時の垂直配向状態を保つ。このように、表示電極(1
1)の周縁部及び配向制御窓(7)の部分の液晶分子の
配向を制御することにより、液晶の連続体性のために、
全画素の全領域について、液晶分子は配向制御窓(7)
の領域では垂直に、表示領域では図4に示されるように
4方向に同等に傾斜する。そのため、ディスクリネーシ
ョンは全ての画素についてX字形の配向制御窓(7)に
一致し、また、配向制御窓(7)で4つに区切られた各
領域内では、液晶分子は一律に同方向に傾斜するので、
4方向から見た条件が等しくなる。
When the liquid crystal display device of this structure is driven, the lines of electric force due to the large negative potential of the gate line (18) and the alignment control electrode (6) are shown in FIG. It will be constant with the shape shown. When a line of electric force crosses a liquid crystal molecule having a negative dielectric anisotropy at an acute angle with respect to the long axis of the molecule, the liquid crystal molecule tilts in a direction approaching a right angle at the shortest. Therefore, in the structure of the present invention, by generating lines of electric force having the same shape on the four sides of the display electrode (11), the liquid crystal molecules are equally inclined on the four sides accordingly. Furthermore, since there are no lines of electric force in the region corresponding to the alignment control window (7) in the counter display electrode (22 '), the liquid crystal molecules maintain the vertical alignment state when no voltage is applied. In this way, the display electrode (1
By controlling the orientation of liquid crystal molecules in the peripheral portion of 1) and the orientation control window (7), the continuity of the liquid crystal is controlled,
Alignment control window (7) for liquid crystal molecules in all areas of all pixels
In the area (1), the display area is vertically inclined, and in the display area, it is equally inclined in four directions as shown in FIG. Therefore, the disclination coincides with the X-shaped alignment control window (7) for all pixels, and the liquid crystal molecules are uniformly distributed in the same direction in each of the four regions divided by the alignment control window (7). Because it tilts to
The conditions viewed from the four directions are equal.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、配向制
御電極(6)により、液晶分子の傾斜方向を、画素の各
辺に対して同等にし、かつ、傾斜方向の異なる領域の境
界線を配向制御窓(7)の上に固定することにより、画
素ごとに異なる不均一なディスクリネーションの出現が
防止され、特に、配向制御窓(7)をX字形にとった場
合は、配向制御窓(7)以外の領域では、ディスクリネ
ーションは完全に消滅した。また、1画素につき、液晶
分子の傾斜方向が異なる領域の面積が、4方向で同等に
なるので、コントラスト比の視角依存性が低減し、視角
特性が向上した。
As is apparent from the above description, the alignment control electrodes (6) make the tilt directions of the liquid crystal molecules equal to the respective sides of the pixel, and delimit the boundary lines of regions having different tilt directions. Fixing on the orientation control window (7) prevents the appearance of non-uniform disclinations that differ from pixel to pixel, especially when the orientation control window (7) is X-shaped. In the areas other than (7), the disclination disappeared completely. Further, since the areas of the regions in which the tilt directions of the liquid crystal molecules are different in one pixel are equal in the four directions, the viewing angle dependence of the contrast ratio is reduced and the viewing angle characteristics are improved.

【0023】なお、配向制御電極(6)はゲートライン
(18)と同時に、同一材料で形成できるので、製造工
程の増加はない。また、配向膜(20)(23)のラビ
ング処理が不要となるため、製造工程の削減、静電破壊
の防止などの効果も有する。
Since the alignment control electrode (6) can be formed of the same material at the same time as the gate line (18), there is no increase in the number of manufacturing steps. Further, since the rubbing treatment of the alignment films (20) and (23) is not required, the manufacturing process can be reduced, and the electrostatic breakdown can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例である液晶表示装置の上面図で
ある。
FIG. 1 is a top view of a liquid crystal display device that is an embodiment of the present invention.

【図2】図1のA−A’線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG.

【図3】図1のB−B’線に沿う断面図である。FIG. 3 is a cross-sectional view taken along the line B-B ′ of FIG.

【図4】本発明の作用効果を説明する図である。FIG. 4 is a diagram for explaining the function and effect of the present invention.

【図5】DAP型の液晶表示装置の原理図である。FIG. 5 is a principle diagram of a DAP type liquid crystal display device.

【図6】従来の液晶表示装置の断面図である。FIG. 6 is a cross-sectional view of a conventional liquid crystal display device.

【図7】従来の液晶表示装置の問題点を説明する図であ
る。
FIG. 7 is a diagram illustrating a problem of a conventional liquid crystal display device.

【図8】従来の液晶表示装置の問題点を説明する図であ
る。
FIG. 8 is a diagram illustrating a problem of a conventional liquid crystal display device.

【図9】従来の液晶表示装置の問題点を説明する図であ
る。
FIG. 9 is a diagram illustrating a problem of a conventional liquid crystal display device.

【図10】従来の液晶表示装置の問題点を説明する図で
ある。
FIG. 10 is a diagram illustrating a problem of a conventional liquid crystal display device.

【図11】従来の液晶表示装置の問題点を説明する図で
ある。
FIG. 11 is a diagram illustrating a problem of a conventional liquid crystal display device.

【符号の説明】[Explanation of symbols]

1 第1の偏光板 2 TFT基板 3 液晶層 4 対向基板 5 第2の偏光板 6 配向制御電極 7 配向制御窓 10 ガラス基板 11 表示電極 12 ドレインライン 13 ソース電極 14 ドレイン電極 15 N+a−Si層 16 a−Si層 17 ゲート絶縁膜 18 ゲートライン 19 ゲート電極 20 第1の垂直配向膜 21 対向ガラス基板 22,22’ 対向表示電極 23 第2の垂直配向膜1 1st polarizing plate 2 TFT substrate 3 Liquid crystal layer 4 Counter substrate 5 2nd polarizing plate 6 Alignment control electrode 7 Alignment control window 10 Glass substrate 11 Display electrode 12 Drain line 13 Source electrode 14 Drain electrode 15 N + a-Si Layer 16 a-Si layer 17 Gate insulating film 18 Gate line 19 Gate electrode 20 First vertical alignment film 21 Counter glass substrate 22, 22 ′ Counter display electrode 23 Second vertical alignment film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 透明な絶縁性基板上にマトリクス状に配
置された表示電極と、該表示電極の行間に設けられたゲ
ートラインと、前記表示電極の列間に設けられたドレイ
ンラインと、前記ゲートラインと前記ドレインラインの
交点に設けられ、前記表示電極に信号を供給する正スタ
ガー型の薄膜トランジスタとを有する薄膜トランジスタ
基板と、 対向表示電極を有する対向基板が、 液晶層を挟んで貼り合わされて成る液晶表示装置であっ
て、 前記表示電極の行方向に対向する2辺に沿って、前記ゲ
ートラインと接続された配向制御電極が設けられている
ことを特徴とする液晶表示装置。
1. Display electrodes arranged in a matrix on a transparent insulating substrate, gate lines provided between rows of the display electrodes, drain lines provided between columns of the display electrodes, A thin film transistor substrate provided at an intersection of a gate line and the drain line and having a positive stagger type thin film transistor for supplying a signal to the display electrode, and an opposite substrate having an opposite display electrode are laminated with a liquid crystal layer interposed therebetween. A liquid crystal display device, wherein an alignment control electrode connected to the gate line is provided along two sides of the display electrode facing each other in a row direction.
【請求項2】 前記対向表示電極には、前記表示電極に
対応する領域において、所定の部分が取り除かれた部分
である配向制御窓が設けられていることを特徴とする請
求項1に記載の液晶表示装置。
2. The alignment control window, which is a portion where a predetermined portion is removed in a region corresponding to the display electrode, is provided in the counter display electrode. Liquid crystal display device.
JP16908893A 1993-07-08 1993-07-08 Liquid crystal display Expired - Lifetime JP3234357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16908893A JP3234357B2 (en) 1993-07-08 1993-07-08 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16908893A JP3234357B2 (en) 1993-07-08 1993-07-08 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0728063A true JPH0728063A (en) 1995-01-31
JP3234357B2 JP3234357B2 (en) 2001-12-04

