JPH0727786U - Robot for measuring thickness of underwater structures - Google Patents

Robot for measuring thickness of underwater structures

Info

Publication number
JPH0727786U
JPH0727786U JP2133492U JP2133492U JPH0727786U JP H0727786 U JPH0727786 U JP H0727786U JP 2133492 U JP2133492 U JP 2133492U JP 2133492 U JP2133492 U JP 2133492U JP H0727786 U JPH0727786 U JP H0727786U
Authority
JP
Japan
Prior art keywords
robot
plate thickness
pedestal
center
arms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2133492U
Other languages
Japanese (ja)
Other versions
JP2576179Y2 (en
Inventor
明 澤
實 田中
尚 茨本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Penta Ocean Construction Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Penta Ocean Construction Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1992021334U priority Critical patent/JP2576179Y2/en
Publication of JPH0727786U publication Critical patent/JPH0727786U/en
Application granted granted Critical
Publication of JP2576179Y2 publication Critical patent/JP2576179Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 桟橋等の水中構造物の脚柱の板厚計測用ロボ
ットに関し、特に脚柱の侵食部の板厚計測が遠隔操作に
よって行なえるようにした、水中構造物の板厚計測用ロ
ボットを提供する。 【構成】 水中構造物の脚柱の板厚計測用ロボットにお
いて、ロボット本体10の前部に、油圧シリンダ17により
対称的に開閉可能な左右一対のアーム13を取り付けると
ともに、両アーム13の中央部でアーム13の上下に2個の
支持金物14を取り付けてロボット本体10を脚柱2の被検
面2aに挟持するための支持装置を形成する一方、被検
面2aを清掃可能な回転ブラシ15と超音波板厚センサ16
とをそなえた検査ユニット30をロボット本体10の前部に
装着し、常に超音波板厚センサ16を脚柱2の中心に向か
って正確に当接させる。
(57) [Summary] (Corrected) [Purpose] Regarding the robot for measuring the plate thickness of the pedestal of underwater structures such as piers, in particular, the plate thickness of the erosion part of the pedestal can be remotely controlled. Provided is a robot for measuring the plate thickness of an underwater structure. [Structure] In a robot for measuring the plate thickness of a pedestal of an underwater structure, a pair of left and right arms 13 that can be symmetrically opened and closed by a hydraulic cylinder 17 are attached to the front part of a robot body 10, and the center parts of both arms 13 are attached. The two support hardware 14 are attached to the upper and lower sides of the arm 13 to form a support device for holding the robot body 10 between the test surface 2a of the pedestal 2 and a rotating brush 15 capable of cleaning the test surface 2a. And ultrasonic plate thickness sensor 16
The inspection unit 30 having the above is attached to the front portion of the robot body 10, and the ultrasonic plate thickness sensor 16 is always brought into accurate contact with the center of the pedestal 2.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、例えば桟橋等の水中構造物の脚柱の板厚計測用ロボットに関し、特 に脚柱の侵食部の板厚計測が遠隔操作によって行なえるようにした、水中構造物 の板厚計測用ロボットに関する。 The present invention relates to a robot for measuring the plate thickness of a pedestal of an underwater structure such as a pier, and in particular, can measure the plate thickness of an erosion part of the pedestal by remote control. For robots.

【0002】[0002]

【従来の技術】[Prior art]

