JPH0727947A - Optical circuit and its production - Google Patents

Optical circuit and its production

Info

Publication number
JPH0727947A
JPH0727947A JP17425593A JP17425593A JPH0727947A JP H0727947 A JPH0727947 A JP H0727947A JP 17425593 A JP17425593 A JP 17425593A JP 17425593 A JP17425593 A JP 17425593A JP H0727947 A JPH0727947 A JP H0727947A
Authority
JP
Japan
Prior art keywords
optical
lens
optical waveguide
substrate
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17425593A
Other languages
Japanese (ja)
Other versions
JP2565093B2 (en
Inventor
Yutaka Nishimoto
裕 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5174255A priority Critical patent/JP2565093B2/en
Publication of JPH0727947A publication Critical patent/JPH0727947A/en
Application granted granted Critical
Publication of JP2565093B2 publication Critical patent/JP2565093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain such an optical circuit that realizes high efficiency of optical coupling between an optical waveguide and various optical parts, low cost of the optical circuit, and high reliability against temp. change and vibrational impact. CONSTITUTION:This circuit consists of a Si substrate 1, optical waveguide 2 comprising quartz, semiconductor light source 4 optically coupled with the waveguide 2. In this circuit, a spherical lens 8 is formed on the Si substrate between the optical waveguide 2 and the semiconductor light source 4 by using the same material as the optical waveguide 2. The lens 8 is a solid-state component having a function to change the spot size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ネットワークシステ
ムに使われ、基板と基板上に形成された石英系光導波路
を用いた送信器や受信器などの各種光デバイスに関し、
特に光導波路と半導体レーザなどのスポットサイズが異
なるデバイス間の光学的接続の際に用いるレンズとその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various optical devices such as transmitters and receivers used in optical network systems and using a substrate and a silica-based optical waveguide formed on the substrate,
In particular, the present invention relates to a lens used for optical connection between devices having different spot sizes such as an optical waveguide and a semiconductor laser, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光通信システムの大容量化が進むと同時
に、多機能の高度なシステムが求められる一方で、光フ
ァイバネットワークの低コスト化の要求が強い。その中
で光送信器、光受信器等の光デバイスの小型化、高集積
化、低コスト化は必須である。現在実用に供されている
光送信器及び光受信器は半導体光源または半導体光検出
器と光ファイバの間にレンズを設置し、空間的に光学接
続をする構造が用いられている。このレンズで空間的に
光学接続をする構造はマイクロオプティックスと呼ばれ
ている。マイクロオプティックス構造ではレンズの形
状、半導体光源又は半導体光検出器のパッケージの形状
等に制限されて小型化することは困難である。また、空
間を伝搬する光を効率よく光ファイバや光検出器に結合
させるためには、精度の良い光軸調整が要求され、その
作業に多大な工数が必要とされるためコストが下がらな
いのが現状である。同一機能または異種機能の高集積化
には全く不適であるのは言うまでもない。
2. Description of the Related Art At the same time as the capacity of optical communication systems is increasing, multifunctional and sophisticated systems are required, while cost reduction of optical fiber networks is strongly demanded. Among them, downsizing, high integration, and cost reduction of optical devices such as optical transmitters and optical receivers are essential. Optical transmitters and optical receivers currently in practical use have a structure in which a lens is installed between a semiconductor light source or a semiconductor photodetector and an optical fiber to spatially make an optical connection. The structure for spatially optical connection with this lens is called micro-optics. In the micro-optics structure, it is difficult to reduce the size because it is limited by the shape of the lens and the shape of the package of the semiconductor light source or the semiconductor photodetector. Further, in order to efficiently couple the light propagating in the space to the optical fiber or the photodetector, it is necessary to adjust the optical axis with high accuracy, and a large number of man-hours are required for the work, which does not reduce the cost. Is the current situation. It goes without saying that it is completely unsuitable for high integration of the same function or different functions.

【0003】最近、双方向の通信システムの必要が高ま
り、また家庭にまでこのシステムを導入することが望ま
れている。このとき双方向通信を可能にさせる光デバイ
スとして光の送信器と受信器が必要となるが、これを個
別に構成していたのでは光送受信装置が大型化し、シス
テム普及の妨げになる。従って、2つの機能を一体化し
た光デバイス(光送受信器)が望まれるがマイクロオプ
ティックス構造では前述した理由から困難である。この
様な背景から小型化、高集積化、低コスト化を目指す構
造として光導波路を用いたものがヘンリーらの文献等に
よれば検討されている。図4にこの構造の光回路の平面
図を示す。
Recently, the need for a two-way communication system has increased, and it is desired to introduce this system into homes. At this time, an optical transmitter and a receiver are required as an optical device that enables bidirectional communication. However, if they are individually configured, the optical transmitter / receiver becomes large, which hinders the spread of the system. Therefore, an optical device (optical transceiver) that integrates two functions is desired, but it is difficult to use the micro-optics structure for the above-mentioned reasons. From such a background, a structure using an optical waveguide as a structure aiming at downsizing, high integration, and cost reduction has been studied according to Henry et al. FIG. 4 shows a plan view of an optical circuit having this structure.

【0004】図4の光回路では基板1上に合分岐機能を
含む光導波路2が形成され、この光導波路2と光ファイ
バ3、半導体光源4及び信号検出用の半導体光検出器5
aとがそれぞれ同一の基板1上で直接に光学結合されて
いる。図4では半導体光源4の光出力モニター用の半導
体光検出器5bも同一の基板1上に集積され、光導波路
2と光学的に接続されているが、この半導体光源4の光
出力モニター用の半導体光検出器5bは無くても、双方
向光通信用送受信器の機能としては何等問題無い。ま
た、半導体光検出器5a,5bの受信回路用電子デバイ
ス6が同一の基板1上に集積されているが、この電子デ
バイスは同一の基板1上に有ってもなくても双方向光通
信用送受信器の機能としては何等問題無い。図4に示し
た光導波路2を用いて光送受信器を構成すれば、小型化
はもちろんのこと、光軸がリソグラヒィプロセスで決め
られ一定である光導波路を伝搬する導波光との結合を行
えば良いから光軸調整も簡易化されるとともに、光導波
路2自体はリソグラヒィプロセスを用いて一括に多量が
生産されるために低コスト化が可能となる。
In the optical circuit of FIG. 4, an optical waveguide 2 having a merging / branching function is formed on a substrate 1, the optical waveguide 2, an optical fiber 3, a semiconductor light source 4 and a semiconductor photodetector 5 for signal detection.
and a are directly optically coupled on the same substrate 1. In FIG. 4, a semiconductor photodetector 5b for monitoring the optical output of the semiconductor light source 4 is also integrated on the same substrate 1 and is optically connected to the optical waveguide 2. Even if the semiconductor photodetector 5b is not provided, there is no problem in the function of the transceiver for bidirectional optical communication. Also, the electronic device 6 for the receiving circuit of the semiconductor photodetectors 5a and 5b is integrated on the same substrate 1, but the electronic device may or may not be on the same substrate 1 and the two-way optical communication may be performed. There is no problem with the function of the transceiver. If an optical transmitter / receiver is constructed using the optical waveguide 2 shown in FIG. 4, not only downsizing but also coupling with the guided light propagating through the optical waveguide whose optical axis is fixed by the lithographic process is constant. Since it is sufficient to perform the adjustment, the optical axis adjustment is simplified, and the optical waveguide 2 itself can be manufactured in a large amount in a lump by using the lithography process, so that the cost can be reduced.

