JPH0727734A - Device for measuring void ratio - Google Patents

Device for measuring void ratio

Info

Publication number
JPH0727734A
JPH0727734A JP19309093A JP19309093A JPH0727734A JP H0727734 A JPH0727734 A JP H0727734A JP 19309093 A JP19309093 A JP 19309093A JP 19309093 A JP19309093 A JP 19309093A JP H0727734 A JPH0727734 A JP H0727734A
Authority
JP
Japan
Prior art keywords
liquid
measuring
gas
electrode
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19309093A
Other languages
Japanese (ja)
Other versions
JP2870370B2 (en
Inventor
Mitsuo Kamiwano
満雄 上和野
Yasuo Shiraiwa
康雄 白岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuno Corp
Original Assignee
Tatsuno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuno Corp filed Critical Tatsuno Corp
Priority to JP19309093A priority Critical patent/JP2870370B2/en
Publication of JPH0727734A publication Critical patent/JPH0727734A/en
Application granted granted Critical
Publication of JP2870370B2 publication Critical patent/JP2870370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To speedily and correctly measure the ratio of a gas included in a fluid. CONSTITUTION:Within the body 1 of the device disposed, placing an inflow port 2 down and an outflow port 3 up, a plurality of cylindrical electrodes 4, 7, the insides of which are to be used for measurement and the outsides of which are to be used for reference, are provided, a two-phase flow of gas- phase is allowed to flow in between the measurement electrodes 4, the liquid only is allowed to flow in between the reference electrodes 7 through a mesh filter 5 for restraining the inflow of bubbles, and a void ratio is measured from the difference of capacitances of both fluids under the same temperature condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気液二相流に混合する
気体の体積割合いを測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the volume fraction of gas mixed with a gas-liquid two-phase flow.

【0002】[0002]

【従来の技術】体積計量型の流量計は広い流量範囲にわ
たって計測精度が良くかつ安定しているため、ガソリン
スタンドの給液装置等において広く使用されている。し
かしながら、この種の流量計においても、液体中に圧縮
流体である空気が気泡として混入したような場合には、
大きな誤差が生じるため、混入空気を分離する前処理装
置が不可欠となる。
2. Description of the Related Art Volumetric flowmeters are widely used in gas supply equipment of gas stations, etc. because they have good measurement accuracy and stability over a wide flow range. However, even in this type of flow meter, when air that is a compressed fluid is mixed as bubbles in the liquid,
Since a large error occurs, a pretreatment device for separating the mixed air is indispensable.

【0003】このための気泡分離手段としては、一般に
気泡の浮力を利用する方式と遠心力を利用する方式が存
在するが、前者については、連続管内の流体には適用し
難く、また後者については、給液時以外でも遠心力を作
用させておく必要があって、その動力費が嵩むほか、低
流速域では分離効果が乏しいといった問題を有してい
る。
As a bubble separating means for this purpose, there are generally a system utilizing buoyancy of bubbles and a system utilizing centrifugal force. The former is difficult to apply to fluid in a continuous pipe, and the latter is The centrifugal force needs to be applied even when the liquid is not supplied, which increases the power cost and has a problem that the separation effect is poor in the low flow rate region.

【0004】一方、液体と気体の誘電率の違いを静電容
量の差として測定し、これをもとに給液量の測定値を補
正するようにすることも実用化されているが、特に液体
としてガソリンや軽油を扱う流量計においては、その誘
電率が空気の2倍程度に過ぎないため、電極面が比較的
小さな対極型の誘電率測定装置では、ボイド率を精度高
く測定することが困難であるほか、液種や温度等による
誤差の補正を十分に行い得ないといった問題を有してい
る。
On the other hand, it has been put into practical use to measure the difference in dielectric constant between liquid and gas as the difference in electrostatic capacity and correct the measured value of the liquid supply amount based on this, but in particular, In a flow meter that handles gasoline or light oil as a liquid, its permittivity is only about twice that of air, so it is possible to accurately measure the void fraction with a counter electrode type permittivity measuring device with a relatively small electrode surface. In addition to being difficult, there is a problem that an error due to liquid type, temperature, etc. cannot be sufficiently corrected.

