JPH07277720A - Method for analyzing hydrogen chloride gas in producing polycrystalline silicon - Google Patents

Method for analyzing hydrogen chloride gas in producing polycrystalline silicon

Info

Publication number
JPH07277720A
JPH07277720A JP8738694A JP8738694A JPH07277720A JP H07277720 A JPH07277720 A JP H07277720A JP 8738694 A JP8738694 A JP 8738694A JP 8738694 A JP8738694 A JP 8738694A JP H07277720 A JPH07277720 A JP H07277720A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen chloride
gas
chloride gas
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8738694A
Other languages
Japanese (ja)
Inventor
Tatsuya Nishioka
達也 西岡
Tadashi Matsumoto
正 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP8738694A priority Critical patent/JPH07277720A/en
Publication of JPH07277720A publication Critical patent/JPH07277720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To continuously measure a hydrogen chloride concentration in hydrogen gas purified from a waste gas with active carbon with a high accuracy in an online system in producing a polycrystalline silicon by reduction with the hydrogen. CONSTITUTION:The method for analyzing hydrogen chloride gas is to carry out the infrared spectrochemical analysis of hydrogen gas, integrate the respective luminous intensities of the spectrochemical analysis (peak vales) at plural absorption wave numbers in a region of 3000-2900cm<-1> deviated from 2864cm<-1> which is an absorption wave number essential to the hydrogen chloride gas and determine the hydrogen chloride gas concentration from the resultant total integrated peak values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多結晶シリコンの製造
において、活性炭の破過を検知するために用いられる塩
化水素ガス分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen chloride gas analysis method used for detecting breakthrough of activated carbon in the production of polycrystalline silicon.

【0002】[0002]

【従来の技術】半導体の製造原料等として使用される多
結晶シリコンは、通常、水素による還元反応により製造
される。この製造方法を図1により説明する。
2. Description of the Related Art Polycrystalline silicon used as a raw material for manufacturing semiconductors is usually manufactured by a reduction reaction with hydrogen. This manufacturing method will be described with reference to FIG.

【0003】還元炉6に三塩化シラン(SiHC
3 )、水素(H2 )を供給することにより下記の還元
反応が起こり、多結晶シリコン(Si)が製造されると
同時に、四塩化ケイ素(SiCl4 )、塩化水素(HC
l)、水素(H2 )か副生する。 4SiHCl3 →Si+3SiCl4 +2H2 SiHCl3 +H2 →Si+3HCl
Silane trichloride (SiHC
l 3 ), hydrogen (H 2 ) is supplied to cause the following reduction reaction to produce polycrystalline silicon (Si), and at the same time, silicon tetrachloride (SiCl 4 ) and hydrogen chloride (HC
l), hydrogen (H 2 ) or by-product. 4SiHCl 3 → Si + 3SiCl 4 + 2H 2 SiHCl 3 + H 2 → Si + 3HCl

【0004】副生した四塩化ケイ素、塩化水素、水素と
更に未反応の三塩化シラン、水素を含んだ排ガスは、吸
着塔7に送られ、ここで活性炭による吸着処理を受け、
水素が精製されて還元炉1に送られ、上記の還元反応に
再使用される。
Exhaust gas containing by-produced silicon tetrachloride, hydrogen chloride, hydrogen and unreacted silane trichloride and hydrogen is sent to an adsorption tower 7, where it is subjected to adsorption treatment with activated carbon,
Hydrogen is purified and sent to the reduction furnace 1, where it is reused in the above reduction reaction.

【0005】還元反応に再使用される水素は、多結晶シ
リコンの汚染を防止する意味から高純度のものが要求さ
れ、そのために活性炭を使用しているわけであるが、炭
性炭は一定量の物質を吸着すると、その段階を境に一気
に吸着不能に陥る。この現象は、活性炭の破過と呼ば
れ、吸着物質の種類によって段階に生じて行くものであ
る。
Hydrogen to be reused in the reduction reaction is required to have a high purity in order to prevent the contamination of polycrystalline silicon, and activated carbon is used for that purpose. When the substance is adsorbed, it becomes impossible to adsorb at that stage. This phenomenon is called breakthrough of activated carbon and occurs in stages depending on the type of adsorbed substance.

