JPH07272967A - Formation of magnetic thin film - Google Patents

Formation of magnetic thin film

Info

Publication number
JPH07272967A
JPH07272967A JP6477594A JP6477594A JPH07272967A JP H07272967 A JPH07272967 A JP H07272967A JP 6477594 A JP6477594 A JP 6477594A JP 6477594 A JP6477594 A JP 6477594A JP H07272967 A JPH07272967 A JP H07272967A
Authority
JP
Japan
Prior art keywords
substrate
thin film
magnetic
film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6477594A
Other languages
Japanese (ja)
Inventor
Tetsuo Kobayashi
哲夫 小林
Masayoshi Kagawa
昌慶 香川
Fumiomi Ueda
文臣 上田
Koji Okazaki
幸司 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6477594A priority Critical patent/JPH07272967A/en
Publication of JPH07272967A publication Critical patent/JPH07272967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form a magnetic thin film which has a good soft magnetic characteristic, whose film thickness is changed little and which is stable by a method wherein the face of a substrate is insulated completely from a ground and it is set to a potential which is nearly identical to a plasma potential. CONSTITUTION:A substrate 14 is housed in an insulating holder 24 which can be insulated from a substrate electrode 12 and which is composed of alumina, zirconia, quartz, glass or the like, and it is installed on a substrate tray 13 together with a glass substrate 15 for evaluation of a film thickness and of a magnetic characteristic. In addition, a permanent magnet which is used to apply a magnetic field is arranged on the substrate tray 13. Then, a vacuum tank is evacuated to a high vacuum by means of a vacuum evacuation pump 19. After that, while an Ar gas pressure inside the vacuum tank is being kept at 0.5 mTorr or lower, an electric discharge is generated, a plasma is generated, a target material 23 which has been attached to the surface of a cathode 18 is scattered by Ar ions, a shutter 17 is opened, and a thin film in a desired thickness is applied onto the substrate 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁性薄膜の形成方法に係
わり、特に磁気ヘッド等に使用される磁気抵抗膜の形成
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a magnetic thin film, and more particularly to a method for forming a magnetoresistive film used in a magnetic head or the like.

【0002】[0002]

【従来の技術】従来より、磁性薄膜の形成法としてスパ
ッタリングによる形成法が多く用いられてきている。特
公平3-5642にはマグネトロンスパッタ法による磁性薄膜
形成法が開示されており、良好な軟磁気特性を得る形成
法として、ヘルムホルツコイルで磁界を印加し、1mtor
r以下のArガス圧力でスパッタリングを行うことが開示
されている。
2. Description of the Related Art Conventionally, a forming method by sputtering has been widely used as a method for forming a magnetic thin film. Japanese Patent Publication No. 3-5642 discloses a method for forming a magnetic thin film by a magnetron sputtering method. As a forming method for obtaining good soft magnetic characteristics, a magnetic field is applied by a Helmholtz coil and a magnetic field of 1 mtor is applied.
It is disclosed that sputtering is performed at an Ar gas pressure of r or less.

【0003】この従来技術を応用した磁性薄膜形成法の
例を図3に示す。
An example of a magnetic thin film forming method to which this conventional technique is applied is shown in FIG.

【0004】真空槽11の中に基板電極12を配置し、基板
を搬送する基板トレイ13に所望の磁性薄膜を形成する基
板14を入れ保持する。基板トレイ13には、磁界を印加す
るための永久磁石22が配置され、必要な時にだけ薄膜を
形成できるようシヤッター17が設けてある。カソード18
には高周波電圧印加機構21によって高周波電圧が印加で
きるようになっており、真空排気ポンプ19によって高真
空に排気した後、Arガス導入機構20によって真空槽内の
Arガス圧力を所望の圧力に保ちながら放電させてプラズ
マを発生させ、カソード18の表面に取り付けられたター
ゲット材料23をArイオンで飛散させ、基板14上に被着で
きるようにしている。
A substrate electrode 12 is placed in a vacuum chamber 11, and a substrate 14 on which a desired magnetic thin film is formed is placed and held in a substrate tray 13 that carries the substrate. A permanent magnet 22 for applying a magnetic field is arranged on the substrate tray 13, and a shutter 17 is provided so that a thin film can be formed only when necessary. Cathode 18
A high frequency voltage can be applied by a high frequency voltage applying mechanism 21 to the inside of the vacuum chamber by an Ar gas introducing mechanism 20 after evacuating to a high vacuum by a vacuum exhaust pump 19.
While maintaining the Ar gas pressure at a desired pressure, electric discharge is performed to generate plasma, and the target material 23 attached to the surface of the cathode 18 is scattered by Ar ions so that the target material 23 can be deposited on the substrate 14.

【0005】この方法で磁性薄膜、例えば磁気抵抗膜と
して一般に用いられる20〜30nmのNiFe膜を形成すると、
永久磁石を基板トレイに配置して磁界を印加しているた
め、成膜時および基板搬送冷却時の全てに渡って磁界が
印加された状態で処理できるため、磁気異方性分散の小
さい良好な磁気特性を有する磁性薄膜を形成することが
できるが、基板上に形成される薄膜の膜厚の変動が大き
く、再現性も悪いという問題があった。
When a magnetic thin film, for example, a NiFe film of 20 to 30 nm which is generally used as a magnetoresistive film is formed by this method,
Since a permanent magnet is placed on the substrate tray and a magnetic field is applied, processing can be performed with the magnetic field applied during film formation and substrate transport cooling. Although it is possible to form a magnetic thin film having magnetic characteristics, there is a problem in that the thickness of the thin film formed on the substrate varies greatly and reproducibility is poor.

【0006】図4はこの状況を示したもので、軟磁気特
性としての保磁力はArガス圧力の減少と共に小さくなっ
て良好な特性を示すようになるが、基板面内の膜厚分布
は大きくなり、ばらつき幅も大きくなるという問題があ
った。
FIG. 4 shows this situation. The coercive force as the soft magnetic characteristic becomes smaller as the Ar gas pressure decreases and shows good characteristics, but the film thickness distribution in the substrate surface is large. Therefore, there is a problem that the variation width becomes large.

【0007】また、この膜厚変動が大きくなる問題は、
2層以上の積層膜を形成する際には顕著に表れ、2層目
以降の薄膜を形成する際に特に大きな変動を生ずるとい
う問題もあり、これらの問題から、複数層の薄膜を連続
積層する際に、各層の膜厚あるいは特性を個別に評価す
るために、評価用ダミー基板を配置して同時に薄膜を形
成し、これらの評価用基板に形成された薄膜で膜厚等を
評価、管理しても、実際の基板に形成される薄膜の膜厚
が薄くなって相関が取れなくなり、膜厚管理もできない
という問題もあった。
Further, the problem that this film thickness variation becomes large is
There is also a problem that it appears remarkably when forming a laminated film of two or more layers, and particularly a large fluctuation occurs when forming the second and subsequent thin films. From these problems, a plurality of thin films are continuously laminated. At this time, in order to individually evaluate the film thickness or characteristics of each layer, a dummy substrate for evaluation is arranged and thin films are formed at the same time, and the film thickness etc. are evaluated and controlled by the thin films formed on these evaluation substrates. However, there is also a problem that the film thickness of the thin film actually formed on the substrate becomes thin and correlation cannot be obtained, and the film thickness cannot be controlled.

【0008】[0008]

【発明が解決しようとする課題】本発明は上述した問題
点を解決するためのもので、良好な軟磁気特性を有し、
膜厚変動の少ない安定した磁性薄膜形成を形成できる方
法を提供するころにある。また、複数の積層膜を形成す
る際に、単体で各々の膜の膜厚、特性等が評価可能なよ
うに評価用ダミー基板を配置した際、実際の基板との相
関が一定に変動なく得られ、これによる管理が可能なよ
うな薄膜形成法を提供することにある。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems and has good soft magnetic characteristics,
It is at the time of providing a method capable of forming a stable magnetic thin film formation with little variation in film thickness. Also, when forming a plurality of laminated films, when arranging the evaluation dummy substrate so that the film thickness, characteristics, etc. of each film can be evaluated independently, the correlation with the actual substrate can be obtained without a constant fluctuation. It is to provide a thin film forming method that can be controlled by this method.

【0009】[0009]

【課題を解決するための手段】スパッタリング中に成膜
速度が変動する要因は種々考えられるが、基板面内の膜
厚分布が変動する大きな要因はプラズマからのイオンダ
メージが考えられる。
Various factors may be considered for varying the film forming rate during sputtering, but a major factor for varying the film thickness distribution on the substrate surface is ion damage from plasma.

【0010】図5はスパッタリング中のプラズマ電位分
布を示したものであるが、カソード側のターゲット面の
の電位はマグネトロンスパッタ方式の場合、投入電力、
Arガス圧力等によっても異なるが、通常 -50〜-500V程
度になり、負に大きな電位となっている。一方、基板面
はアース電位になっている基板電極に取り付けられてい
るため概略零電位となるが、基板電極との電気的接続度
合により表面電位は零電位からプラズマ電位まで変動す
ることになる。つまり、完全にアースと導通が取れてい
れば零電位になり、完全にアースと絶縁されていれば帯
電してプラズマ電位と同電位になる。この時、プラズマ
電位は正の電位を示すため、基板面がアースに導通され
ていると、プラズマ中のArイオンの衝撃によりダメージ
を受けることになり、この結果として膜厚が薄くなり、
導通状態が変動すると膜厚も変動することになる。この
作用は、Arガス圧力を低くしてプラズマ密度を小さくす
るとプラズマ電位が高くなってダメージ量も大きくな
り、また永久磁石を基板近傍に配置して磁界を印加させ
るようにした場合にも、基板近傍にプラズマが収束され
てダメージ量が大きくなることが明らかとなった。
FIG. 5 shows the plasma potential distribution during sputtering. The potential on the target surface on the cathode side is the input power in the case of the magnetron sputtering method.
Although it varies depending on the Ar gas pressure, etc., it is usually around -50 to -500V, which is a large negative potential. On the other hand, since the surface of the substrate is attached to the substrate electrode which is at the ground potential, it has a substantially zero potential, but the surface potential fluctuates from the zero potential to the plasma potential depending on the degree of electrical connection with the substrate electrode. That is, if it is completely connected to the ground, it has a zero potential, and if it is completely insulated from the ground, it is charged and has the same potential as the plasma potential. At this time, since the plasma potential shows a positive potential, if the substrate surface is conducted to the ground, it will be damaged by the impact of Ar ions in the plasma, and as a result, the film thickness will be reduced,
When the conduction state changes, the film thickness also changes. This action has the effect that when the Ar gas pressure is lowered and the plasma density is reduced, the plasma potential increases and the amount of damage increases, and even when a permanent magnet is placed near the substrate to apply a magnetic field, It was revealed that the plasma was converged in the vicinity and the amount of damage increased.

【0011】本発明はこれらの結果に基ずき、基板面を
アースから完全に絶縁してプラズマ電位と概略同電位に
なるようにしてArイオンによるダメージを防止するもの
である。また、絶縁する手段として、基板を保持する部
分を絶縁物で造られたものを用いるか、または絶縁物で
絶縁する構造とし、プラズマ電位と同電位になるように
し、ダメージを防止して膜厚の再現性を良くするもので
ある。
Based on these results, the present invention prevents the damage due to Ar ions by completely insulating the substrate surface from the ground so that the substrate potential is approximately the same as the plasma potential. In addition, as a means for insulating, a portion for holding the substrate is made of an insulating material or has a structure of insulating with an insulating material so that it has the same potential as the plasma potential and prevents damage to prevent film thickness. To improve the reproducibility of.

【0012】[0012]

【作用】本発明によれば、スパッタリング中に基板面を
アースから完全に絶縁してプラズマ電位と同電位にでき
るため、プラズマからのArイオン衝撃によるダメージを
完全に防止でき、膜厚の再現性が良く、かつ軟磁気特性
に優れた磁性薄膜を安定して形成できるようになる。
According to the present invention, since the substrate surface can be completely insulated from the ground during sputtering to have the same potential as the plasma potential, damage due to Ar ion bombardment from plasma can be completely prevented and the reproducibility of the film thickness can be improved. It is possible to stably form a magnetic thin film having good magnetic properties and excellent soft magnetic characteristics.

【0013】[0013]

【実施例】以下、図面を用いて本発明の実施例について
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は本発明の一実施例を示すもので、高
周波マグネトロンスパッタ法で磁性薄膜を形成する方法
を示している。
FIG. 1 shows an embodiment of the present invention and shows a method of forming a magnetic thin film by a high frequency magnetron sputtering method.

【0015】真空槽11の中の基板電極12に基板を搬送す
る基板トレイ13が保持され、基板を加熱するためのヒー
ター16が設置されている。基板14は基板電極12から絶縁
できるようアルミナ、ジルコニア、石英、ガラス等から
成る絶縁ホルダー24に収納され、膜厚および磁気特性評
価用ガラス基板15と共に基板トレイ13に設置される。ま
た、基板トレイ13には、磁界を印加するための永久磁石
(図示せず)が配置され、真空槽内には必要な時にだけ薄
膜を形成できるようシヤッター17も設けてある。マグネ
トロンカソード18には高周波電圧印加機構21によって高
周波電圧が印加できるようになっており、真空排気ポン
プ19によって高真空に排気した後、Arガス導入機構20に
よって真空槽内のArガス圧力を所望の圧力に保ちながら
放電させてプラズマを発生させ、カソード18の表面に取
り付けられたターゲット材料23をArイオンで飛散させ、
シヤッター17を開けて所望の厚さの薄膜を基板14上に被
着できるようにしている。
A substrate tray 13 for carrying a substrate is held on a substrate electrode 12 in a vacuum chamber 11, and a heater 16 for heating the substrate is installed. The substrate 14 is housed in an insulating holder 24 made of alumina, zirconia, quartz, glass or the like so as to be insulated from the substrate electrode 12, and is placed on a substrate tray 13 together with a glass substrate 15 for evaluating the film thickness and magnetic characteristics. Further, the substrate tray 13 has a permanent magnet for applying a magnetic field.
(Not shown) is arranged, and a shutter 17 is also provided in the vacuum chamber so that a thin film can be formed only when necessary. A high frequency voltage can be applied to the magnetron cathode 18 by a high frequency voltage applying mechanism 21, and after evacuating to a high vacuum by a vacuum exhaust pump 19, an Ar gas introducing mechanism 20 sets the Ar gas pressure in the vacuum chamber to a desired value. Discharge while maintaining the pressure to generate plasma, the target material 23 attached to the surface of the cathode 18 is scattered by Ar ions,
The shutter 17 is opened so that a thin film having a desired thickness can be deposited on the substrate 14.

【0016】図2は絶縁ホルダー24を使用して、アース
電位となる基板電極と絶縁してNiFe膜を20nm成膜した場
合の基板面内の膜厚分布と軟磁気特性である困難軸保磁
力をスパッタリング時のArガス圧力との関係で示したも
のであるが、0.5mtorr以下のArガス圧力で困難軸保磁力
が小さく、かつ膜厚分布も5%以下となり、図4に示す
従来法で形成した結果と比較してばらつきが少なく、良
好な磁性薄膜を形成できることが分かった。また、膜厚
評価用ダミー基板と実際の基板との相関のばらつきも±
5%以内の誤差で評価できることが分かった。
FIG. 2 shows the film thickness distribution in the substrate surface and the hard-axis coercive force which is the soft magnetic characteristic when a NiFe film of 20 nm is formed by using the insulating holder 24 to insulate the substrate electrode from the ground potential. Is shown in relation to the Ar gas pressure during sputtering. At an Ar gas pressure of 0.5 mtorr or less, the hard axis coercive force is small and the film thickness distribution is 5% or less. It was found that a good magnetic thin film can be formed with less variation compared with the formed result. Also, the variation in the correlation between the film thickness evaluation dummy substrate and the actual substrate is ±
It was found that the error could be evaluated within 5%.

【0017】図6は基板トレイ部分の詳細を示した図で
あるが、基板トレイ13には非磁性の金属材料、例えばSU
S304,SUS316等のステンレス鋼等の材料を用い、基板14
を収納した絶縁ホルダー24、真空封止した永久磁石2
2、膜厚および特性評価用ダミー基板15等が設置できる
ようになっている。基板14の材質は導電性、絶縁性いず
れでも良く、絶縁ホルダー24は絶縁性に優れたアルミ
ナ、ジルコニア、石英等の材料を用いる。また、膜厚、
特性評価ダミー基板15にはガラス基板を用いて複数の積
層膜を連続して形成する場合には複数枚配置し、後に述
べる方法でそれぞれの単体膜あるいは分離評価可能な積
層膜のみ形成されるようにする。このダミー基板に形成
される薄膜が金属保持部と接触しないようにするには、
基板トレイ13のダミー基板保持部を二段加工して隙間が
生ずるようにすれば安定した絶縁状態が確保できる。
FIG. 6 is a diagram showing the details of the substrate tray portion. The substrate tray 13 has a non-magnetic metal material such as SU.
Using a material such as stainless steel such as S304 and SUS316, the substrate 14
Insulation holder 24 that houses the vacuum-sealed permanent magnet 2
2. A dummy substrate 15 for film thickness and characteristic evaluation can be installed. The material of the substrate 14 may be either conductive or insulative, and the insulating holder 24 is made of a material such as alumina, zirconia, or quartz, which has excellent insulating properties. Also, the film thickness,
When a plurality of laminated films are continuously formed by using a glass substrate on the characteristic evaluation dummy substrate 15, a plurality of laminated films are arranged so that only individual films or laminated films that can be separately evaluated are formed by the method described later. To To prevent the thin film formed on this dummy substrate from contacting the metal holder,
If the dummy substrate holding portion of the substrate tray 13 is processed in two steps so that a gap is created, a stable insulation state can be secured.

【0018】図7は基板を絶縁する絶縁ホルダーの別の
構造の一例を示したもので、この場合には絶縁ホルダー
24は基板トレイと同一の非磁性金属材料で良く、絶縁ピ
ース25によって絶縁を保つようになっている。
FIG. 7 shows an example of another structure of the insulating holder for insulating the substrate. In this case, the insulating holder is used.
24 may be made of the same non-magnetic metal material as the substrate tray, and is insulated by the insulating piece 25.

【0019】この方式では図6に示す構造のものと比較
して、絶縁ピース25に膜の堆積が少なくなるため寿命が
長くなること、および絶縁物を安価なものにできること
等の利点がある。
This system has advantages over the structure shown in FIG. 6 in that the film is less deposited on the insulating piece 25, so that the life is extended and the insulator can be made inexpensive.

【0020】図8はこれらの方式を用いて、複数の積層
膜を形成する際の膜厚および特性評価用ダミー基板への
単体膜形成法を示したものであるが、基板電極12の基板
トレイ保持部26の形状を変えることによって、ダミー基
板部を容易に遮蔽または開放でき、成膜1のステージで
は15Aの基板に、成膜2のステージでは15Bの基板に形成
するというように所望の薄膜を堆積させることができ
る。
FIG. 8 shows a method of forming a single film on a dummy substrate for evaluating the film thickness and characteristics when forming a plurality of laminated films using these methods. The substrate tray for the substrate electrode 12 is shown in FIG. By changing the shape of the holding part 26, the dummy substrate part can be easily shielded or opened, and a desired thin film is formed such that it is formed on the substrate of 15A in the stage of film formation 1 and on the substrate of 15B in the stage of film formation 2. Can be deposited.

【0021】[0021]

【発明の効果】以上説明したように、本発明によればス
パッタリング法で磁性薄膜を形成する際のプラズマから
のダメージを防止できるため、0.5mtorr以下の低Arガス
圧力下でも膜厚精度の良好な成膜が可能となり、また永
久磁石による磁界印加方式を用いても膜厚精度が劣化し
ないため軟磁気特性に優れた磁性薄膜を安定に形成する
ことができる。
As described above, according to the present invention, it is possible to prevent damage from plasma when a magnetic thin film is formed by the sputtering method, and therefore, the film thickness accuracy is good even under a low Ar gas pressure of 0.5 mtorr or less. It is possible to form various films, and even if a magnetic field application method using a permanent magnet is used, the film thickness accuracy does not deteriorate, so that a magnetic thin film having excellent soft magnetic characteristics can be stably formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すスパッタリング機構部
を示す図。
FIG. 1 is a diagram showing a sputtering mechanism portion showing an embodiment of the present invention.

【図2】本発明を用いた時の磁性膜の膜厚、磁気特性を
示す図。
FIG. 2 is a diagram showing the film thickness and magnetic characteristics of a magnetic film when the present invention is used.

【図3】従来法を用いた時のスパッタリング機構部を示
す図。
FIG. 3 is a view showing a sputtering mechanism portion when a conventional method is used.

【図4】従来法を用いた時の磁性膜の膜厚、磁気特性を
示す図。
FIG. 4 is a diagram showing the film thickness and magnetic characteristics of a magnetic film when a conventional method is used.

【図5】スパッタリング中の電位分布を示す図。FIG. 5 is a diagram showing a potential distribution during sputtering.

【図6】本発明の一実施例を示す基板トレイ部の詳細を
示す図。
FIG. 6 is a diagram showing details of a substrate tray portion showing an embodiment of the present invention.

【図7】基板トレイ部の別の実施例を示す図。FIG. 7 is a view showing another embodiment of the substrate tray section.

【図8】ダミー基板への成膜方法を示す図である。FIG. 8 is a diagram showing a film forming method on a dummy substrate.

【符号の説明】[Explanation of symbols]

11…真空槽、 12…基板電極、 13…基板トレイ、 14…基板、 15…ダミー基板、 16…ヒーター、 17…シヤッター、 18…カソード、 19…真空排気ポンプ、 20…Arガス導入機構、 21…高周波電圧印加機構、 22…永久磁石、 23…ターゲット材料、 24…絶縁ホルダー、 25…絶縁ピース、 26…基板トレイ保持部。 11 ... Vacuum tank, 12 ... Substrate electrode, 13 ... Substrate tray, 14 ... Substrate, 15 ... Dummy substrate, 16 ... Heater, 17 ... Shatter, 18 ... Cathode, 19 ... Vacuum exhaust pump, 20 ... Ar gas introduction mechanism, 21 ... High-frequency voltage applying mechanism, 22 ... Permanent magnet, 23 ... Target material, 24 ... Insulating holder, 25 ... Insulating piece, 26 ... Substrate tray holding section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡崎 幸司 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Okazaki 2880 Kozu, Odawara City, Kanagawa Stock Company Hitachi Storage Systems Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】磁性薄膜を高周波マグネトロンスパッタリ
ング法で形成する形成方法において、薄膜を形成する基
板をプラズマ電位と異なる電位を有する基板電極から絶
縁して保持することを特徴とする磁性薄膜の形成法。
1. A method for forming a magnetic thin film by a high-frequency magnetron sputtering method, characterized in that a substrate on which the thin film is formed is held by being insulated from a substrate electrode having a potential different from the plasma potential. .
【請求項2】スパッタリング時のアルゴンガス圧力が0.
5ミリトール以下であることを特徴とする請求項1の磁
性薄膜形成法。
2. Argon gas pressure during sputtering is 0.
The method for forming a magnetic thin film according to claim 1, wherein the magnetic thin film has a thickness of 5 mTorr or less.
【請求項3】磁性膜に磁気異方性を付与するための磁界
印加機構として、真空封止された永久磁石を基板の近傍
に配置し、磁性膜形成後の冷却過程においてもこの永久
磁石によって磁界を印加するようにしたことを特徴とす
る請求項1あるいは請求項2の磁性薄膜形成法。
3. As a magnetic field applying mechanism for imparting magnetic anisotropy to a magnetic film, a vacuum-sealed permanent magnet is arranged in the vicinity of the substrate, and the permanent magnet is used by the permanent magnet even in the cooling process after the magnetic film is formed. The magnetic thin film forming method according to claim 1 or 2, wherein a magnetic field is applied.
【請求項4】請求項1、請求項2あるいは請求項3のい
ずれか項記載の磁性薄膜形成法において、磁性層が非磁
性層を含めて複数層形成され、この時所望の積層膜を形
成する基板とは別にそれぞれの積層膜の膜厚または膜特
性を単体で評価するための評価用基板を複数配置し、こ
れらの評価用基板は基板電極で遮蔽することができ、目
的とする膜のみ形成されるようにしたことを特徴とする
磁性薄膜形成法。
4. The method for forming a magnetic thin film according to claim 1, 2 or 3, wherein a plurality of magnetic layers including a nonmagnetic layer are formed to form a desired laminated film. Separately from the substrate to be used, a plurality of evaluation substrates for evaluating the film thickness or film characteristics of each laminated film by itself can be arranged, and these evaluation substrates can be shielded by the substrate electrode, and only the target film A method for forming a magnetic thin film, which is characterized in that it is formed.
JP6477594A 1994-04-01 1994-04-01 Formation of magnetic thin film Pending JPH07272967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6477594A JPH07272967A (en) 1994-04-01 1994-04-01 Formation of magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6477594A JPH07272967A (en) 1994-04-01 1994-04-01 Formation of magnetic thin film

Publications (1)

Publication Number Publication Date
JPH07272967A true JPH07272967A (en) 1995-10-20

Family

ID=13267929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6477594A Pending JPH07272967A (en) 1994-04-01 1994-04-01 Formation of magnetic thin film

Country Status (1)

Country Link
JP (1) JPH07272967A (en)

Similar Documents

Publication Publication Date Title
US7862694B2 (en) Composite coating device and method of forming overcoat on magnetic head using the same
JPH06145975A (en) Method of spattering carbon film and its product
JP4344019B2 (en) Ionized sputtering method
US5693197A (en) DC magnetron sputtering method and apparatus
JP4531145B2 (en) Ultra-thin insulating film formation method
Löwe et al. Control of ion energy and flux in a dual radio frequency excitation magnetron sputtering discharge
JP3944946B2 (en) Thin film forming equipment
JPH07272967A (en) Formation of magnetic thin film
Matsuoka et al. rf and dc discharge characteristics for opposed‐targets sputtering
JP4309979B2 (en) Method for manufacturing aluminum nitride film and method for manufacturing magnetic head
JPH02185967A (en) Method and device for bias sputtering
JPH031810B2 (en)
JP2007277730A (en) Sputtering apparatus
JPH1036963A (en) Sputtering device and formation of soft magnetic coating using the same
JPS63307272A (en) Ion beam sputtering device
JPS59139616A (en) Manufacture of magnetic thin film
JP2906163B2 (en) Sputtering equipment
JPH11200032A (en) Sputtering film forming method of insulated film
JP3026447B2 (en) Bias sputter deposition method and apparatus
JPS6076026A (en) Production of vertical magnetic recording medium
JP2003217899A (en) Plasma processing device and method
JPH0281409A (en) Thin magnetic film, manufacture thereof and magnetron sputtering device
JPH04304376A (en) Formation of hard carbon film
JP2980266B2 (en) Sputtering apparatus for forming a laminated film of a magnetic thin film and a non-magnetic thin film
JPH0428867A (en) Method and device for bias sputtering

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031128

Free format text: JAPANESE INTERMEDIATE CODE: A712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040217