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような問
題に鑑みてなされたもので、その目的とするところは、
気液二相流に含有する気体を分離することなくその割合
いを迅速かつ正確に測定することのできる新たな装置を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its object is to:
It is an object of the present invention to provide a new device capable of quickly and accurately measuring the ratio of gas contained in a gas-liquid two-phase flow without separating it.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明はこの
ような課題を達成するためのボイド率測定装置として、
給液通路の一部に、気体侵入防止手段を介して流入した
液体の静電容量値を測定する比較基準電極と、気体侵入
防止手段を介さずに流入した気液二相流の静電容量値を
測定する測定電極とを配設し、同じ温度条件のもとでこ
れらの静電容量の差からボイド率を容易にかつ正確に測
定するようにしたものである。
That is, the present invention provides a void fraction measuring device for achieving the above-mentioned subject,
A reference electrode for measuring the capacitance value of the liquid that has flowed into the part of the liquid supply passage via the gas intrusion prevention means, and the capacitance of the gas-liquid two-phase flow that has flowed in without the gas intrusion prevention means. A measuring electrode for measuring a value is provided, and the void ratio can be easily and accurately measured from the difference in capacitance under the same temperature condition.

【0007】[0007]

【実施例】そこで以下に図示した実施例について説明す
る。図1は本発明の一実施例をなすボイド率測定装置を
示したものであり、また図3はこの装置を適用した給油
装置の一例を示したものである。
Embodiments Now, the embodiments shown in the drawings will be described. FIG. 1 shows a void fraction measuring device which is an embodiment of the present invention, and FIG. 3 shows an example of an oil supply device to which this device is applied.

【0008】図において符号1で示したボイド率測定装
置の本体1は、流入口2を下に、流出口3を上にした状
態で給液管路10中の給油ポンプ11と流量計13の間
に配設されている。
In the body 1 of the void fraction measuring device indicated by reference numeral 1 in the drawing, an oil supply pump 11 and a flow meter 13 in a liquid supply pipe 10 are arranged with an inlet 2 facing downward and an outlet 3 facing upward. It is arranged in between.

【0009】この装置本体1は、下端の流入口から、上
端の流出口3へと気液二相流が垂直上向きに流れること
ができるように、かつ圧力損失を無視することができる
よう給油管路10の流路断面積より小さくならないよう
な大きさの筒状体として構成され、その内部には、円筒
状をなす複数の測定電極4‥‥が内側に位置するよう
に、比較基準電極7が外側に位置するように、互いに本
体1の軸心を共通の軸心とし、かつ本体1の流路断面積
の略1/100以下の間隙を有するようにしてそれぞれ
上下のステイ9、9に一体的に固定されている。
The main body 1 of the apparatus is a fuel supply pipe so that the gas-liquid two-phase flow can flow vertically upward from the inlet at the lower end to the outlet 3 at the upper end and the pressure loss can be ignored. It is configured as a tubular body having a size that does not become smaller than the flow passage cross-sectional area of the passage 10, and inside the reference reference electrode 7 a plurality of cylindrical measurement electrodes 4 ... So that they are located on the outside, the axes of the main body 1 are common to each other, and the upper and lower stays 9 and 9 are provided with a gap of approximately 1/100 or less of the flow passage cross-sectional area of the main body 1 respectively. It is fixed integrally.

【0010】内側に位置して気液二相流の静電容量を測
定する上記複数の測定電極4‥‥は、気泡が付着しない
よう表面が活性処理され、また流れ方向の長さLについ
ては、電極内の全液について測定することができるよう
に、最大流速と測定間隔時間とを掛けた値以上の長さ、
例えば、最大流量が3m/sec、測定間隔が30ms
ecの場合には、この電極4の長さLを9cm以上に採
る。
The plurality of measuring electrodes 4, which are located inside and measure the electrostatic capacitance of the gas-liquid two-phase flow, have their surfaces activated to prevent bubbles from adhering, and the length L in the flow direction is , A length equal to or greater than the value obtained by multiplying the maximum flow velocity by the measurement interval time so that all the liquids in the electrode can be measured,
For example, the maximum flow rate is 3 m / sec, the measurement interval is 30 ms
In the case of ec, the length L of the electrode 4 is set to 9 cm or more.

【0011】他方、これらの外側に位置して液体のみの
静電容量を測定する円筒状の上記した比較基準電極7
は、本体1の内面に接するように、かつ最外側の測定電
極4との間に全流入液量の1/100程度の液が流入す
るよう、各測定電極4‥‥相互の間の間隙δの1/2程
度の間隙をおいて最外側の測定電極4の外側に取付けら
れる。
On the other hand, the above-mentioned comparative reference electrode 7 in a cylindrical shape which is located outside these and measures the capacitance of only the liquid.
Is a gap δ between the measuring electrodes 4 so that the liquid contacts about the inner surface of the main body 1 and about 1/100 of the total inflow liquid flows into the outermost measuring electrode 4. It is attached to the outer side of the outermost measurement electrode 4 with a gap of about 1/2.

【0012】この比較基準電極7の表面は、測定電極4
と同様に、気泡が付着しないよう親水性を高める処理が
施され、また最外側の測定電極4の入口側周面、つまり
下端部周面には、目開きが10乃至100μm、好まし
くは20乃至60μmの親水性処理を施したポリエステ
ルモノフィラメントよりなる複数のメッシュフィルタ5
‥‥が通液孔6を覆うようにして設けられ、最外側の測
定電極4と比較基準電極7との間に空気が流入するのを
阻止するように構成されている。
The surface of the comparison reference electrode 7 is the measurement electrode 4
Similarly to the above, a treatment for increasing the hydrophilicity is performed to prevent bubbles from adhering, and the inlet side peripheral surface of the outermost measurement electrode 4, that is, the lower end peripheral surface has an opening of 10 to 100 μm, preferably 20 to 100 μm. A plurality of mesh filters 5 made of polyester monofilament subjected to hydrophilic treatment of 60 μm
Are provided so as to cover the liquid passage holes 6 and are configured to prevent air from flowing between the outermost measurement electrode 4 and the comparative reference electrode 7.

【0013】そしてこのように、最外側の測定電極4の
下端に、メッシュフィルタ5を設けて気泡の流入を阻止
するように構成した場合、液圧が0.3乃至1.3kg
/cm2の範囲では、気泡の混入率が30%の液を供給
しても、図4に示したように、比較基準電極7への影響
は実際上無視することができる程度の0.8%以下に抑
えることができる。
When the mesh filter 5 is provided at the lower end of the outermost measuring electrode 4 to prevent the inflow of bubbles, the liquid pressure is 0.3 to 1.3 kg.
The range of / cm 2, even if mixing ratio of air bubbles to supply 30% of the liquid, as shown in FIG. 4, the extent to which it can effect on the comparison reference electrode 7 is practically negligible 0.8 % Or less.

【0014】これらの測定電極4と比較基準電極7は、
ボイド率計算手段21とリード線8を介して接続し、ほ
ぼ同一の温度条件のもとで検出した気泡を含む液体の静
電容量値と液体のみの静電容量値とからボイド率、つま
り全流路体積中で気相が占める体積の割合いを演算する
ように構成されている。
The measuring electrode 4 and the comparative reference electrode 7 are
It is connected to the void rate calculation means 21 via the lead wire 8 and the void rate, that is, the total void rate is calculated from the electrostatic capacitance value of the liquid containing bubbles and the electrostatic capacitance value of only the liquid detected under substantially the same temperature condition. It is configured to calculate the ratio of the volume occupied by the gas phase in the flow channel volume.

【0015】一方、図3における実液積算手段22は、
実供給液量を演算してその出力により表示と制御を行う
回路手段で、流量計13からの流量に比例したパルス信
号と、ボイド率計算手段21からの出力信号をもとに実
液量を積算して、表示手段25に積算値を表示するとと
もに、POS等の外部機器にこの信号を出力して供給液
量や、供給液量に応じた価格等を記憶させる一方、テン
キー23等から入力した設定値信号と積算値信号との一
致信号をモーター制御手段24に出力し、この出力信号
と給油ノズル15からの自動給油停止信号とによって給
油ポンプ12を停止させるように構成されている。
On the other hand, the actual liquid integrating means 22 in FIG.
The circuit means for calculating the actual supplied liquid amount and displaying and controlling the output by the output, calculates the actual liquid amount based on the pulse signal proportional to the flow rate from the flow meter 13 and the output signal from the void ratio calculating means 21. The integrated value is displayed and the integrated value is displayed on the display unit 25, and the signal is output to an external device such as a POS to store the supply liquid amount and the price according to the supply liquid amount, and the numeric keypad 23 or the like is used for input. A match signal between the set value signal and the integrated value signal is output to the motor control means 24, and the oil supply pump 12 is stopped by this output signal and the automatic oil supply stop signal from the oil supply nozzle 15.

【0016】つぎにこのように構成した装置の動作につ
いて説明する。いま図示しないノズル掛けから外した給
油ノズル15を自動車の給油口に挿入し、レバーを引く
ことにより給油ポンプ11を作動させて給油を開始する
と、ガソリンや軽油の吸引とともに外部より吸込んだ空
気がこれらの中に気泡として混入する。
Next, the operation of the thus constructed apparatus will be described. Now, insert the refueling nozzle 15 removed from the nozzle hook (not shown) into the refueling port of the automobile, and operate the refueling pump 11 by pulling the lever to start refueling. Mixed in as air bubbles.

【0017】この気泡を含んだ気液二相流がボイド率測
定装置本体1内に流入すると、その一部、つまり全体の
略99/100の量の気液二相流は多重円筒構造となし
た各測定電極4‥‥の間隙内に流入し、また略1/10
0の気液二相流は最外側の測定電極4に設けたメッシュ
フィルタ5により気泡を除去された上で、この測定電極
4と比較基準電極7との間に流入し、各測定電極4‥‥
と比較基準電極7とにより気泡を含んだ液体の静電容量
値と液体のみの静電容量値が検出される。そして、さら
にこれらの検出データはボイド率計算手段21に送ら
れ、その時々の液温におけるボイド率が演算される。
When the gas-liquid two-phase flow containing the bubbles flows into the void fraction measuring device main body 1, a part thereof, that is, the gas-liquid two-phase flow of about 99/100 of the whole has a multi-cylinder structure. Flow into the gap between the measuring electrodes 4 ...
The gas-liquid two-phase flow of 0 has its bubbles removed by the mesh filter 5 provided on the outermost measurement electrode 4, and then flows between the measurement electrode 4 and the comparative reference electrode 7, and each measurement electrode 4 ... ...
And the comparison reference electrode 7 detect the capacitance value of the liquid containing bubbles and the capacitance value of only the liquid. Then, these detected data are further sent to the void rate calculation means 21 to calculate the void rate at the liquid temperature at that time.