【0006】最も大きな問題になる破過は、リン塩化
物、ボロン塩化物によるものである。これらの塩化物は
シリコンの電気伝導度に重大な影響を与える悪性汚染物
質であり、活性炭にこれらの悪性汚染物質による破過が
起こると、その悪性汚染物質が還元炉に侵入する。これ
らのシリコン中の許容量は、0.1ppba(10-11 )程度
であり、このようなオーダーでこれらの分析を行える簡
易分析器は存在しない。
The breakthrough, which is the biggest problem, is due to phosphorus chloride and boron chloride. These chlorides are malignant pollutants that seriously affect the electrical conductivity of silicon, and when the activated carbon is broken through by these malignant pollutants, the malignant pollutants enter the reduction furnace. The allowable amount in these silicons is about 0.1 ppba (10 −11 ), and there is no simple analyzer that can perform these analyzes in such an order.

【0007】そのため、通常は悪性汚染物質による破過
の時期を炭性炭の使用期間から経験的に推定している
が、当然のことながら実際の破過の時期に対して大きな
ずれが生じ、推定時期が早すぎた場合は活性炭が無駄に
なり、万一推定時期が遅れた場合は多結晶シリコンが汚
染され、一層大きな無駄が生じる。
Therefore, the breakthrough time due to the malignant pollutant is usually empirically estimated from the period of use of the charcoal, but naturally, a large deviation occurs from the actual breakthrough time, If the estimation time is too early, the activated carbon will be wasted, and if the estimation time is late, the polycrystalline silicon will be contaminated, resulting in even greater waste.

【0008】この問題を解決するために、本出願人は活
性炭により精製された水素ガス中の塩化水素ガス濃度を
測定することにより、悪性汚染物質による活性炭の破過
を、その破過に近い時期に精度よく検知する方法を先に
提案した(特開昭63−144110号公報)。
In order to solve this problem, the present applicant measured the concentration of hydrogen chloride gas in hydrogen gas purified by activated carbon to determine the breakthrough of activated carbon due to a malignant pollutant at a time close to that. A method for detecting with high accuracy was previously proposed (Japanese Patent Laid-Open No. 63-144110).

【0009】水素還元による多結晶シリコンの製造にお
いては、前述したように、排ガスとして塩化水素が生じ
る。この塩化水素は多結晶シリコンの品質への影響は少
なく、著しい高濃度になると生産性への影響はあるが、
10ppm 程度までなら問題はない。而して、この塩化水
素は、沸点が−84.8℃(1atm)と、悪性汚染物質の沸点
(リン塩化物で74.2℃)に比べて低い。
In the production of polycrystalline silicon by hydrogen reduction, as described above, hydrogen chloride is produced as exhaust gas. This hydrogen chloride has little effect on the quality of polycrystalline silicon, and at extremely high concentrations, it has an effect on productivity,
There is no problem if it is about 10 ppm. Thus, this hydrogen chloride has a boiling point of −84.8 ° C. (1 atm), which is lower than the boiling point of malignant pollutants (phosphorus chloride 74.2 ° C.).

【0010】活性炭は沸点の低い物質から順番に破過を
起こすので、悪性汚染物質による破過が生じる前に塩化
水素による破過を生じるので、塩化水素による破過に伴
う塩化水素濃度の上昇を検出することにより、その破過
に続く悪性汚染物質による破過を、その破過の直前に精
度よく検知することができる。
Since activated carbon causes breakthrough in order from a substance having a lower boiling point, breakthrough by hydrogen chloride occurs before breakthrough by a malignant pollutant. Therefore, an increase in hydrogen chloride concentration due to breakthrough by hydrogen chloride occurs. By detecting, the breakthrough due to the malignant pollutant following the breakthrough can be accurately detected immediately before the breakthrough.

【0011】[0011]

【発明が解決しようとする課題】水素ガス中の塩化水素
ガス濃度を測定する方法としては、PH紙やガスクロマ
ト分析によるものが一般的である。また、本出願人が先
に提案した方法では、隔膜電極式電解法による測定法が
用いられている。更には、赤外線分光分析法も、ガス成
分分析法として知られている。
As a method for measuring the hydrogen chloride gas concentration in hydrogen gas, PH paper or gas chromatographic analysis is generally used. Further, in the method previously proposed by the applicant of the present invention, a measuring method by a diaphragm electrode type electrolysis method is used. Furthermore, the infrared spectroscopic analysis method is also known as a gas component analysis method.

【0012】しかし、PH紙による測定は、定量的な測
定ができない。一方、ガスクロマト分析や隔膜電極電解
法による測定は、定量的な測定は可能であるが、測定に
時間がかかるため、バッチ分析が基本となり、オンライ
ンでの連続測定はできない。また、赤外線分光分析法で
は、後述するように、十分な精度が得られない。
[0012] However, the PH paper cannot be used for quantitative measurement. On the other hand, in the gas chromatographic analysis and the measurement by the diaphragm electrode electrolysis method, quantitative measurement is possible, but since the measurement takes time, batch analysis is the basis and continuous measurement cannot be performed online. Further, in the infrared spectroscopic analysis method, sufficient accuracy cannot be obtained as described later.

【0013】本発明の目的は、水素ガス中の塩化水素ガ
ス濃度をオンラインで連続的に、しかも精度よくリアル
タイム測定できる塩化水素ガス分析方法を提供すること
にある。
An object of the present invention is to provide a hydrogen chloride gas analysis method capable of continuously and accurately measuring the hydrogen chloride gas concentration in hydrogen gas online in real time.

【0014】[0014]

【課題を解決するための手段】オンラインで連続的にガ
ス分析を行える方法として赤外線分光分析法がある。こ
の方法で塩化水素ガスの濃度を測定する場合、塩化水素
単組成成分が定量のときは、Lambert-Beerの法則が成立
し、塩化水素ガスに赤外線を当てると、2864cm-1
の波数で赤外線が吸収される。従って、吸収が最大とな
る波数(2864cm-1)での分光分析光量(ピーク
値)と、基準となる波数での分光分析量(ベース値)と
の差から塩化水素ガス濃度を求めることができる。 塩化水素ガス濃度=K×log10 (I0 /I)……(1) K:定数 I0 :ベース値 I:ピーク値
Infrared spectroscopic analysis is available as a method for continuously performing gas analysis online. When measuring the concentration of hydrogen chloride gas by this method, Lambert-Beer's law is established when the hydrogen chloride single composition component is quantitative, and when infrared rays are applied to the hydrogen chloride gas, 2864 cm -1
Infrared is absorbed at the wave number of. Therefore, the hydrogen chloride gas concentration can be obtained from the difference between the spectroscopic analysis light amount (peak value) at the wave number (2864 cm −1 ) at which the absorption is maximum and the spectroscopic analysis amount (base value) at the reference wave number. . Hydrogen chloride gas concentration = K × log 10 (I 0 / I) (1) K: constant I 0 : base value I: peak value

【0015】図2はLambert-Beerの法則に基づく測定原
理を示す。ここでは2876cm-1,2852cm-1
の分光分析量I1 ,I2 の平均値をベース値としてい
る。このベース値と、2864cm-1での分光分析量I
(ピーク値)との差ΔIから塩化水素ガス濃度が求ま
る。なお、分光分析量は透過率で表わされ、これが小さ
いほど吸収が多いことを意味する。
FIG. 2 shows the measurement principle based on the Lambert-Beer law. Here 2876cm -1, are based value the mean value of the spectral analysis amount I 1, I 2 at 2852cm -1. This base value and the spectroscopic amount I at 2864 cm -1
The hydrogen chloride gas concentration can be obtained from the difference ΔI from the (peak value). The amount of spectroscopic analysis is represented by the transmittance, and the smaller the amount, the larger the absorption.