Family

ID=15880111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16908893A Expired - Lifetime JP3234357B2 (en) 1993-07-08 1993-07-08 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3234357B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100953A (en) * 1998-08-20 2000-08-08 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device with concave portion in color filter and method of manufacturing thereof
US6215542B1 (en) 1997-06-27 2001-04-10 Hyundai Electronics Industries Co., Ltd. Liquid crystal display with improved viewing angle and transmittance
US6281956B1 (en) 1996-09-30 2001-08-28 Fujitsu Limited Liquid crystal display device operating in a vertically aligned mode
KR100308161B1 (en) * 1999-05-07 2001-09-26 구본준, 론 위라하디락사 Multi-domain liquid crystal display device
US6335776B1 (en) 1998-05-30 2002-01-01 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device having an auxiliary electrode formed on the same layer as the pixel electrode
US6466288B1 (en) 1998-07-25 2002-10-15 Lg Lcd, Inc. Multi-domain liquid crystal display device
US6512561B1 (en) 1997-08-29 2003-01-28 Sharp Kabushiki Kaisha Liquid crystal display with at least one phase compensation element
US6628359B1 (en) 1998-12-18 2003-09-30 Sharp Kabushiki Kaisha Liquid crystal display device including phase difference compensation element
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US6654090B1 (en) 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
US6661488B1 (en) 1997-06-12 2003-12-09 Fujitsu Limited Vertically-alligned (VA) liquid crystal display device
US6665035B2 (en) 1998-07-23 2003-12-16 Lg.Philips Lcd Co., Ltd. Method for assembling a multi-domain liquid crystal display device having field affecting electrode
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
JP2004318141A (en) * 2003-04-10 2004-11-11 Samsung Electronics Co Ltd Liquid crystal display device
US6893402B2 (en) 1997-12-24 2005-05-17 Braun Gmbh Method and measuring device for determining blood pressure
US7126658B2 (en) 2003-04-21 2006-10-24 Seiko Epson Corporation Liquid crystal display device and electronic apparatus having particular dot regions
EP1734400A1 (en) * 1998-11-27 2006-12-20 SANYO ELECTRIC Co., Ltd. Liquid crystal display device
JP2009122707A (en) * 2009-03-09 2009-06-04 Sanyo Electric Co Ltd Liquid crystal display
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7583345B2 (en) 1999-10-01 2009-09-01 Samsung Electronics Co., Ltd. Liquid crystal display
DE19950366B4 (en) * 1998-10-19 2010-05-06 Lg Display Co., Ltd. More domain liquid crystal display device
US8031286B2 (en) 2001-11-22 2011-10-04 Samsung Electronics Co., Ltd. Liquid crystal display having a particular arrangement of pixel electrodes
JP2012058737A (en) * 2011-10-11 2012-03-22 Sanyo Electric Co Ltd Liquid crystal display device
US8310643B2 (en) 2002-06-28 2012-11-13 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
JP2013047829A (en) * 2012-10-17 2013-03-07 Sanyo Electric Co Ltd Liquid crystal display device
JP2013190813A (en) * 2013-05-17 2013-09-26 Sanyo Electric Co Ltd Liquid crystal display device
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
WO2019016373A1 (en) * 2017-07-21 2019-01-24 Flexenable Limited Thin-film transistor (tft) architecture for liquid crystal displays