【0005】[0005]

【発明が解決しようとする課題】半導体光源、半導体検
出器、光ファイバなどの光部品と光導波路を光学的に高
効率に結合させるためには、光部品と光導波路の両者の
スポットサイズを整合させたり、検出器面に集光させる
など光波の伝搬姿態の制御を行う必要がある。スポット
サイズ整合には、光部品や光導波路が有する固有のスポ
ットサイズそのものを光部品や光導波路の内部で変換す
る方法、並びに光部品と光導波路の間にレンズを挿入し
てスポットサイズ変換を行う方法などがある。また、検
出器面に集光させるためには同様にレンズを挿入する方
法などがある。スポットサイズそのものを光部品や光導
波路の内部で変換する方法では光部品、並びに光導波路
の構造、製作手順、材料などを変更する必要があり、光
部品および光導波路の特性の劣化やコスト増などさまざ
まな弊害が誘発される。一方、レンズを用いる方法は、
光部品および光導波路の特性の劣化をもたらさず、スポ
ットサイズ変換、集光などを可能にするから、非常に有
用である。
In order to optically couple an optical component such as a semiconductor light source, a semiconductor detector or an optical fiber with an optical waveguide with high efficiency, the spot sizes of both the optical component and the optical waveguide must be matched. It is necessary to control the propagation state of the light wave, for example, by controlling it or condensing it on the detector surface. For spot size matching, a method of converting the unique spot size itself of an optical component or optical waveguide inside the optical component or optical waveguide, and performing spot size conversion by inserting a lens between the optical component and the optical waveguide There are ways. Further, there is a method of inserting a lens in the same manner in order to focus the light on the detector surface. In the method of converting the spot size itself inside the optical component or the optical waveguide, it is necessary to change the structure, manufacturing procedure, material, etc. of the optical component and the optical waveguide, and the deterioration of the characteristics of the optical component and the optical waveguide and the cost increase. Various harmful effects are induced. On the other hand, the method using a lens is
It is very useful because it enables spot size conversion and light collection without deteriorating the characteristics of optical components and optical waveguides.

【0006】現在、レンズを実装する方法としては、図
5(a)に側面図で示すように、光導波路2を形成する
基板1上にバルク型のレンズ8を搭載していく方法や、
図5(b)に側面図で示すように、光導波路2の形成さ
れた基板1の外にレンズ8を実装する構造などが検討さ
れている。しかし、実際にはレンズ8を高精度に設置、
固定する必要があり、レンズ8の実装に多大な工数を要
する。また、温度変動や振動衝撃に対する光軸変換角度
や位置ずれに関する信頼性の確保も困難である。図にお
いて、11は下層クラッド、12コア、13は上層クラ
ッドである。
Currently, as a method of mounting a lens, as shown in a side view of FIG. 5A, a method of mounting a bulk type lens 8 on a substrate 1 on which an optical waveguide 2 is formed,
As shown in the side view of FIG. 5B, a structure in which the lens 8 is mounted outside the substrate 1 on which the optical waveguide 2 is formed is being studied. However, in reality, the lens 8 is installed with high precision,
It is necessary to fix it, and a great number of steps are required to mount the lens 8. Further, it is difficult to secure the reliability of the optical axis conversion angle and the positional deviation with respect to the temperature fluctuation and the vibration shock. In the figure, 11 is a lower clad, 12 cores, and 13 is an upper clad.

【0007】本発明の目的は、高い効率で光を結合で
き、量産性も優れ、低コスト化が実現でき、また温度変
動、振動衝撃などに対しても信頼性に優れた光回路とそ
の製造方法を与えることにある。
An object of the present invention is to provide an optical circuit which can couple light with high efficiency, is excellent in mass productivity, can be realized at low cost, and is highly reliable against temperature fluctuations, vibration and shock, and its manufacturing. To give way.

【0008】[0008]

【課題を解決するための手段】本発明による光回路は、
石英系光導波路が基板上に形成され、前記石英系光導波
路と光部品が光学結合している光回路において、基板上
に前記石英系光導波路を形成する際に用いた石英系材料
からなり、かつ凸形状または球形状に成型された凸また
は球レンズが基板上に形成されていることを特徴とす
る。また、本発明による光回路の製造方法は、前記凸ま
たは球レンズを光導波路材料である石英系材料を熱によ
るリフローすることで形成せしめることを特徴とする。
The optical circuit according to the present invention comprises:
A quartz optical waveguide is formed on a substrate, and in the optical circuit in which the quartz optical waveguide and the optical component are optically coupled, made of the quartz material used when forming the quartz optical waveguide on the substrate, In addition, a convex or spherical lens molded in a convex shape or a spherical shape is formed on the substrate. Further, the optical circuit manufacturing method according to the present invention is characterized in that the convex or spherical lens is formed by reflowing a silica-based material as an optical waveguide material by heat.

