JPH07277295A - Rocket control device - Google Patents

Rocket control device

Info

Publication number
JPH07277295A
JPH07277295A JP6074524A JP7452494A JPH07277295A JP H07277295 A JPH07277295 A JP H07277295A JP 6074524 A JP6074524 A JP 6074524A JP 7452494 A JP7452494 A JP 7452494A JP H07277295 A JPH07277295 A JP H07277295A
Authority
JP
Japan
Prior art keywords
rocket
engine
signal
attitude
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6074524A
Other languages
Japanese (ja)
Other versions
JP3524576B2 (en
Inventor
Shigeru Ikeda
茂 池田
Shozo Tani
正三 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Original Assignee
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan, Mitsubishi Heavy Industries Ltd filed Critical National Space Development Agency of Japan
Priority to JP07452494A priority Critical patent/JP3524576B2/en
Publication of JPH07277295A publication Critical patent/JPH07277295A/en
Application granted granted Critical
Publication of JP3524576B2 publication Critical patent/JP3524576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PURPOSE:To prevent a rocket from falling onto the ground due to re-ignition and combustion if the rocket takes an abnormal position due to the failure of loaded equipment when a satellite is launched to the desired orbit by a two- stage rocket engine. CONSTITUTION:After a two-stage engine rocket is launched and first combustion is completed, the rocket enters an elliptical orbit. Then the position of the airframe is detected by an inertia sensor unit 12 and this position information is fed to an inertial guidance calculator 13. The angular velocity of the airframe is detected by a rate gyro 14 and a rate gyro signal is converted into a digital signal by a data interface unit 15 and fed to the inertial guidance calculator 13. The inertial guidance calculator 13 fetches the position information and the rate gyro signal based on the position information and the rate gyro signal to detect any abnormal position, and halts re-ignition of the engine if an abnormal position signal is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2段式ロケットエンジ
ンを初回燃焼と再着火燃焼の2回に分けて燃焼させる燃
焼方式を用いたロケットにおいて、初回燃焼後、機体姿
勢の異常の有無を判断して再着火制御を行なうロケット
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rocket using a combustion system in which a two-stage rocket engine is burned in two times, first combustion and reignition combustion. The present invention relates to a rocket control device that determines and performs re-ignition control.

【0002】[0002]

【従来の技術】従来、ロケットの2段式ミッション(1
段+2段+衛星(ペイロード))では、2段エンジンを
初回燃焼と再着火燃焼の2回に分けて燃焼させることに
よって衛星を所望の軌道に投入するようにしている。こ
のように2段ロケットエンジンを2回に分けて燃焼させ
る理由は、ロケットの打上げ能力(所望の軌道に投入し
得る衛星の重量が標定となる)を向上させ得るからであ
る。例えば高度500Kmの円軌道に衛星を投入する場
合、再着火なしでは2段エンジンの初回燃焼終了時に高
度500Kmに達していなければならず、速度と共に必
要な高度を得るためにエネルギが必要となる。一方、再
着火方式を採用すれば、遠地点高度500Kmの楕円軌
道に一旦投入した後、遠地点で再着火することにより円
軌道に投入できるので、トータルエネルギが同じであれ
ば初回燃焼終了時の高度が低い分だけ重い衛星を打上げ
ることができる。
2. Description of the Related Art Conventionally, two-stage rocket missions (1
In the stage +2 stage + satellite (payload), the satellite is put into a desired orbit by burning the 2-stage engine in two times, the first combustion and the re-ignition combustion. The reason why the two-stage rocket engine is burned in two times in this way is that the launch capability of the rocket (the weight of the satellite that can be put into a desired orbit becomes the standard) can be improved. For example, when the satellite is thrown into a circular orbit at an altitude of 500 km, the altitude must reach 500 km at the end of the first combustion of the two-stage engine without re-ignition, and energy is required to obtain the required altitude along with the speed. On the other hand, if the re-ignition method is adopted, it can be put into an elliptical orbit at an apogee altitude of 500 Km and then re-ignited at an apogee to be put into a circular orbit. It is possible to launch satellites that are heavier by a lower amount.

【0003】しかして、上記のように2段エンジンを初
回燃焼と再着火燃焼の2回に分けて燃焼させることによ
り衛星を所望の軌道に投入する方式において、再着火燃
焼前の機体姿勢に異常が生じた場合、そのまま着火する
と本来増速すべきところを減速してしまい、ロケットが
地上へ落下する可能性がある。
However, in the system in which the satellite is put into a desired orbit by burning the two-stage engine in two times, the first combustion and the re-ignition combustion as described above, the attitude of the body before the re-ignition combustion is abnormal. If it occurs, if it is ignited as it is, it will decelerate where it should be accelerated, and the rocket may fall to the ground.

【0004】このため従来では、飛行経路作成時に極
力、地上落下区域の範囲が広がらないように工夫するこ
と、姿勢異常発生の要因となる搭載機器の故障発生確率
を見直すことで解決するようにしている。
For this reason, conventionally, the problem has been solved by devising a method of preventing the range of the ground drop area from expanding as much as possible when creating a flight route, and by reviewing the failure occurrence probability of the onboard equipment that causes the attitude abnormality. There is.

【0005】[0005]

【発明が解決しようとする課題】上記従来の方法では、
地上落下の発生確率を下げることに限界があり、地上落
下そのものを防止する対策が必要となる。本発明は上記
実情に鑑みてなされたもので、2段ロケットエンジンを
初回燃焼と再着火燃焼の2回に分けて燃焼させる方式を
用いて衛星を所望の軌道に投入する場合において、搭載
機器の故障等により異常姿勢を発生した際の再着火燃焼
によるロケットの地上落下を確実に防止し得るロケット
制御装置を提供することを目的とする。
SUMMARY OF THE INVENTION In the above conventional method,
There is a limit to reducing the probability of a ground drop, and it is necessary to take measures to prevent the ground drop itself. The present invention has been made in view of the above circumstances, and when a satellite is thrown into a desired orbit by using a method of burning a two-stage rocket engine in two times, first combustion and reignition combustion, An object of the present invention is to provide a rocket control device that can reliably prevent a rocket from falling to the ground due to re-ignition combustion when an abnormal attitude occurs due to a failure or the like.

【0006】[0006]

【課題を解決するための手段】本発明は、2段式ロケッ
トエンジンを初回燃焼と再着火燃焼の2回に分けて燃焼
させる方式を用いて衛星を所望の軌道に投入するロケッ
ト制御装置において、エンジン再着火前の慣性飛行中、
レート・ジャイロ出力信号及び姿勢センサ出力信号に基
づいて姿勢異常の有無を検出し、姿勢異常が検出されな
かった場合は所定のシーケンスに従ってエンジン点火信
号を出力し、姿勢異常信号が検出された場合は上記エン
ジン点火信号の出力を中止するようにしたものである。
DISCLOSURE OF THE INVENTION The present invention relates to a rocket control device for launching a satellite into a desired orbit by using a system in which a two-stage rocket engine is burnt in two times, namely, first combustion and reignition combustion. During inertial flight before engine reignition,
The presence / absence of a posture abnormality is detected based on the rate / gyro output signal and the posture sensor output signal.When no posture abnormality is detected, an engine ignition signal is output according to a predetermined sequence. When a posture abnormality signal is detected, The output of the engine ignition signal is stopped.

【0007】[0007]

【作用】2段式エンジンのロケットが打ち上げられ、初
回燃焼を終了すると、ロケットは楕円軌道に投入され
る。このエンジン再着火前の慣性飛行中において、レー
ト・ジャイロ出力信号及び姿勢センサ出力信号に基づい
て姿勢異常の有無が検出される。姿勢異常が検出された
場合は、エンジン点火信号の出力が禁止され、エンジン
の再着火は行なわれない。ロケットが楕円軌道に投入さ
れている状態で、再着火を中止した場合は、ロケットは
姿勢が異常であってもその軌道上を飛行し続けることに
なり、地上への落下が防止される。従って、この楕円軌
道上において、再着火後に計画されている衛星分離等の
シーケンスを実行することができる。
When the rocket of the two-stage engine is launched and the initial combustion is completed, the rocket is thrown into an elliptical orbit. During inertial flight before re-ignition of the engine, presence or absence of attitude abnormality is detected based on the rate gyro output signal and the attitude sensor output signal. When the posture abnormality is detected, the output of the engine ignition signal is prohibited and the engine is not re-ignited. If the rocket is placed in an elliptical orbit and re-ignition is stopped, the rocket will continue to fly in its orbit even if the attitude is abnormal, and it will be prevented from falling to the ground. Therefore, on this elliptical orbit, it is possible to execute a sequence such as satellite separation planned after re-ignition.

【0008】[0008]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。図1は慣性誘導計算機(IGP)による姿勢異
常検出と再着火中止処理に関連する機能インタフェース
部分のみを示したものである。図1において、11はロ
ケットの機体/エンジン部で、この機体/エンジン部1
1の機体姿勢は、慣性センサ・ユニット(Inertial M
easurement Unit )12により検出される。この慣性
センサ・ユニット12は、姿勢検出用センサ(ジャイ
ロ)と加速度計が組み込まれており、ロケットの姿勢検
出及び航法計算(現在位置と速度の算出)に必要な情報
を搭載計算機、即ち、慣性誘導計算機(IGP)13に
出力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows only the functional interface portion related to the attitude abnormality detection and re-ignition stop processing by the inertial guidance computer (IGP). In FIG. 1, reference numeral 11 denotes a rocket body / engine portion, and this body / engine portion 1
The attitude of Unit 1 is the inertial sensor unit (Inertial M
detection unit 12). This inertial sensor unit 12 has a built-in attitude detection sensor (gyro) and accelerometer, and is equipped with information necessary for attitude detection and navigation calculation (calculation of the current position and speed) of the rocket, that is, inertial sensor. Output to the guidance computer (IGP) 13.

【0009】また、上記機体/エンジン部11の機体角
速度は、レート・ジャイロ14により検出され、レート
・ジャイロ信号としてデータ・インタフェース・ユニッ
ト15に送られる。このデータ・インタフェース・ユニ
ット15は、A/D(アナログ/ディジタル)変換及び
D/A(ディジタル/アナログ)変換機能を備え、上記
レート・ジャイロ14からのレート・ジャイロ信号をデ
ジタル信号に変換して慣性誘導計算機13に出力する。
この慣性誘導計算機13は、初回燃焼終了後、慣性セン
サ・ユニット12からの姿勢情報及びデータ・インタフ
ェース・ユニット15からのレート・ジャイロ信号に基
づいて姿勢異常の有無を検出し、異常が無ければ所定の
シーケンスに従ってエンジン点火信号をデータ・インタ
フェース・ユニット15に出力する。このデータ・イン
タフェース・ユニット15は、慣性誘導計算機13から
のエンジン点火信号をアナログ信号に変換して機体/エ
ンジン部11に出力する。また、上記慣性誘導計算機1
3は、姿勢情報及びレート・ジャイロ信号から姿勢異常
を検出すると、エンジン点火信号の出力を中止する。こ
の再着火中止処理を行なった場合、再着火後に計画され
ているシーケンス例えば衛星分離は実行される。
The body angular velocity of the body / engine section 11 is detected by the rate gyro 14 and sent to the data interface unit 15 as a rate gyro signal. The data interface unit 15 has an A / D (analog / digital) conversion function and a D / A (digital / analog) conversion function, and converts the rate gyro signal from the rate gyro 14 into a digital signal. Output to the inertial guidance computer 13.
This inertial guidance computer 13 detects the presence or absence of an attitude abnormality based on the attitude information from the inertial sensor unit 12 and the rate gyro signal from the data interface unit 15 after the completion of the first combustion. The engine ignition signal is output to the data interface unit 15 according to the sequence of. The data interface unit 15 converts the engine ignition signal from the inertial guidance computer 13 into an analog signal and outputs it to the fuselage / engine section 11. In addition, the inertial guidance calculator 1
3 detects the attitude abnormality from the attitude information and the rate gyro signal, and stops the output of the engine ignition signal. When this re-ignition stop processing is performed, the planned sequence such as satellite separation is executed after the re-ignition.

【0010】次に上記実施例の動作を説明する。2段式
エンジンのロケットが打ち上げられ、初回燃焼を終了す
ると、ロケット即ち図2に示す機体11aは、楕円軌道
に投入される。このとき慣性センサ・ユニット12によ
り機体姿勢が検出され、その姿勢情報が慣性誘導計算機
13へ送られる。また、レート・ジャイロ14により機
体角速度が検出され、レート・ジャイロ信号がデータ・
インタフェース・ユニット15によりデジタル信号に変
換されて慣性誘導計算機13へ送られる。この慣性誘導
計算機13は、上記姿勢情報及びレート・ジャイロ信号
に基づいて図3のフローチャートに示す処理を実行す
る。
Next, the operation of the above embodiment will be described. When the two-stage engine rocket is launched and the initial combustion is completed, the rocket, that is, the vehicle body 11a shown in FIG. 2 is thrown into an elliptical orbit. At this time, the inertial sensor unit 12 detects the attitude of the machine body, and the attitude information is sent to the inertial guidance computer 13. In addition, the rate gyro 14 detects the aircraft angular velocity, and the rate gyro signal is converted into data.
It is converted into a digital signal by the interface unit 15 and sent to the inertial guidance computer 13. The inertial guidance computer 13 executes the process shown in the flowchart of FIG. 3 based on the attitude information and the rate gyro signal.

【0011】慣性誘導計算機13は、ステップA1 に示
すように上記姿勢情報及びレート・ジャイロ信号を取り
込み、ステップA2 において次に示す姿勢異常の検出を
行なう。即ち、 .慣性センサ・ユニット12からの姿勢情報のリミッ
ト・チェック .慣性センサ・ユニット12からの姿勢情報とレート
・ジャイロ14からのレート・ジャイロ信号との相対比
較を行ない、図2に示すように姿勢基準に対する機体姿
勢との角度θB 、及び目標姿勢との角度θG を求め、正
常範囲内か否かのチェック .姿勢角誤差計算結果のリミット・チェックを行な
う。そして、上記ステップA3 において、上記〜の
何れかの方法で異常が検出されたか否かを判定し、異常
がない場合には所定のシーケンスに従ってエンジン点火
信号をデータ・インタフェース・ユニット15に出力す
る。このデータ・インタフェース・ユニット15は、慣
性誘導計算機13からのエンジン点火信号をアナログ信
号に変換して機体/エンジン部11に出力する。
The inertial guidance computer 13 fetches the attitude information and the rate gyro signal as shown in step A1, and detects the following attitude abnormality in step A2. That is ,. Limit check of attitude information from inertial sensor unit 12. The attitude information from the inertial sensor unit 12 and the rate gyro signal from the rate gyro 14 are relatively compared, and as shown in FIG. 2, the angle θB with respect to the attitude reference with respect to the attitude reference and the angle θG with the target attitude. And check if it is within the normal range. Performs a limit check of the attitude angle error calculation result. Then, in step A3, it is determined whether or not an abnormality is detected by any of the above methods, and if there is no abnormality, an engine ignition signal is output to the data interface unit 15 according to a predetermined sequence. The data interface unit 15 converts the engine ignition signal from the inertial guidance computer 13 into an analog signal and outputs it to the fuselage / engine section 11.

【0012】また、上記ステップA3 で異常有りと判定
された場合は、ステップA4 に示すようにデータ・イン
タフェース・ユニット15へのエンジン点火信号の出力
を中止する。ロケットが楕円軌道に投入されている状態
で、エンジンの再着火を中止した場合、ロケットはその
軌道上を飛行し続ける。そして、上記再着火中止処置を
行なった場合、ロケットが楕円軌道上を飛行している状
態で、再着火後に計画されている例えば衛星分離等のシ
ーケンスが実行される。
When it is determined that there is an abnormality in step A3, the output of the engine ignition signal to the data interface unit 15 is stopped as shown in step A4. If the engine is stopped in the elliptical orbit and the engine is reignited, the rocket will continue to fly in that orbit. When the re-ignition stop procedure is performed, a sequence such as satellite separation, which is planned after the re-ignition, is executed while the rocket is flying in an elliptical orbit.

【0013】[0013]

【発明の効果】以上詳記したように本発明によれば、2
段式ロケットエンジンを初回燃焼と再着火燃焼の2回に
分けて燃焼させる方式を用いて衛星を所望の軌道に投入
する場合、再着火前の慣性飛行中、レート・ジャイロ信
号及び姿勢情報に基づいて姿勢異常の有無を検出し、姿
勢異常が検出された場合にエンジン再着火信号の出力を
禁止するようにしたので、搭載機器の故障等により姿勢
異常が発生した際の再着火燃焼によるロケットの地上落
下の発生確率を大幅に下げることができる。
As described in detail above, according to the present invention, 2
When launching a satellite into a desired orbit by using the method of burning a two-stage rocket engine in two times, first combustion and re-ignition combustion, based on rate gyro signals and attitude information during inertial flight before re-ignition The presence or absence of attitude abnormalities is detected by the system and the output of the engine re-ignition signal is prohibited when the attitude abnormalities are detected. The probability of a ground drop can be greatly reduced.

【0014】また、ロケット自身で異常故障診断及び処
置を行なうので、地上側からのロケットに対する指令等
は一切不要であり、運用上の影響が生じないという利点
もある。
Further, since the rocket itself performs abnormal fault diagnosis and treatment, there is no need for any command to the rocket from the ground side, and there is an advantage that no operational influence occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るロケット制御装置の構
成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a rocket controller according to an embodiment of the present invention.

【図2】同実施例におけるロケットの姿勢状態を示す
図。
FIG. 2 is a view showing the attitude state of the rocket in the same embodiment.

【図3】同実施例の動作を説明するフローチャート。FIG. 3 is a flowchart illustrating the operation of the embodiment.

【符号の説明】[Explanation of symbols]

11 機体/エンジン部 12 慣性センサ・ユニット 13 慣性誘導計算機 14 レート・ジャイロ 15 データ・インタフェース・ユニット 11 Airframe / Engine Section 12 Inertial Sensor Unit 13 Inertial Guidance Calculator 14 Rate Gyro 15 Data Interface Unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2段式ロケットエンジンを初回燃焼と再
着火燃焼の2回に分けて燃焼させる方式を用いて衛星を
所望の軌道に投入するロケット制御装置において、エン
ジン再着火前の慣性飛行中、レート・ジャイロ出力信号
及び姿勢センサ出力信号に基づいて姿勢異常の有無を検
出する姿勢異常検出手段と、この手段により姿勢異常が
検出されなかった場合は所定のシーケンスに従ってエン
ジン点火信号を出力し、姿勢異常信号が検出された場合
は上記エンジン点火信号の出力を中止する制御手段とを
具備したことを特徴とするロケット制御装置。
1. A rocket control device for injecting a satellite into a desired orbit by using a method in which a two-stage rocket engine is burned in two steps, namely, initial combustion and reignition combustion, in an inertial flight before engine reignition. , An attitude abnormality detection means for detecting the presence or absence of attitude abnormality based on the rate / gyro output signal and the attitude sensor output signal, and when no attitude abnormality is detected by this means, an engine ignition signal is output according to a predetermined sequence, A rocket control device comprising: a control means for stopping the output of the engine ignition signal when an attitude abnormality signal is detected.
JP07452494A 1994-04-13 1994-04-13 Rocket control device Expired - Fee Related JP3524576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07452494A JP3524576B2 (en) 1994-04-13 1994-04-13 Rocket control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07452494A JP3524576B2 (en) 1994-04-13 1994-04-13 Rocket control device

Publications (2)

Publication Number Publication Date
JPH07277295A true JPH07277295A (en) 1995-10-24
JP3524576B2 JP3524576B2 (en) 2004-05-10

Family

ID=13549798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07452494A Expired - Fee Related JP3524576B2 (en) 1994-04-13 1994-04-13 Rocket control device

Country Status (1)

Country Link
JP (1) JP3524576B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035422A (en) * 2021-10-09 2022-02-11 北京控制工程研究所 Heterogeneous gyroscope fault positioning and processing method based on multi-source information
WO2022116652A1 (en) * 2020-12-02 2022-06-09 西安航天动力研究所 Method for predicting structural response of liquid-propellant rocket engine to impact load

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022116652A1 (en) * 2020-12-02 2022-06-09 西安航天动力研究所 Method for predicting structural response of liquid-propellant rocket engine to impact load
CN114035422A (en) * 2021-10-09 2022-02-11 北京控制工程研究所 Heterogeneous gyroscope fault positioning and processing method based on multi-source information
CN114035422B (en) * 2021-10-09 2023-07-28 北京控制工程研究所 Heterogeneous gyroscope fault positioning and processing method based on multi-source information

Also Published As

Publication number Publication date
JP3524576B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
US9022323B2 (en) Salvaging and braking device for objects flying freely in space
US3088403A (en) Rocket assisted torpedo
US3726499A (en) Method of deploying a parachute by a rocket under low speed conditions
US7271713B2 (en) Digital automatic escape system
US4648568A (en) Emergency anti-torque control system and method for helicopters
JPH04274997A (en) Active rotary shaft control system for rotating spaceship
RU2702261C2 (en) Unmanned aerial vehicle
JPH07277295A (en) Rocket control device
RU2682944C1 (en) Method of placing unmanned aerial vehicle in high-attitude flight trajectory
EP0006126B1 (en) Spin activated safety circuit for spacecraft
US4538778A (en) Dual towline spin-recovery device
JPH0664598A (en) Three-axis oscillating type rocket test stand
Surendra et al. Recent developments of experimental winged rocket: autonomous guidance and control demonstration using parafoil
JP3248645B2 (en) Flight object attitude control device
McCarthy Jr et al. Development of the Apollo launch escape system.
Townsend Apollo experience report: launch escape propulsion subsystem
JP2000213894A (en) Launching device of missile
Itakura et al. Development and Ground Combustion Test of a Subscale Reusable Winged Rocket
JP3076798B1 (en) Guided flying object
Klinar et al. Space Shuttle flight control system
JPH04222400A (en) Airframe with device for automatic distruction
GB2623183A (en) Ejection seat active roll correction
JPH04262995A (en) Unmanned flying body provided with pulse jet engine
Schmidgall Space Shuttle Ascent Aborts
Mosier et al. Pegasus first mission-Flight results

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees