JPH0727935A - Optical waveguide type polarizer - Google Patents

Optical waveguide type polarizer

Info

Publication number
JPH0727935A
JPH0727935A JP17171193A JP17171193A JPH0727935A JP H0727935 A JPH0727935 A JP H0727935A JP 17171193 A JP17171193 A JP 17171193A JP 17171193 A JP17171193 A JP 17171193A JP H0727935 A JPH0727935 A JP H0727935A
Authority
JP
Japan
Prior art keywords
optical waveguide
polarizer
type optical
thin film
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17171193A
Other languages
Japanese (ja)
Inventor
Shintaro Ishikawa
進太郎 石川
Akio Watanabe
章夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP17171193A priority Critical patent/JPH0727935A/en
Publication of JPH0727935A publication Critical patent/JPH0727935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the optical waveguide type poiarizer which has a high extinction ratio and low driving voltage characteristic and is made smaller in size than the conventional composite type polarizer. CONSTITUTION:This optical waveguide type polarizer is constituted by arranging a Ti diffusion type optical waveguide 2 and a proton exchange type optical waveguide 3 by joining these optical waveguides in series on a single crystal substrate 1 consisting of lithium niobate and successively forming a dielectric film 4 and a metallic thin film 5 on the surface of the Ti diffusion type optical waveguide 2. A silicon nitride film is adequate as the dielectric film and an aluminum thin film as the metallic thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光計測、光通信等の光
集積回路に用いられる光導波路型偏光子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide type polarizer used for an optical integrated circuit such as optical measurement and optical communication.

【0002】[0002]

【従来の技術】ニオブ酸リチウム(LiNbO3 )結晶
基板を用いた光導波路型偏光子には、Ti(チタン)拡
散型光導波路の表面上に金属薄膜を装荷した構成の偏光
子(金属膜装荷型)や、XカットあるいはZカットのニ
オブ酸リチウム結晶基板にプロトン交換型光導波路を形
成した構成の偏光子(プロトン交換型)がある。
2. Description of the Related Art An optical waveguide type polarizer using a lithium niobate (LiNbO 3 ) crystal substrate has a structure in which a metal thin film is loaded on the surface of a Ti (titanium) diffusion type optical waveguide (metal film loading). Type) and a polarizer (proton exchange type) having a structure in which a proton exchange type optical waveguide is formed on an X-cut or Z-cut lithium niobate crystal substrate.

【0003】[0003]

【発明が解決しようとする課題】金属膜装荷型偏光子
は、TMモード偏光成分が金属薄膜内の自由電子を励振
し、TEモード偏光成分に比べて大きく減衰する現象を
利用している。この金属膜装荷型偏光子は、Ti拡散型
光導波路に使用でき、低損失で、かつ低駆動電圧特性を
有する光集積回路が実現できる。しかし、高い消光比が
得難いという欠点がある。一方、プロトン交換型偏光子
は、結晶基板の光学的方向を考慮することにより、光導
波路自体にTEモード偏光成分あるいはTMモード偏光
成分のみを導波する偏光子機能を持たせたものである。
プロトン交換型偏光子は高い消光比が得られるが、プロ
トン交換型偏光子を用いた光集積回路では、低駆動電圧
特性が得られないという欠点がある。
The metal film loaded type polarizer utilizes a phenomenon in which a TM mode polarization component excites free electrons in the metal thin film and is largely attenuated as compared with the TE mode polarization component. This metal film loaded type polarizer can be used for a Ti diffusion type optical waveguide, and an optical integrated circuit having low loss and low driving voltage characteristics can be realized. However, there is a drawback that it is difficult to obtain a high extinction ratio. On the other hand, in the proton exchange type polarizer, the optical waveguide itself has a polarizer function of guiding only the TE mode polarization component or the TM mode polarization component in consideration of the optical direction of the crystal substrate.
The proton exchange type polarizer can obtain a high extinction ratio, but an optical integrated circuit using the proton exchange type polarizer has a drawback that low driving voltage characteristics cannot be obtained.