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808592B2 (en) 1996-09-30 2010-10-05 Sharp Kabushiki Kaisha Liquid crystal display device operating in a vertical aligned mode having particular optical biaxial retardation film
US7548294B2 (en) 1996-09-30 2009-06-16 Sharp Kabushiki Kaisha Liquid crystal display device operating in a vertically aligned mode
US6281956B1 (en) 1996-09-30 2001-08-28 Fujitsu Limited Liquid crystal display device operating in a vertically aligned mode
US7379140B2 (en) 1996-09-30 2008-05-27 Sharp Kabushiki Kaisha Liquid crystal display device operating in a vertically aligned mode comprising an optically biaxial retardation film
US7995175B2 (en) 1996-09-30 2011-08-09 Sharp Kabushiki Kaisha Liquid crystal display device
US7075609B2 (en) 1996-09-30 2006-07-11 Sharp Kabushiki Kaisha Liquid crystal display device comprising p-type liquid crystal layer operating in vertically aligned mode including first and second retardation films
US6642981B1 (en) 1996-09-30 2003-11-04 Fujitsu Display Technologies Corporation Liquid crystal display device operating in a vertically aligned mode including at least one retardation film
US9041891B2 (en) 1997-05-29 2015-05-26 Samsung Display Co., Ltd. Liquid crystal display having wide viewing angle
US7440065B2 (en) 1997-06-10 2008-10-21 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US6774966B1 (en) 1997-06-10 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7826020B2 (en) 1997-06-10 2010-11-02 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7133111B2 (en) 1997-06-10 2006-11-07 Lg.Philips Lcd Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US8035785B2 (en) 1997-06-10 2011-10-11 Lg Display Co., Ltd. Liquid crystal display with wide viewing angle and method for making it
US7821603B2 (en) 1997-06-12 2010-10-26 Sharp Kabushiki Kaisha Vertically-alligned (VA) liquid crystal display device
US7167224B1 (en) 1997-06-12 2007-01-23 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US7760305B2 (en) 1997-06-12 2010-07-20 Sharp Kabushiki Kaisha Liquid crystal display device with multiple alignment structures
US6724452B1 (en) 1997-06-12 2004-04-20 Fujitsu Display Technologies Corporation Vertically aligned (VA) liquid crystal display device
US7304703B1 (en) 1997-06-12 2007-12-04 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US6661488B1 (en) 1997-06-12 2003-12-09 Fujitsu Limited Vertically-alligned (VA) liquid crystal display device
US7227606B2 (en) 1997-06-12 2007-06-05 Sharp Kabushiki Kaisha Vertically-alligned (VA) liquid crystal display device
US7224421B1 (en) 1997-06-12 2007-05-29 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
KR100286762B1 (en) * 1997-06-27 2001-04-16 박종섭 Liquid crystal display
US6215542B1 (en) 1997-06-27 2001-04-10 Hyundai Electronics Industries Co., Ltd. Liquid crystal display with improved viewing angle and transmittance
US6512561B1 (en) 1997-08-29 2003-01-28 Sharp Kabushiki Kaisha Liquid crystal display with at least one phase compensation element
US7057689B2 (en) 1997-08-29 2006-06-06 Sharp Kabushiki Kaisha Liquid crystal display with at least one phase compensation element
US6893402B2 (en) 1997-12-24 2005-05-17 Braun Gmbh Method and measuring device for determining blood pressure
US7963921B1 (en) 1997-12-24 2011-06-21 Kaz Usa, Inc. Method and measuring device for determining blood pressure
US7214193B2 (en) 1997-12-24 2007-05-08 Braun Gmbh Method and measuring device for determining blood pressure
US7573554B2 (en) 1998-05-16 2009-08-11 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US7570332B2 (en) 1998-05-16 2009-08-04 Samsung Electronics Co., Ltd. Liquid crystal displays having multi-domains and a manufacturing method thereof
US6335776B1 (en) 1998-05-30 2002-01-01 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device having an auxiliary electrode formed on the same layer as the pixel electrode
US6665035B2 (en) 1998-07-23 2003-12-16 Lg.Philips Lcd Co., Ltd. Method for assembling a multi-domain liquid crystal display device having field affecting electrode
US6466288B1 (en) 1998-07-25 2002-10-15 Lg Lcd, Inc. Multi-domain liquid crystal display device
US7304704B2 (en) 1998-08-06 2007-12-04 Lg.Philips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US6750933B1 (en) 1998-08-06 2004-06-15 Lg.Phillips Lcd Co., Ltd. Liquid-crystal display and the method of its fabrication
US7697097B2 (en) 1998-08-06 2010-04-13 Lg Display Co., Ltd. Liquid-crystal display and method of its fabrication
US6100953A (en) * 1998-08-20 2000-08-08 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device with concave portion in color filter and method of manufacturing thereof
US6654090B1 (en) 1998-09-18 2003-11-25 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of manufacturing thereof
DE19950366B4 (en) * 1998-10-19 2010-05-06 Lg Display Co., Ltd. More domain liquid crystal display device
DE19950366B9 (en) * 1998-10-19 2010-10-14 Lg Display Co., Ltd. More domain liquid crystal display device
EP1734400A1 (en) * 1998-11-27 2006-12-20 SANYO ELECTRIC Co., Ltd. Liquid crystal display device
US7295273B2 (en) 1998-11-27 2007-11-13 Sanyo Electric Co., Ltd. Liquid crystal display device having particular drain lines and orientation control window
US6628359B1 (en) 1998-12-18 2003-09-30 Sharp Kabushiki Kaisha Liquid crystal display device including phase difference compensation element
KR100308161B1 (en) * 1999-05-07 2001-09-26 구본준, 론 위라하디락사 Multi-domain liquid crystal display device
US8174651B2 (en) 1999-10-01 2012-05-08 Samsung Electronics Co., Ltd. Liquid crystal display
US7583345B2 (en) 1999-10-01 2009-09-01 Samsung Electronics Co., Ltd. Liquid crystal display
US8817213B2 (en) 1999-10-01 2014-08-26 Samsung Display Co., Ltd. Liquid crystal display
US8456597B2 (en) 1999-10-01 2013-06-04 Samsung Display Co., Ltd. Liquid crystal display
US9557612B2 (en) 1999-10-01 2017-01-31 Samsung Display Co., Ltd. Liquid crystal display
US6633357B2 (en) 2000-06-27 2003-10-14 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method of fabricating the same
US6788374B2 (en) 2000-06-27 2004-09-07 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device and method for fabricating the same
US8248566B2 (en) 2001-11-22 2012-08-21 Samsung Electronics Co., Ltd. Liquid crystal display
US8031286B2 (en) 2001-11-22 2011-10-04 Samsung Electronics Co., Ltd. Liquid crystal display having a particular arrangement of pixel electrodes
US8310643B2 (en) 2002-06-28 2012-11-13 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US10969635B2 (en) 2002-06-28 2021-04-06 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US10620488B2 (en) 2002-06-28 2020-04-14 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8698990B2 (en) 2002-06-28 2014-04-15 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US8743331B2 (en) 2002-06-28 2014-06-03 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
US9477121B2 (en) 2002-06-28 2016-10-25 Samsung Display Co., Ltd. Liquid crystal display and thin film transistor array panel therefor
JP2004318141A (en) * 2003-04-10 2004-11-11 Samsung Electronics Co Ltd Liquid crystal display device
JP4703128B2 (en) * 2003-04-10 2011-06-15 三星電子株式会社 Liquid crystal display
US7126658B2 (en) 2003-04-21 2006-10-24 Seiko Epson Corporation Liquid crystal display device and electronic apparatus having particular dot regions
JP2009122707A (en) * 2009-03-09 2009-06-04 Sanyo Electric Co Ltd Liquid crystal display
JP2012058737A (en) * 2011-10-11 2012-03-22 Sanyo Electric Co Ltd Liquid crystal display device
JP2013047829A (en) * 2012-10-17 2013-03-07 Sanyo Electric Co Ltd Liquid crystal display device
JP2013190813A (en) * 2013-05-17 2013-09-26 Sanyo Electric Co Ltd Liquid crystal display device
WO2019016373A1 (en) * 2017-07-21 2019-01-24 Flexenable Limited Thin-film transistor (tft) architecture for liquid crystal displays
CN111051976A (en) * 2017-07-21 2020-04-21 弗莱克因艾伯勒有限公司 Thin Film Transistor (TFT) architecture for liquid crystal displays
US11768408B2 (en) 2017-07-21 2023-09-26 Flexenable Technology Limited Thin-film transistor (TFT) architecture for liquid crystal displays