【0009】[0009]

【作用】本発明による光回路とその製造方法では、石英
系光導波路と光部品の間に挿入するレンズとして石英系
光導波路を形成する際に堆積した石英系材料を凸または
球レンズとして用い、また熱による石英系材料のリフロ
ーを利用して凸または球にレンズを成型する。これによ
り、電子デバイスと同様なプロセス工法でSi基板上に
レンズを形成できるため、光導波路とレンズの位置精度
は極めて高く高効率な光の結合が実現できるとともに、
量産性も優れ、またレンズに個別の部品あるいは材料を
使用する必要がないため低コスト化が実現できる。ま
た、基板上に固体素子としてレンズを形成しているため
に温度変動、振動衝撃などに対しても信頼性が極めて高
い光回路が実現できる。
In the optical circuit and the manufacturing method thereof according to the present invention, the silica-based material deposited when forming the silica-based optical waveguide as a lens to be inserted between the silica-based optical waveguide and the optical component is used as a convex or spherical lens, Further, the lens is molded into a convex or spherical shape by utilizing the reflow of the quartz material due to heat. As a result, the lens can be formed on the Si substrate by the same process method as that of the electronic device, so that the positional accuracy of the optical waveguide and the lens is extremely high and highly efficient light coupling can be realized.
The mass productivity is excellent, and it is not necessary to use individual parts or materials for the lens, so that cost reduction can be realized. Further, since the lens is formed as a solid element on the substrate, it is possible to realize an optical circuit having extremely high reliability against temperature fluctuations, vibration shocks and the like.

【0010】[0010]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0011】図1は本発明の第1の実施例に係わる光回
路の構造を示す側面図である。図1において、基板1に
はSiを用い、光導波路2は石英系の材料からなり、下
層クラッド11−コア12−クラッド13の層構造を有
している。図1の構造は光導波路2と半導体光源4とを
光学的に結合してなる光回路である。光導波路2と半導
体光源4の間のSi基板1上にスポットサイズ変換機能
を果たす球形のレンズ8が形成されている。球形のレン
ズ8は、光導波路2と同一の材料である石英系材料及び
層構造からなっている。球形のレンズ8には光導波路2
を形成するためにSi基板1にCVD法、スパッタ法、
火焔堆積法などで堆積された石英材料がそのまま用いら
れている。このように、レンズ8はSi基板1上に堆積
された材料をそのまま使用しているためSi基板1上で
固体素子化されており、かつ形成位置もフォトリソグラ
フィ法で設定されるから、光導波路2とレンズ8の位置
精度は極めて高く、ひいては半導体光源4と光導波路2
の間の光軸は一致しており、両者の光学結合は高い効率
で実現できるとともに、量産性も優れ、またレンズに個
別の部品あるいは材料を使用する必要がないから低コス
ト化が実現できる。また、図1の実施例では基板1上に
固体素子としてレンズ8を形成しているから、温度変
動、振動衝撃などに対しても実施例の信頼性は極めて高
い。また、任意の位置にレンズ8を構成できるため、図
1の光回路では、設計に対する汎用性、および許容性が
高い。
FIG. 1 is a side view showing the structure of an optical circuit according to the first embodiment of the present invention. In FIG. 1, the substrate 1 is made of Si, the optical waveguide 2 is made of a silica-based material, and has a layered structure of lower clad 11-core 12-clad 13. The structure of FIG. 1 is an optical circuit in which an optical waveguide 2 and a semiconductor light source 4 are optically coupled. A spherical lens 8 having a spot size converting function is formed on the Si substrate 1 between the optical waveguide 2 and the semiconductor light source 4. The spherical lens 8 is made of the same material as the optical waveguide 2, that is, a silica material and a layer structure. The spherical lens 8 has an optical waveguide 2
CVD method, sputtering method,
The quartz material deposited by the flame deposition method is used as it is. As described above, since the lens 8 uses the material deposited on the Si substrate 1 as it is, it is formed into a solid element on the Si substrate 1, and the formation position is set by the photolithography method. The positional accuracy of the lens 2 and the lens 8 is extremely high, and by extension, the semiconductor light source 4 and the optical waveguide 2
The optical axes of the two coincide with each other, the optical coupling between the two can be realized with high efficiency, the mass productivity is excellent, and the cost can be reduced because there is no need to use individual parts or materials for the lens. Further, in the embodiment of FIG. 1, since the lens 8 is formed as a solid element on the substrate 1, the reliability of the embodiment is extremely high against temperature fluctuation, vibration impact, and the like. Further, since the lens 8 can be formed at any position, the optical circuit of FIG. 1 has high versatility and tolerance for design.