【0016】ところで、還元反応により多結晶シリコン
の製造では、活性炭により精製された水素ガス中の塩化
水素ガス濃度は最大でも2000ppm (吸着塔入口)程
度であり、活性炭の破過を検知するための管理濃度とし
ては500ppm (吸着塔中段サンプル口)程度が採用さ
れる。ところで、上述した赤外線分光分析法による濃度
測定では、H2 ガスが100%の場合でもノイズにより
測定値が500ppm をこえることがある。従って、当初
の考えからからでは、赤外線分光分析によって塩化水素
ガス濃度を測定することは不可能である。
By the way, in the production of polycrystalline silicon by a reduction reaction, the hydrogen chloride gas concentration in hydrogen gas purified by activated carbon is about 2000 ppm (at the inlet of the adsorption tower) at the maximum, which is used to detect the breakthrough of activated carbon. A control concentration of around 500 ppm (middle sample port of adsorption tower) is adopted. By the way, in the concentration measurement by the infrared spectroscopy described above, the measured value may exceed 500 ppm due to noise even when H 2 gas is 100%. Therefore, from the initial idea, it is impossible to measure the hydrogen chloride gas concentration by infrared spectroscopic analysis.

【0017】しかし、前記水素ガスに対する赤外線分光
分析のデータ解析を行ったところ、本来なら一定波数
(2864cm-1)で表われるはずの塩化水素ガスの吸
収波数が、図3に示すように、本来の領域から外れた
3000〜2900cm-1の広い領域に複数表われる
こと、領域において生じた複数の吸収ピーク値の積算
値である総ピーク値を求めることにより、塩化水素ガス
濃度が明らかとなることが新たな事実として判明した。
However, as a result of infrared spectroscopic analysis of the hydrogen gas, the absorption wave number of the hydrogen chloride gas, which should originally appear as a constant wave number (2864 cm −1 ), is as shown in FIG. The concentration of hydrogen chloride gas becomes clear by obtaining multiple peaks, which are multiple values appearing in a wide range of 3000 to 2900 cm -1 outside the range of the above, and by calculating the total peak value that is the integrated value of the multiple absorption peak values generated in the range. Became a new fact.

【0018】本発明は上記知見に基づきなされたもの
で、水素による還元反応により多結晶シリコンを製造す
る際に生じる排ガスを活性炭に通し、活性炭により水素
ガスを精製して前記還元反応に再使用する多結晶シリコ
ンの製造において、精製された水素ガスを赤外線分光分
析して、塩化水素ガス吸収波数近傍の特定波数領域で測
定された吸収波形の総ピーク値から前記水素ガス中の塩
化水素ガス濃度を求めることを特徴とする多結晶シリコ
ンの製造における塩化水素ガス分析方法を要旨とする。
The present invention has been made based on the above findings. The exhaust gas generated when producing polycrystalline silicon by the reduction reaction with hydrogen is passed through activated carbon, the hydrogen gas is purified with activated carbon and reused in the reduction reaction. In the production of polycrystalline silicon, the infrared spectroscopic analysis of the purified hydrogen gas, the hydrogen chloride gas concentration in the hydrogen gas from the total peak value of the absorption waveform measured in a specific wave number region near the hydrogen chloride gas absorption wave number The gist is a method for analyzing hydrogen chloride gas in the production of polycrystalline silicon, which is characterized in that it is obtained.