【0004】金属膜装荷型やプロトン交換型の光導波路
型偏光子に関する上記の問題を解決するものとして、変
調器部分としてのTi拡散型光導波路と、偏光子部分と
してのプロトン交換型光導波路とを、同一結晶基板上で
接合して構成した光集積回路が考えられている。しか
し、このような複合型の光集積回路では、プロトン交換
型光導波路の偏光子部分で放射された不要な偏光成分が
迷光となり、短い偏光子長では高い消光比を得ることが
できない。
As a solution to the above-mentioned problems relating to a metal film loaded type or a proton exchange type optical waveguide type polarizer, a Ti diffusion type optical waveguide as a modulator portion and a proton exchange type optical waveguide as a polarizer portion are provided. An optical integrated circuit configured by bonding the above on the same crystal substrate is considered. However, in such a composite type optical integrated circuit, an unnecessary polarization component emitted in the polarizer portion of the proton exchange type optical waveguide becomes stray light, and a high extinction ratio cannot be obtained with a short polarizer length.

【0005】本発明は、上述の事情に鑑みてなされたも
のであり、消光比が高く、かつ低駆動電圧特性が得ら
れ、しかも光集積回路素子が小型化できる光導波路型偏
光子を提供することを目的としている。
The present invention has been made in view of the above circumstances, and provides an optical waveguide type polarizer having a high extinction ratio, a low driving voltage characteristic, and a miniaturized optical integrated circuit element. Is intended.

【0006】[0006]

【課題を解決するための手段】本発明の光導波路型偏光
子は、ニオブ酸リチウムの単結晶基板上に、Ti拡散型
光導波路とプロトン交換型光導波路とを直列に接合して
配置し、このTi拡散型光導波路の表面上に誘電体膜と
金属薄膜とを順次形成したことを特徴としている。上述
に加えて本発明の光導波路型偏光子は、Ti拡散型光導
波路の表面上に形成する誘電体膜が窒化ケイ素膜である
こと、及びTi拡散型光導波路の表面上に形成する金属
薄膜がアルミニウム薄膜であることを特徴としている。
The optical waveguide type polarizer of the present invention comprises a Ti diffusion type optical waveguide and a proton exchange type optical waveguide which are bonded in series on a single crystal substrate of lithium niobate. A feature is that a dielectric film and a metal thin film are sequentially formed on the surface of this Ti diffusion type optical waveguide. In addition to the above, in the optical waveguide type polarizer of the present invention, the dielectric film formed on the surface of the Ti diffusion type optical waveguide is a silicon nitride film, and the metal thin film formed on the surface of the Ti diffusion type optical waveguide. Is an aluminum thin film.

【0007】[0007]

【作用】図1は、本発明に係る光導波路型偏光子の基本
的構造を示す斜視図である。図中、1は単結晶基板、2
は単結晶基板1上に配置されたTi拡散型光導波路、3
はTi拡散型光導波路2に直列に接合して単結晶基板1
上に配置されたプロトン交換型光導波路、4はTi拡散
型光導波路2の表面上に形成した誘電体膜、5は誘電体
膜4の表面上に形成した金属薄膜、6は入射光、7は出
射光である。
1 is a perspective view showing the basic structure of an optical waveguide type polarizer according to the present invention. In the figure, 1 is a single crystal substrate, 2
Is a Ti diffusion type optical waveguide disposed on the single crystal substrate 1, 3
Is connected to the Ti diffusion type optical waveguide 2 in series and the single crystal substrate 1
The proton exchange type optical waveguide arranged above, 4 is a dielectric film formed on the surface of the Ti diffusion type optical waveguide 2, 5 is a metal thin film formed on the surface of the dielectric film 4, 6 is incident light, and 7 is Is the emitted light.

【0008】単結晶基板1には、ニオブ酸リチウム、タ
ンタル酸リチウム(LiTaO3 )等の従来より光導波
路に使用されている単結晶を用いることができるが、製
造が容易で消光比の高い偏光子を得るには、ニオブ酸リ
チウムの使用が好ましい。Ti拡散型光導波路2は、フ
ォトマスクを用いて単結晶基板1上にチタンを所望のパ
ターンに蒸着し、次に高温の酸素雰囲気中でアニール
し、チタン原子を単結晶基板1中に拡散させる方法(熱
拡散法)で形成する。チタン原子が拡散した部分は、チ
タン原子が拡散していない部分に比べて屈折率が高いの
で、光導波路として機能する。
The single crystal substrate 1 may be made of a single crystal such as lithium niobate or lithium tantalate (LiTaO 3 ) which has been used in optical waveguides, but it is easy to manufacture and has a high extinction ratio. The use of lithium niobate is preferred to obtain offspring. In the Ti diffusion type optical waveguide 2, titanium is vapor-deposited in a desired pattern on the single crystal substrate 1 using a photomask and then annealed in a high temperature oxygen atmosphere to diffuse titanium atoms into the single crystal substrate 1. It is formed by a method (heat diffusion method). The portion where the titanium atoms are diffused has a higher refractive index than the portion where the titanium atoms are not diffused, and thus functions as an optical waveguide.