従来、例えば桟橋の脚柱(中空円筒断面に形成されている)のような水中構造 物の侵食部の板厚計測は、図4に示すように、ダイバー1により、脚柱2の被検 面2aを清掃後、手持ちの超音波板厚センサ3を被検面2aに当てることにより、 行なわれている。 Conventionally, for example, as shown in FIG. 4, a diver 1 is used to measure the plate thickness of an erosion part of an underwater structure such as a pier's pedestal (which is formed in a hollow cylindrical cross section) by using a diver 1. After cleaning 2a, the ultrasonic plate thickness sensor 3 in hand is applied to the surface 2a to be tested.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、上述のような従来の板厚計測には、次のような問題がある。 (1) 板厚計測は、水中構造物の耐久性判定上、脚柱2の最小板厚となる寸法l( 図5参照)を測定する必要があり、そのために脚柱の中心方向に向かうように超 音波板厚センサ3を被検面2aに当てなければならない。しかし、波浪の影響が あり、しかもダイバーが自身の体を支えることが困難な水中での作業であり、さ らにダイバーは検査員としての専門家ではないので、脚柱2の中心方向に向かっ て超音波板厚センサを正確に被検面に当てることが困難である。このため、超音 波板厚センサの支持方向が傾き、その結果、図5に示すように、最小板厚寸法l より大なる寸法l'が測定値として計測されることが多い。 これにより、最小板厚lが強度上補修が必要となる板厚以下であるにもかかわ らず、計測板厚が強度上補修が必要となる板厚以上である板厚l'が計測される ため、補修が施工されず、水中構造物の陥没等の重大事故に発展する等の危険が ある。 By the way, the conventional plate thickness measurement as described above has the following problems. (1) To measure the plate thickness, it is necessary to measure the dimension l (see Fig. 5) that is the minimum plate thickness of the pedestal 2 in order to determine the durability of the underwater structure. Then, the ultrasonic plate thickness sensor 3 must be applied to the surface 2a to be tested. However, because it is an underwater operation that is affected by waves and it is difficult for the diver to support his body, and because the diver is not an expert as an inspector, he must move toward the center of the pedestal 2. It is difficult to accurately apply the ultrasonic plate thickness sensor to the surface to be inspected. For this reason, the supporting direction of the ultrasonic wave plate thickness sensor is inclined, and as a result, as shown in FIG. 5, a dimension l ′ larger than the minimum sheet thickness dimension l is often measured as a measurement value. As a result, even if the minimum plate thickness l is equal to or less than the plate thickness required for strength repair, the measured plate thickness l'is equal to or larger than the plate thickness required for strength repair. Therefore, there is a risk that repair work will not be carried out and that serious accidents such as the collapse of underwater structures will occur.

【0004】 (2) 上記のように作業条件の悪い状態で得られた板厚計測値はバラツキも多く、 1つ1つの計測値の信頼性が低いため、数回の計測が必要となり、多大の作業時 間を費やし、費用も増大する。(2) The thickness measurement values obtained under the bad working conditions as described above have many variations, and the reliability of each measurement value is low. Therefore, it is necessary to perform the measurement several times. Work time and costs increase.

【0005】 本考案は、このような問題点の解決をはかろうとするもので、正確かつ迅速に 板厚計測を行なうことができる水中構造物の板厚計測用ロボットを提供すること を目的とする。The present invention is intended to solve such a problem, and an object thereof is to provide a robot for measuring the plate thickness of an underwater structure capable of accurately and quickly measuring the plate thickness. To do.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

上述の目的を達成するため、本考案の水中構造物板厚計測用ロボットは、ロボ ット本体と、同ロボット本体に装着された航走装置とをそなえ、上記ロボット本 体の前部に油圧シリンダにより対称的に開閉可能な左右一対のアームが対称的に 突設されるとともに、上記両アームの中央部で同両アームの上下に支持金物が設 けられて上記ロボット本体を上記脚柱に挟持可能な支持装置が構成される一方、 上記脚柱の被検面を清掃可能な回転ブラシと上記ロボット本体の軸心方向へ出没 可能な超音波板厚センサとをそなえた検査ユニットが上記ロボット本体の前部に 装着されるとともに、上記超音波板厚センサが、計測時に上記左右一対のアーム の中心部に移動させられた後上記脚柱の中心方向に向かって押し付けられるよう に構成されていることを特徴としている。 In order to achieve the above-mentioned object, the underwater structure plate thickness measuring robot of the present invention comprises a robot body and a navigation device mounted on the robot body, and a hydraulic pressure is provided on the front part of the robot body. A pair of left and right arms that can be opened and closed symmetrically by a cylinder are symmetrically projected, and support hardware is provided above and below the both arms at the center of both arms so that the robot body can be used as the pedestal. While the support device that can be held is configured, the robot has an inspection unit that includes a rotating brush that can clean the test surface of the pedestal and an ultrasonic plate thickness sensor that can retract in the axial direction of the robot body. The ultrasonic plate thickness sensor is mounted on the front part of the main body and is configured to be pushed toward the center of the pedestal after being moved to the center of the pair of left and right arms during measurement. It is characterized in that.