【0012】図2は本発明の第2の実施例に係わる光回
路の構造を示す側面図である。図2の構造は光導波路2
と、Si基板1に形成したV溝14に挿入された光ファ
イバ3とを光学的に結合している光回路であり、レンズ
8には凸形状のものが用いられている。利点は図1で述
べたものと全く同一である。
FIG. 2 is a side view showing the structure of an optical circuit according to the second embodiment of the present invention. The structure of FIG. 2 has an optical waveguide 2
And the optical fiber 3 inserted into the V groove 14 formed in the Si substrate 1 are optically coupled, and a convex lens is used as the lens 8. The advantages are exactly the same as described in FIG.

【0013】なお、レンズ8を介して光導波路2と光学
結合する光部品は半導体光源、半導体検出器、光ファイ
バなどだけに限られず、本発明では光導波路2に光学結
合される光部品に制限がないのは明らかである。
The optical components optically coupled to the optical waveguide 2 via the lens 8 are not limited to semiconductor light sources, semiconductor detectors, optical fibers, etc., but are limited to optical components optically coupled to the optical waveguide 2 in the present invention. It is clear that there is no.

【0014】図3は本発明の一実施例に係わる光回路の
製造方法を示す工程図である。工程Aは光導波路2の入
出射端面9を形成する工程である。Si基板1上にはC
VD法、スパッタリング法、火焔堆積法などで光導波路
用石英系材料が堆積されているが、端面形成時にレンズ
の母材10となる石英系材料も同時に残す。次に、レン
ズの母材10のみか、基板1全体に熱を加える。この加
熱により石英系材料はリフローし、表面張力に従って凸
化していく。この凸化により本発明によるレンズ8が形
成される(工程B)。レンズ8の形状は主にレンズの母
材10の底面の形状、並びに加熱温度により制御され
る。底面が正方形の場合には球形状に近く、長方形の場
合にはバルク部品で用いられている通常の凸レンズ形状
に近づく。また、加熱温度が石英形状のリフロー温度よ
り高くなればなるほど球形状に近づく。従って、底面形
状、加熱温度等を選択すれば所望のレンズ形状を得るこ
とができる。
FIG. 3 is a process chart showing a method of manufacturing an optical circuit according to an embodiment of the present invention. Step A is a step of forming the input / output end face 9 of the optical waveguide 2. C on the Si substrate 1
The quartz material for the optical waveguide is deposited by the VD method, the sputtering method, the flame deposition method, or the like, but the quartz material to be the base material 10 of the lens is also left at the same time when the end face is formed. Next, heat is applied to only the lens base material 10 or the entire substrate 1. Due to this heating, the quartz material reflows and becomes convex according to the surface tension. By this convexization, the lens 8 according to the present invention is formed (step B). The shape of the lens 8 is mainly controlled by the shape of the bottom surface of the base material 10 of the lens and the heating temperature. When the bottom surface is a square, the shape is close to a spherical shape, and when the bottom surface is a rectangle, the shape is close to a normal convex lens shape used in bulk parts. Further, as the heating temperature becomes higher than the reflow temperature of the quartz shape, the shape becomes closer to the spherical shape. Therefore, a desired lens shape can be obtained by selecting the bottom surface shape, the heating temperature, and the like.