【0009】上述のように、金属薄膜5は、不要なTM
偏波成分を吸収する働きを有する。金属元素であれば光
波を吸収するので、アルミニウム(Al),銀(A
g),銅(Cu),金(Au)等いずれの金属を用いて
もよいが、特にアルミニウムは、複素誘電率の虚部が大
きいので光波の吸収効率が高く、金属薄膜5の材料とし
て好適である。誘電体膜4は、上層の金属薄膜5がTM
偏波成分を吸収する作用を促進し、吸収効率をより一層
高めることに寄与する。誘電体膜4の形成には、公知の
窒化ケイ素(Si3 4 )や酸化ケイ素(SiO2 )等
が使用でき、金属薄膜5にアルミニウム(Al)を用い
た場合は、特に窒化ケイ素は効果が大きいので、望まし
い材料である。
As described above, the metal thin film 5 is an unnecessary TM.
It has the function of absorbing polarized components. Since a metal element absorbs light waves, aluminum (Al), silver (A
g), copper (Cu), gold (Au), or any other metal may be used, but aluminum has a large imaginary part of the complex permittivity and thus has a high light wave absorption efficiency and is suitable as a material for the metal thin film 5. Is. In the dielectric film 4, the upper metal thin film 5 is TM
It promotes the action of absorbing the polarized component and contributes to further increase the absorption efficiency. Known silicon nitride (Si 3 N 4 ) or silicon oxide (SiO 2 ) can be used for forming the dielectric film 4, and when aluminum (Al) is used for the metal thin film 5, silicon nitride is particularly effective. Is a desirable material because of its large size.

【0010】Ti拡散型光導波路2の表面の一部又は全
表面上に誘電体膜4及び金属薄膜5を形成して成る金属
膜装荷型偏光子8と、プロトン交換型光導波路(プロト
ン交換型偏光子)3とは、単結晶基板1上に直列に接合
して配置し、Ti拡散型光導波路2側に光波の入力ポー
ト、プロトン交換型光導波路3側に光波の出力ポートを
設ければ、TMモード偏波除去のための偏光子が構成さ
れる。
A metal film loaded polarizer 8 formed by forming a dielectric film 4 and a metal thin film 5 on a part or all of the surface of the Ti diffusion type optical waveguide 2 and a proton exchange type optical waveguide (proton exchange type). The polarizer 3 is arranged on the single crystal substrate 1 so as to be connected in series, and a light wave input port is provided on the Ti diffusion type optical waveguide 2 side and a light wave output port is provided on the proton exchange type optical waveguide 3 side. , TM mode polarization removal is configured.

【0011】[0011]

【実施例】本発明実施例 図1に示した本発明の光導波路型偏光子を製造し、偏光
子長に対するTMモード偏光の消光比を評価した。単結
晶基板1は、Xカットで幅(Z方向)6mm,長さ(Y
方向)10mm,厚さ(X方向)1mmのニオブ酸リチ
ウム単結晶基板である。この単結晶基板上にフォトマス
クを用いて、結晶表面の幅方向(Z方向)の中央で、金
属チタンを結晶端より長さ1mm,幅5μmで蒸着し
た。次にこの単結晶基板を1000℃,酸素雰囲気中で
7時間アニーリングして、金属チタン原子を単結晶基板
中に拡散させ、長さ1mmのTi拡散型光導波路2を形
成した。得られたTi拡散型光導波路2は光波伝搬効率
が0.1dB/cmであり、損失が小さいことが示され
た。
EXAMPLES manufactured optical waveguide polarizer of the present invention the present invention shown in Embodiment FIG 1 to evaluate the extinction ratio of the TM mode polarization for the polarizer length. The single crystal substrate 1 has a width (Z direction) of 6 mm and a length (Y
Direction) 10 mm, thickness (X direction) 1 mm lithium niobate single crystal substrate. Using a photomask, metal titanium was vapor-deposited on the single crystal substrate at the center of the crystal surface in the width direction (Z direction) with a length of 1 mm from the crystal end and a width of 5 μm. Next, this single crystal substrate was annealed at 1000 ° C. in an oxygen atmosphere for 7 hours to diffuse metal titanium atoms into the single crystal substrate to form a Ti diffusion type optical waveguide 2 having a length of 1 mm. The obtained Ti diffusion type optical waveguide 2 had a light wave propagation efficiency of 0.1 dB / cm, and it was shown that the loss was small.