【0007】[0007]

【作用】[Action]

上述の本考案の水中構造物板厚計測用ロボットでは、ロボット本体の前部に突 設された左右一対のアームと支持金物とでロボット本体を脚柱に挟持する作用が 行なわれ、これによりロボット本体が脚柱に強固に支持される。 In the above-described underwater structure plate thickness measuring robot of the present invention, the pair of left and right arms projecting from the front of the robot body and the supporting hardware work to clamp the robot body on the pedestal, which causes the robot to operate. The main body is firmly supported by the pedestal.

【0008】 また、ロボット本体に装備された回転ブラシにより被検面の清掃が行なわれ、 その後に脚柱の中心方向に向かって超音波板厚センサが押し付けられるので、正 確な板厚の迅速な計測が行なわれる。Further, since the surface to be inspected is cleaned by the rotating brush equipped in the robot body, and thereafter, the ultrasonic plate thickness sensor is pressed toward the center of the pedestal, so that the accurate plate thickness can be quickly measured. Measurements are performed.

【0009】[0009]

【実施例】 以下、図面により本考案の一実施例としての水中構造物板厚計測用ロボットに ついて説明すると、図1は斜視図、図2は平面図、図3は図1の「A」矢視部の 側面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An underwater structure board thickness measuring robot as an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view, FIG. 2 is a plan view, and FIG. 3 is “A” in FIG. It is a side view of an arrow view part.

【0010】 この実施例の板厚計測用ロボットは、遠隔操作式水中航走体形のロボットから なり、同ロボットの主体部を構成するロボット本体10の前部には、ロボット本体 10を水中構造物としての脚柱2に支持するための左右一対のアーム13が対称的に 突設されている。The plate thickness measuring robot of this embodiment is composed of a remote-controlled underwater vehicle type robot, and the robot main body 10 is provided in front of the robot main body 10 which constitutes the main body of the robot. A pair of left and right arms 13 for supporting the pedestal 2 are symmetrically projected.

【0011】 アーム13は、ロボット本体10内に装備された油圧シリンダ17により、ロボット 本体10の前部に取り付けられたアーム支持台18にアーム13を枢着するピン19を支 点として対称的に開閉させられるとともに、形状が左右対称の両アーム13を枢着 するピン19からの距離l1およびl2が等しく(両アーム13の中央部に相当する) 、しかもアーム13の上下に1ケずつ設けられた両アーム13の中央部からの開き角 度θ1およびθ2が等しい形状の支持金物14と協同して脚柱2を挟持できるように 構成されている。The arm 13 is symmetrically moved by a hydraulic cylinder 17 provided in the robot body 10 with a pin 19 pivotally attaching the arm 13 to an arm support 18 attached to the front part of the robot body 10 as a fulcrum. The distances l 1 and l 2 from the pin 19 that pivots both arms 13 that are opened and closed and symmetrical in shape are equal (corresponding to the center of both arms 13), and one arm is provided above and below each arm 13. The pedestal 2 can be clamped in cooperation with a supporting metal member 14 having a shape in which the opening angles θ 1 and θ 2 from the center of both arms 13 provided are the same.

【0012】 ロボット本体10の後部にロボットの前後進を行なうための前後スラスタ20が左 右に1台ずつ装着され、また中央部にロボットに上昇下降および旋回を行なわせ るための上下スラスタ21および左右スラスタ22が設けられている。Front and rear thrusters 20 for moving the robot forward and backward are mounted on the left and right of the robot main body 10 one by one, and a vertical thruster 21 and a vertical thruster 21 for moving the robot up and down and turning are provided at the center. Left and right thrusters 22 are provided.

【0013】 また、ロボット本体10の上部の左右には、左右一対のフロート23が取り付けら れており、ロボットに適度な浮力を与え、ロボットを安定させている。Further, a pair of left and right floats 23 are attached to the left and right of the upper portion of the robot body 10 to give an appropriate buoyancy to the robot and stabilize the robot.

【0014】 ロボット本体10の前部の中央に検査ユニット30が取り付けられており、この検 査ユニット30に回転ブラシ15,超音波板厚センサ16が、両者をロボット本体10の 軸心方向に沿って前後へ移動するための油圧シリンダ24a,24bにより前後動可能 に装備されている。An inspection unit 30 is attached to the center of the front part of the robot body 10, and a rotating brush 15 and an ultrasonic plate thickness sensor 16 are attached to the inspection unit 30 along the axial direction of the robot body 10. Equipped with hydraulic cylinders 24a, 24b for moving back and forth.