【0018】いま、測定電極4の完全空気中における静
電容量測定値をCA、完全液体中における静電容量測定
値をCL、気液二相流における静電容量測定値をCM、
比較基準電極7の完全空気中における静電容量測定値を
BA、完全液体中における静電容量測定値をBL、気液
二相流における静電容量測定値をBM、比較基準電極7
の測定値の補正倍数をG、ボイド率をα、実液率をβ
(α+β=1)とすると、CL>CA BL>BA
であるからCL−CA=(BL−BA)G となるよう
にGを設定すると、 β=1−α=(CM−CA)/(CL−CA) =(CM−CA)/(BL−BA)G ‥‥(1) となる。
Now, the measured capacitance value of the measurement electrode 4 in the complete air is CA, the measured capacitance value of the measurement electrode 4 in the complete liquid is CL, and the measured capacitance value of the gas-liquid two-phase flow is CM.
BA is the capacitance measurement value of the reference electrode 7 in complete air, BL is the capacitance value in the complete liquid, BM is the capacitance value in the gas-liquid two-phase flow, and BM is the reference electrode.
G is the correction multiple of the measured value, α is the void ratio, and β is the actual liquid ratio.
If (α + β = 1), CL> CA BL> BA
Therefore, if G is set so that CL-CA = (BL-BA) G, β = 1−α = (CM-CA) / (CL-CA) = (CM-CA) / (BL-BA ) G ... It becomes (1).

【0019】そして、比較基準電極7には気泡が入らな
いように構成されているので、BL=BMとみなすこと
ができるから、(1)式は、 β=1−α=(CM−CA)/(BM−BA)G ‥‥(2) となり、CA、BA、Gは初期校正時に調整固定し、測
定回路誤差は2式の分子、分母とも引算で消えてしま
い、温度補正はCMとBMが同じ温度環境にあって変化
分は相殺することができ、空気の圧力による誘電率の変
化は無視することができ、かつ液体の空気溶解による誘
電率も無視することができるので、ボイド率αは、測定
電極4の値CMと比較基準電極7の値BMとによって算
出することができる。
Since the comparison reference electrode 7 is constructed so that bubbles do not enter, it can be considered that BL = BM. Therefore, the equation (1) is expressed by β = 1-α = (CM-CA). / (BM-BA) G (2), CA, BA, and G are adjusted and fixed at the time of initial calibration, the measurement circuit error disappears by subtraction of the numerator and denominator of the two equations, and the temperature correction is CM. The changes in the BM can be canceled out in the same temperature environment, the change in the dielectric constant due to the pressure of air can be ignored, and the dielectric constant due to the air dissolution of the liquid can also be ignored. α can be calculated from the value CM of the measurement electrode 4 and the value BM of the comparison reference electrode 7.

【0020】このようにして算出されたボイド率αは、
ついで、ボイド率計算手段21から実液算出手段22に
出力され、流量計13による測定液量をこのボイド率に
より補正した上、その実液積算量を表示手段25上に表
示する一方、キーボード23から入力した設定量とこの
実液積算量とを比較し、一致信号をもって給油モータ1
2を停止させる。
The void ratio α thus calculated is
Then, the void rate calculating means 21 outputs the actual fluid calculating means 22 to the actual liquid calculating means 22 to correct the amount of the liquid measured by the flowmeter 13 by this void rate, and the actual liquid integrated amount is displayed on the displaying means 25 while the keyboard 23 is used. The input set amount is compared with this actual liquid integrated amount, and a refueling motor 1
Stop 2.

【0021】なお、以上はガソリンスタンド等の給油装
置に適用した装置によって本発明を説明したものである
が、本発明に係るボイド率測定装置は、これ以外にメタ
ノールとガソリンとの混合比測定制御装置、コンタミ監
視機能つきの流量測定装置、その他の化学プラント等で
用いられる流量計測制御装置、さらには液体、粉粒体な
どの混合機における混合状態の測定装置等にも適用する
ことができる。
Although the present invention has been described above with reference to an apparatus applied to an oil supply apparatus such as a gas station, the void ratio measuring apparatus according to the present invention is not limited to this, and the mixing ratio measurement control of methanol and gasoline is performed. The present invention can also be applied to an apparatus, a flow rate measuring apparatus with a contamination monitoring function, a flow rate measuring and controlling apparatus used in other chemical plants, and a measuring apparatus for measuring a mixed state in a mixer for liquids, powders, and the like.