【0012】次に、上述したTi拡散型光導波路2に直
列に接合して結晶幅方向の中央に、プロトン交換法によ
り安息香酸中で幅5μm,長さ9mmのマスクを用い、
プロトン交換型光導波路3を結晶他端まで形成した。更
にこの単結晶基板を350℃,酸素雰囲気中で3.5時
間アニーリングした。また、Ti拡散型光導波路2の表
面上に、窒化ケイ素(Si3 4 )の誘電体膜4を厚さ
55nm,更に誘電体膜4の上に、アルミニウムの金属
薄膜5を厚さ200nmに蒸着法で形成し、Ti拡散型
光導波路2を金属膜装荷型偏光子8に構成した。この結
果、一つの単結晶基板1上に、長さが1mmの金属膜装
荷型偏光子8と長さが9mmのプロトン交換型光導波路
(プロトン交換型偏光子)3とを直列に接合して構成し
た新規性を有する複合型偏光子を得た。
Next, using a mask having a width of 5 μm and a length of 9 mm in benzoic acid by the proton exchange method, which was bonded in series to the Ti diffusion type optical waveguide 2 described above and was formed in the center in the crystal width direction,
The proton exchange type optical waveguide 3 was formed up to the other end of the crystal. Further, this single crystal substrate was annealed at 350 ° C. in an oxygen atmosphere for 3.5 hours. Further, a dielectric film 4 of silicon nitride (Si 3 N 4 ) having a thickness of 55 nm is formed on the surface of the Ti diffusion type optical waveguide 2, and a metal thin film 5 of aluminum having a thickness of 200 nm is further formed on the dielectric film 4. The Ti diffusion type optical waveguide 2 was formed by a vapor deposition method to form a metal film loaded type polarizer 8. As a result, a metal film loaded polarizer 8 having a length of 1 mm and a proton exchange optical waveguide (proton exchange polarizer) 3 having a length of 9 mm are bonded in series on one single crystal substrate 1. A composite polarizer having the constructed novelty was obtained.

【0013】上述のように製造した偏光子のTMモード
偏光の消光比を測定した。導波光として波長0.8μm
の半導体レーザを用い、この半導体レーザから出射した
直線偏光の光波を、偏波保持ファイバを介してTi拡散
型光導波路2側の入力ポートより偏光子に偏光消光比0
dB(TM/TE=1)で入射した。偏光子のプロトン
交換型光導波路3側の出力ポートから出射した光波の強
度を、消光比60dBのいわゆるGlan-Thompson プリズ
ムを用いて測定した。次に、上述の測定に供試した偏光
子は、プロトン交換型光導波路3側の結晶端面を少しず
つ研磨して削ることにより、プロトン交換型光導波路3
の長さを0〜4.3mmの範囲で順次短くした。このよ
うにして、長さ1mmの金属膜装荷型偏光子8を含む複
合型偏光子の長さを短くしながら、適当な偏光子長にお
いて上述と同様な測定方法で、TMモード偏光の消光比
を測定した。
The extinction ratio of TM mode polarized light of the polarizer manufactured as described above was measured. Wavelength 0.8μm as guided light
Of the linearly polarized light wave emitted from this semiconductor laser to the polarizer from the input port on the side of the Ti diffusion type optical waveguide 2 through the polarization maintaining fiber to the polarization extinction ratio 0.
It was incident at dB (TM / TE = 1). The intensity of the light wave emitted from the output port of the polarizer on the side of the proton exchange type optical waveguide 3 was measured using a so-called Glan-Thompson prism having an extinction ratio of 60 dB. Next, the polarizer used in the above measurement was prepared by gradually polishing and scraping the crystal end surface on the side of the proton exchange type optical waveguide 3 to remove the proton exchange type optical waveguide 3
The length was shortened in the range of 0 to 4.3 mm. In this way, the extinction ratio of TM mode polarized light is measured by the same measurement method as above with an appropriate polarizer length while shortening the length of the composite polarizer including the metal film loaded polarizer 8 having a length of 1 mm. Was measured.