【0019】前記特定波数領域としては前述した300
0〜2900cm-1を用いるが、これにより、若干広く
しても狭くしてもよい。また、操業条件によっては特定
波数領域が変化する場合も考えられ、その場合は変化し
た特定波数領域を採用する。
The specific wave number region is the above-mentioned 300.
Although 0 to 2900 cm -1 is used, it may be made slightly wider or narrower. Further, the specific wave number region may change depending on the operating conditions, and in that case, the changed specific wave number region is adopted.

【0020】[0020]

【作用】以下に、本発明法を図面を参照して具体的に説
明する。
The method of the present invention will be specifically described below with reference to the drawings.

【0021】図4は測定系の概略構成図、図5は総ピー
ク値の求め方を説明するためのグラフである。
FIG. 4 is a schematic configuration diagram of the measurement system, and FIG. 5 is a graph for explaining how to obtain the total peak value.

【0022】多結晶シリコン製造設備(図1)の吸着塔
により精製された水素ガスを分流して測定セル1に導
く。測定セル1は赤外線を透過できるように、両側にセ
ル窓2,2を有する。セル窓2,2の材質としては、汚
れの少ないNaCl4 が望ましい。測定セル1の一端側
に設けた光源3から測定セル1に赤外線を入射し、測定
セル1を透過した赤外線を、測定セル1の他端側に設け
た分光分析装置4により受光する。分光分析装置4は、
所定波数毎に分光分析光量を検出する。そして、所定波
数毎の分光分析光量を演算装置5に与えて、水素ガス中
の塩化水素ガス濃度を求める。
The hydrogen gas purified by the adsorption tower of the polycrystalline silicon production facility (FIG. 1) is split and introduced into the measuring cell 1. The measuring cell 1 has cell windows 2 and 2 on both sides so that infrared rays can be transmitted. As a material for the cell windows 2 and 2, it is desirable to use NaCl 4 which is less contaminated. Infrared rays are incident on the measurement cell 1 from a light source 3 provided on one end side of the measurement cell 1, and the infrared rays transmitted through the measurement cell 1 are received by a spectroscopic analysis device 4 provided on the other end side of the measurement cell 1. The spectroscopic analyzer 4 is
The spectroscopic analysis light amount is detected for each predetermined wave number. Then, the spectroscopic analysis light amount for each predetermined wave number is given to the arithmetic unit 5 to obtain the hydrogen chloride gas concentration in the hydrogen gas.

【0023】今、図4に示すように、3000〜290
0cm-1の領域をa(4cm-1)毎に分割し、それぞれ
の波数での分光分析値をI1 ,I2 …I25とする。この
領域に生じた複数の吸収ピーク値の積算値である総ピー
ク値は簡易的に下式により求まる。
Now, as shown in FIG. 4, 3000 to 290
The region of 0 cm −1 is divided into a (4 cm −1 ) and the spectral analysis values at each wave number are I 1 , I 2, ... I 25 . The total peak value, which is the integrated value of a plurality of absorption peak values generated in this region, can be simply obtained by the following formula.

【0024】 [0024]

【0025】総ピーク値は、ここでは図5に斜線で示す
部分の面積を、3000cm-1から2900cm-1まで
4cm-1毎に等分した区域について積算した値である。
The total peak value, here the area of a portion indicated by hatching in FIG. 5, is a value obtained by integrating the equally divided areas each 4 cm -1 from 3000 cm -1 to 2900 cm -1.

【0026】求めた総ピーク値を濃度に換算するため
に、例えば下式の演算を行う。168、354.8は換算
のための係数であり、適宜に選択される。 塩化水素ガス濃度=(168×総ピーク値)−354.8……(3)
In order to convert the obtained total peak value into the concentration, for example, the following formula is calculated. 168 and 354.8 are coefficients for conversion and are selected appropriately. Hydrogen chloride gas concentration = (168 x total peak value) -354.8 (3)

【0027】かくして、水素ガス中の塩化水素ガス濃度
が赤外線分光分析によりオンラインで連続的に、しかも
精度よくアリルタイム測定される。
Thus, the concentration of hydrogen chloride gas in hydrogen gas can be continuously and accurately measured online by infrared spectroscopic analysis.