【0015】 なお、アーム13の開閉用油圧シリンダ17,検査ユニット30内の油圧シリンダ24a ,24b,前後スラスタ20,上下スラスタ21および左右スラスタ22はいずれもケーブル 25を介して陸上または船上からの遠隔操作により各別に作動できるように構成さ れている。The opening / closing hydraulic cylinder 17 of the arm 13, the hydraulic cylinders 24a and 24b in the inspection unit 30, the front and rear thrusters 20, the upper and lower thrusters 21, and the left and right thrusters 22 are all remote from land or on board via a cable 25. It is configured so that it can be operated separately by operation.

【0016】 次に上述の構成をそなえた板厚計測用ロボットの作動を説明する。Next, the operation of the plate thickness measuring robot having the above configuration will be described.

【0017】 まず図1に示すように、水中に樹立された水中構造物の脚柱(中空円筒断面に 形成されている)2に、ロボットが陸上または船上からの遠隔操作で、前後スラ スタ20,上下スラスタ21および左右スラスタ22が駆動されることにより遊泳し、 脚柱2に接近し、油圧シリンダ17の操作によりアーム13が駆動されて脚柱2を挟 持する。First, as shown in FIG. 1, a robot is remotely controlled from land or on a pedestal (formed in a hollow cylindrical cross section) 2 of an underwater structure established underwater by a robot 20 from the front and rear thrusters 20. The upper and lower thrusters 21 and the left and right thrusters 22 are driven to swim, approach the pedestal 2, and the arm 13 is driven by the operation of the hydraulic cylinder 17 to clamp the pedestal 2.

【0018】 アーム13および支持金物14で脚柱2を挟持することにより、ロボット本体10自 身が脚柱2により支持金物14の中央と脚柱2の中心とが合致する位置に強固に支 持される(図2参照)。次いでロボット本体10に装備された回転ブラシ15により 被検面2aを清掃した後、支持金物14の中央部へ超音波板厚センサ16を図示しな い公知の位置センサ付シリンダもしくは機械式等のスライド機構により横移動さ せる。支持金物14の中央部へ移動させられた後、超音波板厚センサ16が、油圧シ リンダ24bにより脚柱2の中心Oへ向けて押し付けられる。By sandwiching the pedestal 2 between the arm 13 and the support hardware 14, the robot body 10 itself is firmly supported by the pedestal 2 at a position where the center of the support hardware 14 and the center of the pedestal 2 coincide with each other. (See FIG. 2). Then, after cleaning the surface 2a to be inspected by the rotating brush 15 mounted on the robot body 10, the ultrasonic plate thickness sensor 16 is attached to the central portion of the support metal 14 by a well-known cylinder with position sensor or mechanical type not shown. It can be moved laterally by the slide mechanism. After being moved to the central portion of the supporting hardware 14, the ultrasonic plate thickness sensor 16 is pressed toward the center O of the pedestal 2 by the hydraulic cylinder 24b.

【0019】 このように、この実施例の板厚計測用ロボットでは、ロボット本体10の前部に 対称的に取り付けられた左右一対のアーム13,13と、両アーム13,13の中央部でア ーム13,13の上下に1個ずつ設けられた支持金物14とで脚柱2の挟持を行ないな がら、ロボット本体10の中心部(アーム13,13の中央部に相当する)からロボッ ト本体10の軸心方向に移動可能な超音波板厚センサ16が円形断面の脚柱2に向か って押し付けられる。すなわち両アーム13,13と両アーム13,13を枢着するピン19 からの距離l1およびl2が等しく、両アーム13,13の中央部からの開き角度θ1お よびθ2が等しい形状の支持金物14により、脚柱2はロボット本体10の中央部( アーム13,13の中央部に相当する)に挟持されるので、超音波板厚センサ16を脚 柱2の中心Oに向かって正確に当接させることができ、したがって最小板厚の計 測が可能となる(図2,図5参照)。As described above, in the plate thickness measuring robot of this embodiment, the pair of left and right arms 13 and 13 symmetrically attached to the front part of the robot body 10 and the central parts of both arms 13 and 13 are arranged. While holding the pedestal 2 with the support hardware 14 provided one above and one below the arms 13 and 13, the robot is moved from the center of the robot body 10 (corresponding to the center of the arms 13 and 13) to the robot. An ultrasonic plate thickness sensor 16 that is movable in the axial direction of the main body 10 is pressed against the column 2 having a circular cross section. That is, a shape in which the distances l 1 and l 2 from both arms 13 and 13 and the pin 19 pivotally connecting both arms 13 and 13 are equal, and the opening angles θ 1 and θ 2 from the center of both arms 13 and 13 are equal. Since the pedestal 2 is clamped by the supporting metal piece 14 of the robot body 10 in the central portion (corresponding to the central portion of the arms 13 and 13) of the robot body 10, the ultrasonic plate thickness sensor 16 is moved toward the center O of the pedestal 2. The contact can be made accurately, and therefore the minimum plate thickness can be measured (see FIGS. 2 and 5).