【0014】従来例 誘電体膜4及び金属薄膜5を形成しなかったことを除
き、本発明実施例と同様の方法で従来例の複合型偏光子
を製造した。そして、本発明実施例におけると同一方法
により、偏光子長に対するTMモード偏光の消光比を測
定した。
[0014] Except for not forming the conventional dielectric film 4 and the metal thin film 5, to produce a composite polarizer of prior art in the present invention embodiment similar manner. Then, the extinction ratio of the TM mode polarized light to the polarizer length was measured by the same method as in the embodiment of the present invention.

【0015】図2は、本発明実施例と従来例とにおける
偏光子長に対するTMモード偏光の消光比の測定結果で
ある。偏光子として要求されるTMモード偏光の50d
B以上の消光比が、従来の偏光子と比べて本発明の偏光
子では、より短い偏光子長で得られることが分かり、従
来の複合型偏光子より小型な複合型偏光子ができること
が示されている。
FIG. 2 shows the measurement results of the extinction ratio of TM mode polarized light with respect to the polarizer length in the embodiment of the present invention and the conventional example. 50d of TM mode polarized light required as a polarizer
It can be seen that an extinction ratio of B or more can be obtained with a shorter polarizer length in the polarizer of the present invention as compared with the conventional polarizer, which shows that a composite polarizer smaller than the conventional composite polarizer can be obtained. Has been done.

【0016】[0016]

【発明の効果】以上説明したように本発明の光導波路型
偏光子は、金属膜装荷型偏光子とプロトン交換型光導波
路(プロトン交換型偏光子)を組み合わせ接合すること
で、高消光比、低駆動電圧特性という利点を有し、しか
も従来の複合型偏光子より小型化が可能である。
As described above, the optical waveguide type polarizer of the present invention has a high extinction ratio by combining and bonding a metal film loaded type polarizer and a proton exchange type optical waveguide (proton exchange type polarizer). It has the advantage of low drive voltage characteristics and can be made smaller than conventional composite polarizers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光導波路型偏光子の基本的構造を
示す斜視図である。
FIG. 1 is a perspective view showing a basic structure of an optical waveguide type polarizer according to the present invention.

【図2】本発明及び従来の光導波路型偏光子における偏
光子長に対するTMモード偏光の消光比を示す測定図で
ある。
FIG. 2 is a measurement diagram showing an extinction ratio of TM mode polarized light with respect to a polarizer length in the present invention and the conventional optical waveguide type polarizer.

【符号の説明】[Explanation of symbols]

1 単結晶基板 2 Ti拡散型光導波路 3 プロトン交換型光導波路(プロトン交換型偏光
子) 4 誘電体膜 5 金属薄膜 6 入射光 7 出射光 8 金属膜装荷型偏光子
1 Single Crystal Substrate 2 Ti Diffused Optical Waveguide 3 Proton Exchange Optical Waveguide (Proton Exchange Polarizer) 4 Dielectric Film 5 Metal Thin Film 6 Incident Light 7 Exit Light 8 Metal Film Loaded Polarizer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ニオブ酸リチウムの単結晶基板上に、T
i拡散型光導波路とプロトン交換型光導波路とを直列に
接合して配置し、上記Ti拡散型光導波路の表面上に誘
電体膜と金属薄膜とを順次形成したことを特徴とする光
導波路型偏光子。
1. On a single crystal substrate of lithium niobate, T
An optical waveguide type characterized in that an i diffusion type optical waveguide and a proton exchange type optical waveguide are arranged so as to be joined in series, and a dielectric film and a metal thin film are sequentially formed on the surface of the Ti diffusion type optical waveguide. Polarizer.
【請求項2】 Ti拡散型光導波路の表面上に形成する
誘電体膜が窒化ケイ素膜である請求項1に記載の光導波
路型偏光子。
2. The optical waveguide type polarizer according to claim 1, wherein the dielectric film formed on the surface of the Ti diffusion type optical waveguide is a silicon nitride film.
【請求項3】 Ti拡散型光導波路の表面上に形成する
金属薄膜がアルミニウム薄膜である請求項1又は請求項
2に記載の光導波路型偏光子。
3. The optical waveguide type polarizer according to claim 1, wherein the metal thin film formed on the surface of the Ti diffusion type optical waveguide is an aluminum thin film.
JP17171193A 1993-07-12 1993-07-12 Optical waveguide type polarizer Pending JPH0727935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17171193A JPH0727935A (en) 1993-07-12 1993-07-12 Optical waveguide type polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17171193A JPH0727935A (en) 1993-07-12 1993-07-12 Optical waveguide type polarizer

Publications (1)

Publication Number Publication Date
JPH0727935A true JPH0727935A (en) 1995-01-31

Family

ID=15928266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17171193A Pending JPH0727935A (en) 1993-07-12 1993-07-12 Optical waveguide type polarizer

Country Status (1)

Country Link
JP (1) JPH0727935A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333756A (en) * 2006-06-12 2007-12-27 Fujitsu Ltd Optical waveguide device and optical modulator
US7712829B2 (en) 2004-11-30 2010-05-11 Johnson Controls Technology Company Seat structure for vehicle
CN113534334A (en) * 2020-04-15 2021-10-22 格芯(美国)集成电路科技有限公司 Stacked waveguide polarizer with conductive oxide strips
CN114486816A (en) * 2022-01-20 2022-05-13 浙江大学嘉兴研究院 Method for exciting surface plasmon resonance of nano cavity by optical waveguide
CN116430516A (en) * 2023-04-21 2023-07-14 上海科技大学 Optical polarizer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7712829B2 (en) 2004-11-30 2010-05-11 Johnson Controls Technology Company Seat structure for vehicle
JP2007333756A (en) * 2006-06-12 2007-12-27 Fujitsu Ltd Optical waveguide device and optical modulator
CN113534334A (en) * 2020-04-15 2021-10-22 格芯(美国)集成电路科技有限公司 Stacked waveguide polarizer with conductive oxide strips
CN113534334B (en) * 2020-04-15 2023-10-20 格芯(美国)集成电路科技有限公司 Stacked waveguide polarizer with conductive oxide strips
CN114486816A (en) * 2022-01-20 2022-05-13 浙江大学嘉兴研究院 Method for exciting surface plasmon resonance of nano cavity by optical waveguide
CN114486816B (en) * 2022-01-20 2023-10-13 浙江大学嘉兴研究院 Method for exciting nano-cavity surface plasmon resonance by optical waveguide
CN116430516A (en) * 2023-04-21 2023-07-14 上海科技大学 Optical polarizer
CN116430516B (en) * 2023-04-21 2024-03-08 上海科技大学 Optical polarizer

Similar Documents

Publication Publication Date Title
US5546494A (en) Optical waveguide device and manufacturing method of the same
JPS60243606A (en) Thin film optical element
US4793675A (en) Element having light waveguides and method of making same
JPH0728007A (en) Waveguide type optical device
JPH0727935A (en) Optical waveguide type polarizer
JP3836950B2 (en) Acousto-optic device
JPH08286160A (en) Acoustooptic filter
US6233372B1 (en) Waveguide path type polarization independent optical wavelength tunable filter
JP2880770B2 (en) Optical wavelength filter
JP2581486B2 (en) Optical waveguide device and method of manufacturing the same
JPH06289347A (en) Optical waveguide element and its manufacture
JP2770773B2 (en) Acousto-optic filter
JP2613942B2 (en) Waveguide type optical device
JP4237932B2 (en) Optical waveguide device and optical wavelength converter
JP5316617B2 (en) Optical waveguide device and manufacturing method thereof
JP2666321B2 (en) Optical waveguide type directional coupler
JPH1078516A (en) Production of waveguide type element and channel-shaped optical waveguide
JP2900569B2 (en) Optical waveguide device
JP2001249311A (en) Optical waveguide element
JPH02118605A (en) Manufacture of single mode optical waveguide and light modulating element using it
JP2764473B2 (en) How to make an optical waveguide
JPS5936249B2 (en) light switch
JPH06331829A (en) Attenuator for optical waveguide
JPS60156039A (en) Manufacture of optical function element
JP2809112B2 (en) Light control device and manufacturing method thereof