【0028】[0028]

【実施例】次に本発明の実施例を述べる。EXAMPLES Next, examples of the present invention will be described.

【0029】水素による還元反応を用いた実際の多結晶
シリコン製造設備において、活性炭を用いた吸着塔によ
り精製された水素ガスを図4に示す測定系に導き、(2)
式および(3) 式により水素ガス中の塩化水素ガス濃度を
連続的に求めた。
In an actual polycrystalline silicon production facility using a reduction reaction with hydrogen, hydrogen gas purified by an adsorption tower using activated carbon was introduced into the measurement system shown in FIG.
The hydrogen chloride gas concentration in the hydrogen gas was continuously determined by the equations and (3).

【0030】測定精度を確認するために、吸着塔内の活
性炭を再生後、吸着塔内に排ガスを流し始めてから2時
間後、4時間後、6時間後に精製水素ガスをサンプリン
グし、ガスクロマト分析によりその水素ガス中の塩化水
素ガス濃度をバッチ測定した。
In order to confirm the measurement accuracy, after the activated carbon in the adsorption tower is regenerated, the purified hydrogen gas is sampled 2 hours, 4 hours, and 6 hours after starting the flow of the exhaust gas into the adsorption tower, and the gas chromatographic analysis is performed. The concentration of hydrogen chloride gas in the hydrogen gas was measured in batch by.

【0031】また、比較のために、(1) 式による一般的
な赤外線分析により連続測定を行った。
For comparison, continuous measurement was carried out by general infrared analysis according to the formula (1).

【0032】通ガス開始から2時間後、4時間後、6時
間後の測定値をガスクロマト分析値と比較して表1に示
す。
Table 1 shows the measured values after 2 hours, 4 hours, and 6 hours from the start of gas passage in comparison with the gas chromatographic analysis values.

【0033】[0033]

【表1】 [Table 1]

【0034】本発明法はオンラインで連続的にリアルタ
イム測定を行うにもかかわらず、ガスクロマト分析に近
い精度を示す。比較法はノイズのため使用不能である。
本発明法が高精度なことは、図6に示すガスクロマト分
析値と本発明測定値との相関関係からも明らかである。
The method of the present invention exhibits an accuracy close to that of gas chromatographic analysis, even though continuous real-time measurement is performed online. The comparison method cannot be used because of noise.
The high accuracy of the method of the present invention is clear from the correlation between the gas chromatographic analysis values and the measurement values of the present invention shown in FIG.

【0035】[0035]

【発明の効果】以上の説明した通り、本発明の塩化水素
ガス分析方法は、水素還元による多結晶シリコンの製造
において、活性炭を用いて排ガスから精製した水素ガス
中の塩化水素ガス濃度を、赤外線分光分析によりオンラ
インで連続的に、しかも精度よくリアルタイム測定でき
る。従って、悪性汚染物質による活性炭の破過が生じる
時期を高精度に推定でき、シリコンの品質確保および活
性炭コストの低減に大きな効果を発揮する。
As described above, the method for analyzing hydrogen chloride gas according to the present invention is a method for measuring the concentration of hydrogen chloride gas in hydrogen gas purified from exhaust gas using activated carbon by infrared rays in the production of polycrystalline silicon by hydrogen reduction. The spectroscopic analysis enables online, continuous, and accurate real-time measurement. Therefore, it is possible to highly accurately estimate the time when activated carbon breakthrough due to a malignant pollutant is obtained, and it is possible to exert a great effect on securing the quality of silicon and reducing the activated carbon cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素還元による多結晶シリコンの製造プロセス
を示す模式図である。
FIG. 1 is a schematic view showing a manufacturing process of polycrystalline silicon by hydrogen reduction.