【0020】 そしてこの場合、支持金物14が上下方向に1個ずつ設けられているので、脚柱 2に対する挟持が波浪によって影響を受けることがなく、またダイバーによる従 来の場合と異なって、常に超音波板厚センサを脚柱2の中心に向かって正確に当 接できるため、信頼性の高い計測データが得られる。またアーム13,13で挟持す る大径および小径の脚柱に対しても、公知の油圧もしくは機械的機構により支持 金物14をアーム13,13の中央部からの開き角度θ1およびθ2を同じだけ拡大また は縮小させ、かつ同じく公知な油圧もしくは機械的機構によりロボット本体10の 軸心方向(アーム13,13の中央部に相当する)に伸縮可能となれば、同様に信頼 性の高いデータが得られるものである。In this case, since the supporting metal pieces 14 are provided one by one in the vertical direction, the sandwiching with respect to the pedestal 2 is not affected by the waves, and unlike the conventional case by the diver, Since the ultrasonic plate thickness sensor can be accurately contacted toward the center of the pedestal 2, highly reliable measurement data can be obtained. Also with respect to the large diameter and small diameter pedestal that Soo sandwiched by the arm 13, the angle theta 1 and theta 2 open by known hydraulic or mechanical mechanism support hardware 14 from the central portion of the arm 13 It is also highly reliable if it can be expanded or contracted by the same amount and can be expanded or contracted in the axial direction of the robot body 10 (corresponding to the central portion of the arms 13 and 13) by the same known hydraulic or mechanical mechanism. The data is obtained.

【0021】[0021]

【考案の効果】[Effect of device]

以上詳述したように、本考案の水中構造物板厚計測用ロボットによれば、次の ような効果ないし利点が得られる。 (1) ロボット本体が水中構造物に強固に固定され、超音波板厚センサを安定した 状態で脚柱の中心方向に当てることが可能となり、最小板厚の計測が可能となる 。 (2) 安定した信頼性の高いデータが得られるため、水中構造物の適切な補修の施 工が可能となる。 (3) データの信頼性が高いため、計測回数を少なくすることができ、作業時間の 短縮にも寄与できる。 As described in detail above, according to the underwater structure plate thickness measuring robot of the present invention, the following effects and advantages are obtained. (1) The robot body is firmly fixed to the underwater structure, and the ultrasonic plate thickness sensor can be applied to the center of the pedestal in a stable state, and the minimum plate thickness can be measured. (2) Since stable and highly reliable data can be obtained, appropriate repair work for underwater structures can be performed. (3) Since the data is highly reliable, it is possible to reduce the number of measurements and contribute to shortening the working time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例としての水中構造物板厚計測
用ロボットを示す斜視図である。
FIG. 1 is a perspective view showing an underwater structure plate thickness measuring robot as an embodiment of the present invention.

【図2】同平面図である。FIG. 2 is a plan view of the same.

【図3】図1の「A」矢視部の側面図である。FIG. 3 is a side view of the “A” arrow portion of FIG. 1.

【図4】従来のダイバーによる水中構造物の板厚計測状
態を示す模式側面図である。
FIG. 4 is a schematic side view showing a plate thickness measurement state of an underwater structure by a conventional diver.