【0022】[0022]

【発明の効果】以上述べたように本発明によれば、給液
通路の一部に、気体侵入防止手段を介して流入した液体
の静電容量値を測定する比較基準電極と、気体侵入防止
手段を介さずに流入した気液二相流の静電容量値を測定
する測定電極を配設したので、ほぼ同一温度条件のもと
で気液二相流と液流との間の静電容量を測定することが
できて、ボイド率測定手段を単純化することができると
ともに、その測定精度を一段と向上させることができ
る。
As described above, according to the present invention, the reference electrode for measuring the capacitance value of the liquid that has flowed into the part of the liquid supply passage through the gas invasion preventing means and the gas invasion prevention. Since a measuring electrode for measuring the capacitance value of the gas-liquid two-phase flow that has not flowed through the means is installed, the electrostatic capacitance between the gas-liquid two-phase flow and the liquid flow is set under almost the same temperature condition. The capacity can be measured, the void ratio measuring means can be simplified, and the measurement accuracy can be further improved.

【0023】しかもこの装置を、測定電極を内側に比較
基準電極を外側に配設したので、側壁面を避けて気泡が
中心に集まり易い性質を利用して気液二相流と気泡を含
まない液との分離をより効果的に行わせることができ
る。
Moreover, since the measuring electrode is arranged inside and the comparative reference electrode is arranged outside in this device, the gas-liquid two-phase flow and the bubble are not included by utilizing the property that the bubbles are easily collected in the center while avoiding the side wall surface. The separation from the liquid can be performed more effectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例をなす装置を断面で示した側
面図である。
FIG. 1 is a cross-sectional side view of an apparatus that is an embodiment of the present invention.

【図2】(a)(b)はそれぞれ図1のA−A線及びB
−B線の断面図である。
2A and 2B are lines AA and B in FIG. 1, respectively.
It is a sectional view taken along the line B.

【図3】同上装置を備えた給油装置の一例を示した構成
図である。
FIG. 3 is a configuration diagram showing an example of an oil supply device including the same device.

【図4】液一定流量中における混合空気量とボイド率と
の関係を示した図である。
FIG. 4 is a diagram showing a relationship between a mixed air amount and a void ratio in a constant liquid flow rate.

【符号の説明】 1 ボイド率測定装置本体 4 測定電極 5 メッシュフィルタ 6 通液孔 7 比較基準電極 10 給油管 11 給油ポンプ 13 流量計 15 給油ノズル[Explanation of symbols] 1 Void rate measuring device main body 4 Measuring electrode 5 Mesh filter 6 Liquid passage hole 7 Comparative reference electrode 10 Oil supply pipe 11 Oil supply pump 13 Flow meter 15 Oil supply nozzle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 給液通路の一部に、気体侵入防止手段を
介して流入した液体の静電容量値を測定する比較基準電
極と、該気体侵入防止手段を介さずに流入した気液二相
流の静電容量値を測定する測定電極とを配設したことを
特徴とするボイド率測定装置。
1. A comparison reference electrode for measuring the electrostatic capacitance value of a liquid that has flowed into a part of the liquid supply passage via a gas intrusion prevention means, and a gas-liquid two that has flowed in without going through the gas intrusion prevention means. A void fraction measuring device, comprising: a measuring electrode for measuring a capacitance value of a phase flow.
【請求項2】 上記測定電極と上記比較基準電極をとも
に筒状に形成し、かつ上記測定電極を内側に、上記比較
基準電極を外側にして共通の軸心を有するよう多重円筒
状に配設したことを特徴とする請求項1記載のボイド率
測定装置。
2. The measurement electrode and the comparison reference electrode are both formed in a cylindrical shape, and the measurement electrode is arranged inside and the comparison reference electrode is arranged outside so as to have a common axis center in a multiple cylindrical shape. The void fraction measuring device according to claim 1, wherein
【請求項3】 上記比較基準電極に接する流路の始端部
に、気泡の侵入を阻止するメッシュ状のフィルタを配設
したことを特徴とする請求項1記載のボイド率測定装
置。
3. The void fraction measuring device according to claim 1, wherein a mesh-shaped filter for preventing the invasion of air bubbles is arranged at the starting end of the flow path in contact with the comparative reference electrode.
JP19309093A 1993-07-08 1993-07-08 Void fraction measuring device Expired - Lifetime JP2870370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19309093A JP2870370B2 (en) 1993-07-08 1993-07-08 Void fraction measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19309093A JP2870370B2 (en) 1993-07-08 1993-07-08 Void fraction measuring device

Publications (2)

Publication Number Publication Date
JPH0727734A true JPH0727734A (en) 1995-01-31
JP2870370B2 JP2870370B2 (en) 1999-03-17

Family

ID=16302070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19309093A Expired - Lifetime JP2870370B2 (en) 1993-07-08 1993-07-08 Void fraction measuring device

Country Status (1)

Country Link
JP (1) JP2870370B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406911A (en) * 2003-10-06 2005-04-13 Ricardo Inc Aeration sensing device
JP2010210269A (en) * 2009-03-06 2010-09-24 Nippon Soken Inc Air bubble mixing ratio sensor and oil level detector equipped with same
JP2013061152A (en) * 2011-09-10 2013-04-04 Denso Corp Fuel property detection device
US9891185B2 (en) 1998-10-08 2018-02-13 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
WO2023100793A1 (en) * 2021-11-30 2023-06-08 京セラ株式会社 Bubble fraction meter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103168231B (en) * 2010-09-03 2017-03-15 洛斯阿拉莫斯国家安全股份有限公司 Integrated sound phase separator and heterogeneous fluid composition monitoring device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9891185B2 (en) 1998-10-08 2018-02-13 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
GB2406911A (en) * 2003-10-06 2005-04-13 Ricardo Inc Aeration sensing device
GB2406911B (en) * 2003-10-06 2006-10-18 Ricardo Inc Aeration sensing device
JP2010210269A (en) * 2009-03-06 2010-09-24 Nippon Soken Inc Air bubble mixing ratio sensor and oil level detector equipped with same
JP2013061152A (en) * 2011-09-10 2013-04-04 Denso Corp Fuel property detection device
WO2023100793A1 (en) * 2021-11-30 2023-06-08 京セラ株式会社 Bubble fraction meter

Also Published As

Publication number Publication date
JP2870370B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
EP1144961B1 (en) Droplet counter for low flow rates
RU2706521C1 (en) Fluid meter
CN102959364A (en) Flow measurement structure and flow measurement device
JPH0727734A (en) Device for measuring void ratio
EP0670476B1 (en) A fluid sensor
EP0987526A2 (en) Adaptable gas meter
JPH0464414B2 (en)
US20040244498A1 (en) Fluid flow meter with fluid flow sensor and oscillation sensor
WO2000018487A1 (en) Filtration device and an indicating apparatus and method for a filtration device
JP2941255B1 (en) Flow measurement device
CN211877140U (en) Ultrasonic flow measuring equipment and gas monitoring system
JP4467762B2 (en) Fluid metering device
US4364269A (en) Flowmeter for determining average rate of flow of liquid in a conduit
RU2057922C1 (en) Set for measuring productivity of wells
CN112666045A (en) System device and method for online continuous measurement of pH value and density
CN111982222A (en) Multi-well oil-gas-water three-phase metering device and metering method
JP2842960B2 (en) Liquid volume measuring device
EP0210947B1 (en) Device for detecting the presence of a gas
CN216524159U (en) Online real flow self-calibration gas-liquid two-phase flow metering device
JP2764233B2 (en) Liquid flow meter
JPH0326420Y2 (en)
CN216081610U (en) Precession vortex flowmeter capable of measuring multiphase flow
US11179083B2 (en) Physiological fluid collection bag with instant data transmission
KR20030063554A (en) Differential pressure flowmeter
JPH0320733Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981201