【0015】石英系材料のリフロー温度は、ボロン
(B)とリン(P)をドープした石英材料では約850
℃であり、ゲルマニウム(Ge)とPをドープしたもの
では800℃前後であるなど、石英系材料に関してのリ
フロー温度は良く知られている。従って、光導波路2に
用いた石英系光導波路2の材料組成に対応して加熱温度
を選択すれば、レンズ8が容易に得られる。加熱箇所は
レンズの母材10が含まれていればどこでも良い。加熱
により光導波路2の外部への露出面がリフローされる。
露出面は上層クラッド13と端面9であるが、上層クラ
ッド13表面はリフローされても光導波路2の特性への
影響は少ない。一方、端面9はリフローにより、垂直性
が損なわれる場合があるため、レンズの母材10だけの
局所的な加熱が望ましい。レンズの母材10を含む局所
的領域の加熱には、CO2 レーザやArレーザなどによ
るレーザ光の照射や、通常のヒータによる輻射熱を用い
て行う。 以上に説明してきたように、本発明の方法に
よれば、レンズ8の材料にはSi基板1上に堆積された
材料をそのまま使用しているから、レンズ8はSi基板
1上で固体素子化されている。また、レンズの母材10
はフォトリソグラフィ法で設定される位置に形成され、
レンズ8はレンズの母材10の位置に形成されるため、
光導波路2とレンズ8の位置精度は極めて高く、従って
半導体光源4と光導波路2の間の光学結合は高効率で実
現でき、量産性に優れ、またレンズに個別の部品あるい
は材料を使用する必要がないため低コスト化が実現でき
る。また、基板1上に固体素子としてレンズ8を形成し
ているから、温度変動、振動衝撃などに対しても信頼性
が極めて高い光回路が実現できる。
The reflow temperature of the quartz material is about 850 for the quartz material doped with boron (B) and phosphorus (P).
The reflow temperature for a quartz-based material is well known. For example, it is about 800 ° C. for germanium (Ge) and P-doped ones. Therefore, the lens 8 can be easily obtained by selecting the heating temperature in accordance with the material composition of the silica-based optical waveguide 2 used for the optical waveguide 2. The heating point may be anywhere as long as the lens base material 10 is included. By heating, the exposed surface of the optical waveguide 2 is reflowed.
The exposed surface is the upper clad 13 and the end surface 9, but the surface of the upper clad 13 is not affected to the characteristics of the optical waveguide 2 even if it is reflowed. On the other hand, since the verticality of the end surface 9 may be impaired by reflow, local heating of only the lens base material 10 is desirable. The heating of the local area including the base material 10 of the lens is performed by irradiating laser light from a CO 2 laser, Ar laser, or the like, or using radiant heat from an ordinary heater. As described above, according to the method of the present invention, since the material deposited on the Si substrate 1 is used as it is as the material of the lens 8, the lens 8 is formed as a solid element on the Si substrate 1. Has been done. Also, the lens base material 10
Is formed at the position set by photolithography,
Since the lens 8 is formed at the position of the base material 10 of the lens,
The positional accuracy of the optical waveguide 2 and the lens 8 is extremely high, and therefore, the optical coupling between the semiconductor light source 4 and the optical waveguide 2 can be realized with high efficiency, mass productivity is excellent, and it is necessary to use individual parts or materials for the lens. Cost reduction can be realized because there is no Further, since the lens 8 is formed as a solid element on the substrate 1, an optical circuit having extremely high reliability against temperature fluctuations, vibration shocks, etc. can be realized.