【図2】赤外線分光分析による一般的な測定原理を説明
するためのグラフである。
FIG. 2 is a graph for explaining a general measurement principle by infrared spectroscopic analysis.

【図3】本発明法の根拠となる事実を示すグラフであ
る。
FIG. 3 is a graph showing the facts underlying the method of the present invention.

【図4】本発明法の実施に適した測定系の概略構成図で
ある。
FIG. 4 is a schematic configuration diagram of a measurement system suitable for carrying out the method of the present invention.

【図5】総ピーク値の求め方を説明するためのグラフで
ある。
FIG. 5 is a graph for explaining how to obtain a total peak value.

【図6】本発明法の精度を示すグラフである。FIG. 6 is a graph showing the accuracy of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 測定セル 2 セル窓 3 光源 4 分光分析装置 5 演算装置 6 還元炉 7 吸着塔 1 Measurement Cell 2 Cell Window 3 Light Source 4 Spectroscopic Analyzer 5 Computing Device 6 Reduction Furnace 7 Adsorption Tower

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素による還元反応により多結晶シリコ
ンを製造する際に生じる排ガスを活性炭に通し、活性炭
により水素ガスを精製して前記還元反応に再使用する多
結晶シリコンの製造において、精製された水素ガスを赤
外線分光分析して、塩化水素ガス吸収波数近傍の特定波
数領域で測定された吸収波形の総ピーク値から前記水素
ガス中の塩化水素ガス濃度を求めることを特徴とする多
結晶シリコンの製造における塩化水素ガス分析方法。
1. Purification in the production of polycrystalline silicon in which exhaust gas produced when producing polycrystalline silicon by reduction reaction with hydrogen is passed through activated carbon, hydrogen gas is purified by activated carbon and reused in the reduction reaction. Infrared spectroscopic analysis of hydrogen gas, polycrystalline silicon characterized by obtaining the hydrogen chloride gas concentration in the hydrogen gas from the total peak value of the absorption waveform measured in a specific wave number region near the hydrogen chloride gas absorption wave number Hydrogen chloride gas analysis method in manufacturing.
【請求項2】 前記特定波数領域が3000〜2900
cm-1であることを特徴とする請求項1に記載の塩化水
素ガス分析方法。
2. The specific wave number region is 3000 to 2900.
The method for analyzing hydrogen chloride gas according to claim 1, wherein the method is cm −1 .
JP8738694A 1994-03-31 1994-03-31 Method for analyzing hydrogen chloride gas in producing polycrystalline silicon Pending JPH07277720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8738694A JPH07277720A (en) 1994-03-31 1994-03-31 Method for analyzing hydrogen chloride gas in producing polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8738694A JPH07277720A (en) 1994-03-31 1994-03-31 Method for analyzing hydrogen chloride gas in producing polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPH07277720A true JPH07277720A (en) 1995-10-24

Family

ID=13913460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8738694A Pending JPH07277720A (en) 1994-03-31 1994-03-31 Method for analyzing hydrogen chloride gas in producing polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPH07277720A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241401B2 (en) 2010-11-02 2012-08-14 Mitsubishi Polycrystalline Silicon America Corporation (MIPSA) Apparatus and method for producing purified hydrogen gas by a pressure swing adsorption processes
JP2015081215A (en) * 2013-10-23 2015-04-27 信越化学工業株式会社 Method for producing polycrystalline silicon
JP2019522195A (en) * 2016-06-25 2019-08-08 ハイダック エレクトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for monitoring the quality of a gas phase medium
CN111279456A (en) * 2017-10-27 2020-06-12 奈克斯沃夫有限公司 Method and apparatus for continuous vapor deposition of silicon on a substrate
CN114014322A (en) * 2021-11-30 2022-02-08 江苏鑫华半导体材料科技有限公司 Method for improving purity of polycrystalline silicon
WO2023106196A1 (en) * 2021-12-10 2023-06-15 株式会社堀場製作所 Analysis device and analysis method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241401B2 (en) 2010-11-02 2012-08-14 Mitsubishi Polycrystalline Silicon America Corporation (MIPSA) Apparatus and method for producing purified hydrogen gas by a pressure swing adsorption processes
US8431082B2 (en) 2010-11-02 2013-04-30 Mitsubishi Polycrystalline Silicon America Corporation (MIPSA) Apparatus and method for producing purified hydrogen gas by a pressure swing adsorption processes
JP2015081215A (en) * 2013-10-23 2015-04-27 信越化学工業株式会社 Method for producing polycrystalline silicon
WO2015059919A1 (en) * 2013-10-23 2015-04-30 信越化学工業株式会社 Method for manufacturing polycrystalline silicon
JP2019522195A (en) * 2016-06-25 2019-08-08 ハイダック エレクトロニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for monitoring the quality of a gas phase medium
CN111279456A (en) * 2017-10-27 2020-06-12 奈克斯沃夫有限公司 Method and apparatus for continuous vapor deposition of silicon on a substrate
JP2021501261A (en) * 2017-10-27 2021-01-14 ネックスヴァーフェ・ゲー・エム・ベー・ハーNexwafe Gmbh Methods and equipment for continuous deposition of silicon on a substrate
US11862462B2 (en) 2017-10-27 2024-01-02 Nexwafe Gmbh Method and apparatus for the continuous vapor deposition of silicon on substrates
CN114014322A (en) * 2021-11-30 2022-02-08 江苏鑫华半导体材料科技有限公司 Method for improving purity of polycrystalline silicon
WO2023106196A1 (en) * 2021-12-10 2023-06-15 株式会社堀場製作所 Analysis device and analysis method

Similar Documents

Publication Publication Date Title
Pierce et al. An automated technique for the sub-microgram determination of selenium and arsenic in surface waters by atomic absorption spectroscopy
DE69635688D1 (en) Respiratory gas sampling bag and gas measuring device
Neubauer et al. The benefits of a dynamic reaction cell to remove carbon-and chloride-based spectral interferences by ICP-MS
JPH07277720A (en) Method for analyzing hydrogen chloride gas in producing polycrystalline silicon
EP2969173B1 (en) Fluidized bed gas decomposition reactor with feedback control using raman spectrometry
JP5221881B2 (en) Gas analyzer
CN1225654C (en) Method for measuring concentration of water in argon, hydrogen, nitrogen and helium by means of ionization mobility spectrometry
JP2019113357A (en) Analysis method and analysis device
JP3599599B2 (en) Gas concentration analyzer
JP4211983B2 (en) Method and apparatus for measuring F2 gas concentration
Field et al. Photoreduction of hydrogen peroxide by hydrogen
JP2005509141A5 (en)
JP2007057371A (en) Quantitative analyzing method of gas component contained in fluorine gas and quantitative analyzer used therein
Faguy et al. Real-time polarization modulation in situ infrared spectroscopy applied to the study of atmospheric corrosion
US5102806A (en) Method for analyzing fluid by multi-fluid modulation mode
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen
JP2003028852A (en) Analyzer for element in sample
CN111413291A (en) Infrared spectrum quantitative analysis method of gas fluoride
EP0319887B1 (en) Method and apparatus for analyzing fluids by multi-fluid modulation modes
JPH0777523A (en) Determination of trace phosphorus in chlorosilane
WO2021106601A1 (en) Method for measuring fluorine gas concentration in halogen-fluoride-containing gas using mass spectrometer
Matsumoto et al. Determination of phosphorus by gas-phase chemiluminescence after hydride generation
CN117347297B (en) Atmospheric NH 3 Analysis system, method, and readable storage medium
Chu et al. Determination of trace impurities in silicon and chlorosilanes by inductively coupled plasma atomic emission spectrometry and neutron activation analysis
Pilate et al. Determination of aluminium in aerosols by flameless atomic-absorption spectrometry