【図5】脚柱の板厚計測原理を示す説明図である。FIG. 5 is an explanatory diagram showing the principle of measuring the plate thickness of a pedestal.

【符号の説明】[Explanation of symbols]

1 ダイバー 2 脚柱 3,16 超音波板厚センサ 10 ロボット本体 13 アーム 14 支持金物 15 回転ブラシ 17 油圧シリンダ 19 ピン 20 前後スラスタ 21 上下スラスタ 22 左右スラスタ 23 フロート 24a,24b 油圧シリンダ 30 検査ユニット 1 diver 2 pedestal 3,16 ultrasonic plate thickness sensor 10 robot body 13 arm 14 support hardware 15 rotating brush 17 hydraulic cylinder 19 pin 20 front and rear thruster 21 vertical thruster 22 left and right thruster 23 float 24a, 24b hydraulic cylinder 30 inspection unit

───────────────────────────────────────────────────── フロントページの続き (72)考案者 澤 明 神戸市中央区小野浜町7番46号 運輸省第 三港湾建設局 神戸機械整備事務所内 (72)考案者 田中 實 東京都品川区東大井一丁目11番25号 五洋 建設株式会社技術研究所内 (72)考案者 茨本 尚 神戸市兵庫区和田崎町一丁目1番1号 三 菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Sawa Inventor Akira Sawa 7-46, Onohama-cho, Chuo-ku, Kobe Inside the Kobe Machinery Maintenance Office, 3rd Port Construction Bureau, Ministry of Transport (72) Minoru Tanaka Hajitani Oi, Shinagawa-ku, Tokyo 1-11-25 Goyo Construction Co., Ltd. Technical Research Institute (72) Inventor Takashi Ibaramoto 1-1-1 Wadazakicho, Hyogo-ku, Kobe Sanryo Heavy Industries Co., Ltd. Kobe Shipyard

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 水中構造物の脚柱の板厚計測用ロボット
において、ロボット本体と、同ロボット本体に装着され
た航走装置とをそなえ、上記ロボット本体の前部に油圧
シリンダにより対称的に開閉可能な左右一対のアームが
対称的に突設されるとともに、上記両アームの中央部で
同両アームの上下に支持金物が設けられて上記ロボット
本体を上記脚柱に挟持可能な支持装置が構成される一
方、上記脚柱の被検面を清掃可能な回転ブラシと上記ロ
ボット本体の軸心方向へ出没可能な超音波板厚センサと
をそなえた検査ユニットが上記ロボット本体の前部に装
着されるとともに、上記超音波板厚センサが、計測時に
上記左右一対のアームの中心部に移動させられた後上記
脚柱の中心方向に向かって押し付けられるように構成さ
れていることを特徴とする、水中構造物板厚計測用ロボ
ット。
1. A robot for measuring the plate thickness of a pedestal of an underwater structure, comprising a robot main body and a navigation device mounted on the robot main body, and symmetrically using a hydraulic cylinder at the front of the robot main body. A pair of left and right arms that can be opened and closed are symmetrically projectingly provided, and supporting hardware is provided above and below the arms at the center of the arms to support the robot body by the pillars. On the other hand, an inspection unit equipped with a rotating brush that can clean the surface to be inspected of the pedestal and an ultrasonic plate thickness sensor that can be retracted in the axial direction of the robot body is attached to the front part of the robot body. In addition, the ultrasonic plate thickness sensor is configured to be pressed toward the center of the pedestal after being moved to the center of the pair of left and right arms during measurement. A robot for measuring the thickness of underwater structures.
JP1992021334U 1992-03-10 1992-03-10 Robot for measuring the thickness of underwater structures Expired - Lifetime JP2576179Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992021334U JP2576179Y2 (en) 1992-03-10 1992-03-10 Robot for measuring the thickness of underwater structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992021334U JP2576179Y2 (en) 1992-03-10 1992-03-10 Robot for measuring the thickness of underwater structures

Publications (2)

Publication Number Publication Date
JPH0727786U true JPH0727786U (en) 1995-05-23
JP2576179Y2 JP2576179Y2 (en) 1998-07-09

Family

ID=12052232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992021334U Expired - Lifetime JP2576179Y2 (en) 1992-03-10 1992-03-10 Robot for measuring the thickness of underwater structures

Country Status (1)

Country Link
JP (1) JP2576179Y2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026903A (en) * 2010-07-26 2012-02-09 Wakachiku Construction Co Ltd Underwater position fixing device for thickness measuring tool of steel underwater structural material
WO2012087033A1 (en) * 2010-12-22 2012-06-28 삼성중공업 주식회사 Underwater mobile apparatus and moving method thereof
JP2019533599A (en) * 2016-09-20 2019-11-21 サウジ アラビアン オイル カンパニー Underwater boat and inspection method
JP2019211438A (en) * 2018-06-08 2019-12-12 株式会社東芝 Internal inspection system of hydraulic machinery and internal inspection method
JP2019536676A (en) * 2016-09-20 2019-12-19 サウジ アラビアン オイル カンパニー Mounting mechanism for stabilization of underwater aircraft
EP2762279B1 (en) * 2013-02-01 2021-01-20 ABB Power Grids Switzerland AG Device And Method For Transformer In-Situ Inspection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000014280A (en) * 1998-07-06 2000-01-18 Fuji Kogyo Co Ltd Line guide for fishing rod and shaking out type fishing rod

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026903A (en) * 2010-07-26 2012-02-09 Wakachiku Construction Co Ltd Underwater position fixing device for thickness measuring tool of steel underwater structural material
WO2012087033A1 (en) * 2010-12-22 2012-06-28 삼성중공업 주식회사 Underwater mobile apparatus and moving method thereof
KR101407461B1 (en) * 2010-12-22 2014-06-16 삼성중공업 주식회사 Underwater Moving Apparatus and Moving method thereof
US9051036B2 (en) 2010-12-22 2015-06-09 Samsung Heavy Ind. Co., Ltd. Underwater moving apparatus and moving method thereof
EP2762279B1 (en) * 2013-02-01 2021-01-20 ABB Power Grids Switzerland AG Device And Method For Transformer In-Situ Inspection
JP2019533599A (en) * 2016-09-20 2019-11-21 サウジ アラビアン オイル カンパニー Underwater boat and inspection method
JP2019536676A (en) * 2016-09-20 2019-12-19 サウジ アラビアン オイル カンパニー Mounting mechanism for stabilization of underwater aircraft
US11292138B2 (en) 2016-09-20 2022-04-05 Saudi Arabian Oil Company Attachment mechanisms for stabilization of subsea vehicles
JP2019211438A (en) * 2018-06-08 2019-12-12 株式会社東芝 Internal inspection system of hydraulic machinery and internal inspection method

Also Published As

Publication number Publication date
JP2576179Y2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
US6658939B2 (en) Fixture for automated ultrasonic scanning of radii in aerospace structure
JP6445274B2 (en) Equipment for non-destructive inspection of stringers
EP2691736B1 (en) Profiling tool for determining material thickness for inspection sites having complex topography
JPH0727786U (en) Robot for measuring thickness of underwater structures
Hopkins et al. Advanced phased-array technologies for ultrasonic inspection of complex composite parts
US5959211A (en) Method and apparatus for positioning sensors against a non-planar surface
US6222897B1 (en) Wrist raster scan methods
JP2646012B2 (en) Underwater inspection equipment
US11199525B2 (en) Ultrasonic bar inspection system with improved centering assembly
CN214895043U (en) Automatic scanning device for bending weld phased array ultrasonic detection
JP2952851B1 (en) Piping diagnosis method and apparatus using ultrasonic probe
US3795132A (en) Curved surface finish analyzer
JPH0740168Y2 (en) Telemetry probe device
US1139936A (en) Universal test-indicator.
DE3871853T2 (en) CONTACT SOUND HEADS.
JPS6332141B2 (en)
CN109188445B (en) Special detection device under water for caisson seam
JPH0645875Y2 (en) Columnar structure inspection device
JP2535168Y2 (en) Underwater structure inspection equipment
CN218512360U (en) Bridge digital ultrasonic sound detection device
JPH0297194U (en)
JPS5826550B2 (en) Ultrasonic flaw detection method and device using two probes
JPS6252455A (en) Method and apparatus for ultrasonic flaw detection
KR20230127637A (en) Zig for curved surface of vessel
SU1689850A1 (en) The sound probe to determine the quality of concrete

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980324

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term