【0016】[0016]

【発明の効果】本発明による光回路とその製造方法を用
いれば、電子デバイスと同様なプロセス工法でSi基板
上にレンズを形成できるため、光導波路とレンズの位置
精度は極めて高く高効率な光の結合が実現できるととも
に、量産性に優れ、またレンズに個別の部品または材料
を使用する必要がないから、低コスト化が実現できる。
また、基板上に固体素子としてレンズを形成しているか
ら、温度変動、振動衝撃などに対しても信頼性が極めて
高い光回路が実現できる。また、任意の位置にレンズを
構成できるので、光回路設計に対する汎用性および許容
性が高い。
By using the optical circuit and the method of manufacturing the same according to the present invention, a lens can be formed on a Si substrate by the same process method as that of an electronic device. Therefore, the optical waveguide and the lens have extremely high positional accuracy and high efficiency. Can be realized, and the mass productivity is excellent, and since it is not necessary to use individual parts or materials for the lens, cost reduction can be realized.
Moreover, since the lens is formed as a solid element on the substrate, an optical circuit having extremely high reliability against temperature fluctuations, vibration shocks, etc. can be realized. Further, since the lens can be formed at any position, it has high versatility and acceptability for optical circuit design.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光回路の第1の実施例の構造を示
す側面図である。
FIG. 1 is a side view showing a structure of a first embodiment of an optical circuit according to the present invention.

【図2】本発明による光回路の第2の実施例の構造を示
す側面図である。
FIG. 2 is a side view showing the structure of a second embodiment of the optical circuit according to the present invention.

【図3】本発明による光回路製造方法の一実施例を示す
工程図である。
FIG. 3 is a process drawing showing an embodiment of an optical circuit manufacturing method according to the present invention.

【図4】光導波路が形成された基板に半導体光源、半導
体検出器、光ファイバなどの光部品が実装された光回路
の構造を示す平面図である。
FIG. 4 is a plan view showing a structure of an optical circuit in which optical components such as a semiconductor light source, a semiconductor detector and an optical fiber are mounted on a substrate on which an optical waveguide is formed.

【図5】従来の光回路の構造を示す側面図である。FIG. 5 is a side view showing the structure of a conventional optical circuit.

【符号の説明】[Explanation of symbols]

1 基板 2 光導波路 3 光ファイバ 4 半導体光源 5,5a,5b 半導体検出器 6 電子デバイス 7 光パワー分岐または光波長分波機能光回路 8 レンズ 9 光導波路の入出射端面 10 レンズの母材 11 下層クラッド 12 コア 13 上層クラッド 14 V溝 1 substrate 2 optical waveguide 3 optical fiber 4 semiconductor light source 5, 5a, 5b semiconductor detector 6 electronic device 7 optical power branching or optical wavelength demultiplexing function optical circuit 8 lens 9 optical waveguide input / output end face 10 lens base material 11 lower layer Clad 12 Core 13 Upper clad 14 V groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石英系光導波路が基板上に形成され、前
記石英系光導波路と光部品が光学結合している光回路に
おいて、基板上に前記石英系光導波路を形成する際に用
いた石英系材料からなり、かつ凸形状または球形状に成
型されたレンズが基板上に形成されていることを特徴と
する光回路。
1. In an optical circuit in which a silica-based optical waveguide is formed on a substrate, and the silica-based optical waveguide and an optical component are optically coupled, quartz used when the silica-based optical waveguide is formed on the substrate. An optical circuit characterized in that a lens made of a system material and molded in a convex shape or a spherical shape is formed on a substrate.
【請求項2】 石英系光導波路が基板上に形成され、前
記石英系光導波路と光部品が光学結合している光回路の
製造方法において、基板上に前記石英系光導波路を形成
するのに用いた石英系材料をレンズ母材として該基板上
に推積し、前記レンズ母材を熱によりリフローして凸形
状または球形状に成型することにより、凸又はの球レン
ズを該基板上に形成することを特徴とする光回路製造方
法。
2. A method for manufacturing an optical circuit in which a silica-based optical waveguide is formed on a substrate, and the silica-based optical waveguide and an optical component are optically coupled to each other, for forming the silica-based optical waveguide on the substrate. A convex or spherical lens is formed on the substrate by depositing the used quartz material as a lens base material on the substrate and reflowing the lens base material by heat to form a convex shape or a spherical shape. An optical circuit manufacturing method comprising:
【請求項3】 前記レンズ母材の推積位置が、前記石英
系光導波路の光入出射端面と前記光部品の光入出射端面
とを結ぶ直線上にあることを特徴とする請求項2に記載
の光回路製造方法。
3. The stacking position of the lens base material is on a straight line connecting the light entrance / exit end surface of the quartz optical waveguide and the light entrance / exit end surface of the optical component. An optical circuit manufacturing method as described.
JP5174255A 1993-07-14 1993-07-14 Optical circuit and manufacturing method thereof Expired - Fee Related JP2565093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5174255A JP2565093B2 (en) 1993-07-14 1993-07-14 Optical circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5174255A JP2565093B2 (en) 1993-07-14 1993-07-14 Optical circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0727947A true JPH0727947A (en) 1995-01-31
JP2565093B2 JP2565093B2 (en) 1996-12-18