Also Published As

Publication number Publication date
JP3234357B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP3234357B2 (en) Liquid crystal display
JP2859093B2 (en) Liquid crystal display
JP2701698B2 (en) Liquid crystal display
JP2975844B2 (en) Liquid crystal display
JP3081608B2 (en) Liquid crystal display
JP3492582B2 (en) Liquid crystal display device and method of manufacturing the same
US7982836B2 (en) Liquid crystal display device
JP2701832B2 (en) Liquid crystal display
US20060012741A1 (en) Vertical alignment liquid crystal display device
JP3066255B2 (en) Liquid crystal display
JP2000292801A (en) Liquid crystal display device
KR19980037086A (en) LCD
US6657694B2 (en) In-plane switching LCD device having slanted corner portions
JP2000039626A (en) Active matrix type liquid crystal display device
JPH0764089A (en) Liquid crystal display device
JP3448384B2 (en) Liquid crystal display
KR100595295B1 (en) Multi domain liquide crystal display device and method for fabricating the same
JPH07230097A (en) Liquid crystal display device
JPH11109391A (en) Liquid crystal display device
JP3754179B2 (en) Liquid crystal display
US6057905A (en) Liquid crystal display electrode with a slit formed around the periphery to shield the inner portion from external electric fields
JP3175972B2 (en) Liquid crystal display
JP2001075103A (en) Liquid crystal display device
JP3282542B2 (en) Active matrix type liquid crystal display
JP3759426B2 (en) Liquid crystal display element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

EXPY Cancellation because of completion of term