Family

ID=15975436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5174255A Expired - Fee Related JP2565093B2 (en) 1993-07-14 1993-07-14 Optical circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2565093B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166728A (en) * 1995-12-15 1997-06-24 Nec Corp Optical waveguide device and its production
KR20050005357A (en) * 2003-07-01 2005-01-13 삼성전자주식회사 Method for fabricating microlens and method for fabricating optical module using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064309A (en) * 1983-09-19 1985-04-12 Shimadzu Corp Formation of end lens for optical waveguide
JPH04220610A (en) * 1990-12-21 1992-08-11 Nippon Telegr & Teleph Corp <Ntt> Spot size converting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064309A (en) * 1983-09-19 1985-04-12 Shimadzu Corp Formation of end lens for optical waveguide
JPH04220610A (en) * 1990-12-21 1992-08-11 Nippon Telegr & Teleph Corp <Ntt> Spot size converting element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166728A (en) * 1995-12-15 1997-06-24 Nec Corp Optical waveguide device and its production
KR20050005357A (en) * 2003-07-01 2005-01-13 삼성전자주식회사 Method for fabricating microlens and method for fabricating optical module using the same
US7410749B2 (en) 2003-07-01 2008-08-12 Samsung Electronics Co., Ltd. Method of fabricating micro-lens and method of fabricating optical module using the method

Also Published As

Publication number Publication date
JP2565093B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US8380075B2 (en) Optical transceiver module
US4750799A (en) Hybrid optical integrated circuit
JP2684603B2 (en) Transmission and reception module for two-way communication network and manufacturing method thereof
JP3782126B2 (en) Two-way optical communication and signal transmission transmitter and receiver module
CN105242360A (en) Dual-lensed unitary optical receiver assembly
US10892845B2 (en) Method and system for a free space CWDM MUX/DEMUX for integration with a grating coupler based silicon photonics platform
CN101918872A (en) Optical transmission and reception module
US5859942A (en) Optical coupling device
JP2000353856A (en) Semiconductor laser module
JP2565093B2 (en) Optical circuit and manufacturing method thereof
JPH09197179A (en) Optical circuit and its production
JP3655166B2 (en) Method for assembling bidirectional optical communication device and bidirectional optical communication device
JP2809267B2 (en) Optical waveguide device and manufacturing method thereof
JP2970747B2 (en) Optical circuit and manufacturing method thereof
JPH05167060A (en) Optical coupling circuit
JPH07191236A (en) Optical circuit and its production
JP2005134803A (en) Ferrule with optical isolator and optical transmission/reception module equipped with the same
JP3219781B2 (en) Optical circuit
US6161965A (en) Optical coupling circuit
JPH04134306A (en) Waveguide type optical device with elliptic microlens
JPH0651113A (en) Optical band pass filter module
JPH0515316B2 (en)
JPH07253559A (en) Bi-directional optical communication device
JPH11167048A (en) Optical waveguide module
JPH04315488A (en) Laser array module

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees