JPH07269778A - Vacuum pack type heat insulating material - Google Patents

Vacuum pack type heat insulating material

Info

Publication number
JPH07269778A
JPH07269778A JP6061425A JP6142594A JPH07269778A JP H07269778 A JPH07269778 A JP H07269778A JP 6061425 A JP6061425 A JP 6061425A JP 6142594 A JP6142594 A JP 6142594A JP H07269778 A JPH07269778 A JP H07269778A
Authority
JP
Japan
Prior art keywords
gas barrier
barrier container
vacuum
layer
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6061425A
Other languages
Japanese (ja)
Inventor
Takayoshi Iwai
隆賀 岩井
Takumi Fujinami
匠 藤波
Kumiko Takeshima
久美子 竹島
Toru Yamaguchi
徹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP6061425A priority Critical patent/JPH07269778A/en
Publication of JPH07269778A publication Critical patent/JPH07269778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Abstract

PURPOSE:To stabilize low heat conductivity for a long period by specifying the inner side moisture absorption coefficient of a metal layer in a gas barrier container, in an enclosed vacuum pack type heat insulating material, wherein a core material made of communicating foam material is covered with the gas barrier container and its inner part is vacuum-exhausted. CONSTITUTION:A core material 5 is made of communicating foam material such as hard polyurethane foam of continuous bubble structure, and a material in which moisture in space atmosphere is removed in dry processing is used as the core material 5. Such a core material 5 is covered with a gas barrier container 1 formed of an outer layer 7 made of polyethylene terephthalate and polyamide, a metal layer 9 made of aluminum foil, and an inner layer 11 made of polypropylene, vacuum exhaust is carried out, and after that, pressure is reduced, and heat seal D is carried out so as to constitute a prescribed heatproof material. At this time, in the inner layer 11, heating, pressure reduction, and dry processes are carried out, in a range in which thermal deformation and deterioration of the whole may not be produced at by 60 to 120 deg.C, and a material whose moisture absorption coefficient is suppressed to about 0.02wt.% or less is used in the inner layer 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、真空パック式断熱材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum pack type heat insulating material.

【0002】[0002]

【従来の技術】一般に、真空パック式断熱材は、コア材
を、ガスバリア容器で覆い、内部を真空排気して減圧
し、周囲をヒートシールして密閉することで得られるよ
うになる。
2. Description of the Related Art Generally, a vacuum-pack type heat insulating material can be obtained by covering a core material with a gas barrier container, evacuating the inside to reduce the pressure, and heat-sealing the surrounding area.

【0003】[0003]

【発明が解決しようとする課題】真空パック式断熱材の
コア材には、一般に無機粉末等が用いられると共に、こ
の時の熱伝導率は、気体の熱伝達による場合、粉末間の
接触熱伝達による場合、輻射伝達による場合、対流に起
因する熱伝達による4要素の和で表わされる。実用化さ
れている真空断熱材では、このうち、気体の熱伝達によ
る熱伝達率成分が支配的で、理論的には、粉末間の空隙
が小さいこと、圧力が低いことが熱伝導率を小さくする
条件となっている。
Inorganic powder or the like is generally used as the core material of the vacuum-pack type heat insulating material, and the thermal conductivity at this time is the contact heat transfer between the powders in the case of gas heat transfer. , The radiation transfer is represented by the sum of four elements due to heat transfer due to convection. Among the vacuum insulation materials that have been put into practical use, the heat transfer coefficient component due to heat transfer of gas is dominant among them, and theoretically, the voids between the powders are small and the pressure is low, which reduces the heat conductivity. It is a condition to do.

【0004】ところで近年は、軽量化が可能で、加工が
容易なことなどから、コア材に、連続気泡構造の硬質ウ
レタンフォーム(連通フォーム材)が採用されている
が、この連通フォーム材は、空隙の大きさ(セル径に相
当)が50〜100μm程度と大きく、コア材の空隙が
10μm以下の微細な粉末を選択できる従来の真空パッ
ク式断熱材に比べて、(低熱伝導率を得るには)より高
い真空度に維持する必要があった。
By the way, in recent years, a rigid urethane foam having an open-cell structure (communicating foam material) has been adopted as the core material because it can be made lightweight and is easy to process. The size of the voids (corresponding to the cell diameter) is as large as about 50 to 100 μm, and compared with the conventional vacuum-pack type heat insulating material in which a fine powder having a void of the core material of 10 μm or less can be selected (to obtain a low thermal conductivity. Had to maintain a higher vacuum.

【0005】従って、フォーム材やガスバリア容器内層
から徐々に発生してくるガスによって経時劣化が早まる
傾向があった。
Therefore, there is a tendency that the gas gradually generated from the foam material and the gas barrier container inner layer accelerates the deterioration with time.

【0006】このために、ガスの発生を徹底的に抑える
必要がある。
Therefore, it is necessary to thoroughly suppress the generation of gas.

【0007】この発生ガスの主因である吸着水分の除去
は、連通フォーム材を乾燥させることで、ある程度達成
されるが、まだ、不十分となっているのが現状である。
The removal of adsorbed moisture, which is the main cause of this generated gas, can be achieved to some extent by drying the continuous foam material, but at present it is still insufficient.

【0008】そこで、この発明は、コア材の外に、コア
材を覆うガスバリア容器自体、特に内部の真空度に直接
関連する内層の水分を除去することで、低い熱伝導率が
長期間に亘り安定して得られるようにした真空パック式
断熱材を提供することを目的としている。
Therefore, according to the present invention, by removing the moisture of the gas barrier container itself covering the core material, especially the inner layer directly related to the degree of vacuum inside, in addition to the core material, low thermal conductivity can be obtained for a long period of time. It is an object of the present invention to provide a vacuum-pack type heat insulating material that can be stably obtained.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、連通フォーム材から成るコア材を、金
属層と、金属層より外側の外層と、金属層より内側の内
層とで形成されたガスバリア容器で覆い、内部を真空排
気して減圧し、周囲をヒートシールして密閉した真空パ
ック式断熱材において、前記ガスバリア容器の金属層よ
り内側吸湿率を、0.02wt%以下とする。
In order to achieve the above object, the present invention provides a core material made of a continuous foam material with a metal layer, an outer layer outside the metal layer, and an inner layer inside the metal layer. In a vacuum-pack type heat insulating material which is covered with the formed gas barrier container, the inside of which is evacuated to reduce the pressure, and the periphery of which is heat-sealed, the moisture absorption rate inside the metal layer of the gas barrier container is 0.02 wt% or less. To do.

【0010】水分を除去する好ましい手段としては、ガ
スバリア容器を加熱あるいは加熱減圧乾燥させるように
する。
As a preferable means for removing water, the gas barrier container is heated or heated and dried under reduced pressure.

【0011】また、内側に水分が存在する条件を無くす
ために、ヒートシール領域を除いたガスバリア容器を、
外層と内側の金属層とで形成したり、ヒートシール領域
を除いたガスバリア容器の内層面に、金属箔又は金属蒸
着層を設けるようにする。
Further, in order to eliminate the condition that water is present inside, a gas barrier container excluding the heat seal region is
A metal foil or a metal vapor deposition layer is formed on the inner layer surface of the gas barrier container excluding the heat-sealing region, which is formed by the outer layer and the inner metal layer.

【0012】金属箔又は金属蒸着層を設ける手段として
は、外層の内側に金属箔を直接貼りつけて形成する。こ
の場合、金属箔の外側に、外層を一体に射出成形して形
成するようにしてもよい。あるいは、外層の内側に、直
接金属を蒸着させて金属蒸着層を形成する場合もある。
As a means for providing the metal foil or the metal vapor deposition layer, the metal foil is directly attached to the inside of the outer layer. In this case, the outer layer may be integrally formed by injection molding on the outside of the metal foil. Alternatively, a metal vapor deposition layer may be formed by directly vapor depositing a metal inside the outer layer.

【0013】[0013]

【作用】かかる真空パック式断熱材によれば、特に、ガ
スバリア容器の内側吸湿率は、最小又はゼロに近い値ま
で抑えることが可能となり、内部からのガス発生を小さ
く抑えられる。この結果、低い熱伝導率が長期間に亘っ
て安全して得られるようになる。
According to such a vacuum-pack type heat insulating material, in particular, the moisture absorption rate inside the gas barrier container can be suppressed to a minimum value or a value close to zero, and gas generation from the inside can be suppressed to a small value. As a result, low thermal conductivity can be obtained safely over a long period of time.

【0014】[0014]

【実施例】以下、図1乃至図10の図面を参照しながら
この発明の実施例を具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be specifically described below with reference to the drawings of FIGS.

【0015】図1において、1は真空パック式断熱材3
のガスバリア容器、5はコア材をそれぞれ示している。
In FIG. 1, reference numeral 1 is a vacuum pack type heat insulating material 3.
The gas barrier containers 5 and 5 are core materials, respectively.

【0016】コア材5は、連続気泡構造の硬質ウレタン
フォーム等の連通フォーム材から成っていて、乾燥工程
において、空隙雰囲気中の水分が取除かれている。
The core material 5 is made of a continuous foam material such as a rigid urethane foam having an open cell structure, and moisture in the void atmosphere is removed in the drying step.

【0017】ガスバリア容器1は、ポリエチレンテレフ
タレート(PET)と、ポリアミド(Nylon)とか
ら成る外層7と、アルミ箔(Al)から成る金属層9
と、ポリプロピレン(PP)から成る内層11とで形成
され、真空排気された後、減圧されヒートシールDされ
ている。
The gas barrier container 1 comprises an outer layer 7 made of polyethylene terephthalate (PET) and polyamide (Nylon), and a metal layer 9 made of aluminum foil (Al).
And an inner layer 11 made of polypropylene (PP), which is evacuated and then depressurized and heat-sealed D.

【0018】内層11は、60〜120℃程度で、全体
の熱変形、劣化が生じない範囲内において、加熱減圧乾
燥され、吸湿率は約0.02wt%以下に抑えられてい
る。
The inner layer 11 is dried under reduced pressure by heating at a temperature of about 60 to 120 ° C. within a range in which thermal deformation and deterioration of the entire layer do not occur, and the moisture absorption rate is suppressed to about 0.02 wt% or less.

【0019】乾燥手段は、加熱乾燥であってもよい。ま
た、内層11はポリプロピレン(PP)から成る単層と
なっているが、ポリプロピレン(PP)とポリアミド
(Nylon)等から成る複層構造としてもよい。
The drying means may be heat drying. Although the inner layer 11 is a single layer made of polypropylene (PP), it may have a multi-layer structure made of polypropylene (PP) and polyamide (Nylon).

【0020】また、外層7、金属層9、内層11の組合
せは、表1に示す組合せ構造とすることも可能である。
また、他の組合せとしてPP、PAN(ヒートシール
層)の代わりに、ポリエチレン、エチレンビニルアルコ
ール、あるいは、エチレンビニルアルコール共重合体を
ポリプロピレンの多層フィルムなどを用いることができ
る。なおこれらの各層は必要に応じ適当な接着層を介し
てラミネートされている。
Further, the combination of the outer layer 7, the metal layer 9 and the inner layer 11 may have the combination structure shown in Table 1.
Further, as another combination, instead of PP and PAN (heat seal layer), a multilayer film of polyethylene, ethylene vinyl alcohol, or a polypropylene of ethylene vinyl alcohol copolymer can be used. Each of these layers is laminated via an appropriate adhesive layer as needed.

【0021】[0021]

【表1】 このように構成された真空パック式断熱材3によれば、
ガスバリア容器1の内側吸湿率は、0.02wt%以下
となっているため、内部からのガス発生を小さく抑えら
れる。したがって、低い熱伝導率が長期間に亘り安定し
て得られるようになる。
[Table 1] According to the vacuum-pack type heat insulating material 3 configured in this way,
Since the moisture absorption rate inside the gas barrier container 1 is 0.02 wt% or less, gas generation from the inside can be suppressed to a small level. Therefore, low thermal conductivity can be stably obtained over a long period of time.

【0022】図4に乾燥条件(吸湿率)と熱伝導率の経
時変化の実験結果を示す。この実験は、60℃で減圧乾
燥し、吸湿率を0.01wt%とした本案aと、50℃
で常圧乾燥し、吸湿率を0.3wt%としたbと、乾燥
なしで、吸湿率が1.1wt%であるcとを比較したも
ので、本案aのものは、100日結果後にあっても、一
定の低い熱伝導率が確認された。
FIG. 4 shows the experimental results of changes with time of the drying conditions (moisture absorption rate) and thermal conductivity. This experiment was carried out under reduced pressure drying at 60 ° C. and the moisture absorption rate of 0.01 wt% and the plan a and 50 ° C.
At atmospheric pressure, the moisture absorption rate was 0.3 wt% and b was compared with the moisture absorption rate of 1.1 wt% without drying. However, a certain low thermal conductivity was confirmed.

【0023】この場合、図3に示すようにガスバリア容
器1を、ヒートシールDの領域を除いた外層7と金属層
9とで形成し、水分を吸湿する内層11を無くすことで
も前記と同様の効果が得られるようになる。
In this case, as shown in FIG. 3, the gas barrier container 1 is formed of the outer layer 7 and the metal layer 9 excluding the region of the heat seal D, and the inner layer 11 that absorbs moisture is eliminated, which is similar to the above. The effect will be obtained.

【0024】なお、参考までに乾燥条件をかえた実験結
果を図5に示す。この実験は、真空パネル式断熱材のサ
イズを300×300×15mmとし、コア材のセル径
を100〜150μm、ヒートシール時のチャンバー内
圧力を0.005Torrの条件下において実施したも
ので、この実験によると、吸湿率が0.02wt%を越
えると熱伝導率が悪くなることが確認できる。
For reference, the experimental results under different drying conditions are shown in FIG. This experiment was carried out under the conditions that the size of the vacuum panel type heat insulating material was 300 × 300 × 15 mm, the cell diameter of the core material was 100 to 150 μm, and the chamber internal pressure during heat sealing was 0.005 Torr. According to the experiment, it can be confirmed that the thermal conductivity deteriorates when the moisture absorption rate exceeds 0.02 wt%.

【0025】図6、図7はガスバリア容器1の変形例を
示したもので、図6は、ポリエチレンテレフタレート
(PET)とポリアミド(Nylon)から成る外層7
の内側内面で、ヒートシールDの領域を除いて、金属箔
13を設けるものである。図7は、金属箔13にかえて
金属蒸着膜15を設けたものである。
6 and 7 show modified examples of the gas barrier container 1. FIG. 6 shows an outer layer 7 made of polyethylene terephthalate (PET) and polyamide (Nylon).
The metal foil 13 is provided on the inner surface of the inside of the sheet except the area of the heat seal D. In FIG. 7, a metal vapor deposition film 15 is provided instead of the metal foil 13.

【0026】この場合、図8に示す如く、全面を金属膜
16としヒートシールDの領域部分のみ、シーラント層
17をコンテングして形成することも可能である。
In this case, as shown in FIG. 8, it is possible to form the metal film 16 on the entire surface and form the sealant layer 17 only on the area of the heat seal D.

【0027】一方、金属箔13の取付手段としては、外
層7の内側内面に、直接貼りつけて形成してもよい。
On the other hand, the metal foil 13 may be attached to the inner surface of the outer layer 7 by directly attaching it.

【0028】また、図9に示すように、金型19,21
によって金属箔13の外側に、外層19を射出成形によ
って一体成形してもよい。
Further, as shown in FIG.
The outer layer 19 may be integrally formed on the outside of the metal foil 13 by injection molding.

【0029】したがって、これら各実施例によれば、ガ
スバリア容器1の内側は、金属層となるため、加熱減圧
乾燥することで、図10に示す実験結果からも明らかな
ように、吸湿率が非常に小さい値となり、内部からのガ
ス発生を小さく抑えられる。したがって、低い熱伝導率
が長期間に亘り安定して得られるようになる。
Therefore, according to each of these examples, since the inside of the gas barrier container 1 is a metal layer, the moisture absorption rate is extremely high by heating and drying under reduced pressure, as is clear from the experimental results shown in FIG. This is a small value, and gas generation from the inside can be suppressed small. Therefore, low thermal conductivity can be stably obtained over a long period of time.

【0030】[0030]

【発明の効果】以上、説明したように、この発明の真空
パック式断熱材によれば、ガスバリア容器の内側吸湿率
を、小さく抑えることによって、ガスの発生を抑えるこ
とができる。したがって、低い熱伝導率が長期間に亘り
安定して得られるようになる。
As described above, according to the vacuum-pack type heat insulating material of the present invention, generation of gas can be suppressed by suppressing the moisture absorption rate inside the gas barrier container to be small. Therefore, low thermal conductivity can be stably obtained over a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を実施した真空パック式断熱材の切断
面図。
FIG. 1 is a cross-sectional view of a vacuum pack type heat insulating material according to the present invention.

【図2】図1のA部の拡大断面図。FIG. 2 is an enlarged sectional view of a portion A in FIG.

【図3】ヒートシール領域を除いたガスバリア容器を外
層と金属層とで形成した図2と同様の拡大断面図。
FIG. 3 is an enlarged cross-sectional view similar to FIG. 2, in which the gas barrier container excluding the heat seal region is formed of an outer layer and a metal layer.

【図4】熱伝導率の経時変化を示した特性図。FIG. 4 is a characteristic diagram showing a change in thermal conductivity over time.

【図5】ガスバリア容器の乾燥条件に基づく熱伝導率の
経時変化を示した説明図。
FIG. 5 is an explanatory diagram showing a change with time in thermal conductivity based on a drying condition of the gas barrier container.

【図6】ガスバリア容器の内面に金属箔を設けた図2と
同様の拡大断面図。
FIG. 6 is an enlarged cross-sectional view similar to FIG. 2 in which a metal foil is provided on the inner surface of the gas barrier container.

【図7】ガスバリア容器の内面に、金属蒸着膜を設けた
図2と同様の切断面図。
7 is a sectional view similar to FIG. 2, in which a metal vapor deposition film is provided on the inner surface of the gas barrier container.

【図8】ヒートシール領域をシーラント層で形成し、内
側を金属膜とした説明図。
FIG. 8 is an explanatory diagram in which a heat seal region is formed of a sealant layer and the inside is a metal film.

【図9】図6のガスバリア容器の成形手段を示した説明
図。
9 is an explanatory view showing a molding means of the gas barrier container of FIG.

【図10】内側を金属層とした各実施例の熱伝導率の経
時変化を示した説明図。
FIG. 10 is an explanatory diagram showing the change over time in the thermal conductivity of each example in which the inner side is a metal layer.

【符号の説明】[Explanation of symbols]

1 ガスバリア容器 3 真空パック式断熱材 7 外層 9 金属層 11 内層 1 Gas Barrier Container 3 Vacuum Pack Insulation 7 Outer Layer 9 Metal Layer 11 Inner Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹島 久美子 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 山口 徹 東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kumiko Takeshima 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa, Ltd. Inside the Toshiba Living Space Systems Engineering Laboratory (72) Inventor Toru Yamaguchi 3-3 Shinbashi, Minato-ku, Tokyo No. 9 within Toshiba Abu E, Inc.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 連通フォーム材から成るコア材を、金属
層と、金属層より外側の外層と、内側の内層とで形成さ
れたガスバリア容器で覆い、内部を真空排気して減圧
し、周囲をヒートシールして密閉した真空パック式断熱
材において、前記ガスバリア容器の金属層の内側吸湿率
を、0.02wt%以下としたことを特徴とする真空パ
ック式断熱材。
1. A core material made of a continuous foam material is covered with a gas barrier container formed of a metal layer, an outer layer outside the metal layer, and an inner inner layer, and the inside is evacuated to reduce the pressure, A vacuum-pack type heat-insulating material, which is heat-sealed and hermetically sealed, wherein an inner moisture absorption rate of the metal layer of the gas barrier container is 0.02 wt% or less.
【請求項2】 ヒートシール領域を除いたガスバリア容
器を、外層と内側の金属層とで形成することを特徴とす
る請求項1記載の真空パック式断熱材。
2. The vacuum pack type heat insulating material according to claim 1, wherein the gas barrier container excluding the heat seal region is formed of an outer layer and an inner metal layer.
【請求項3】 ガスバリア容器を、加熱又は加熱減圧乾
燥させることを特徴とする請求項1,2記載の真空パッ
ク式断熱材。
3. The vacuum-pack type heat insulating material according to claim 1, wherein the gas barrier container is heated or dried under reduced pressure by heating.
【請求項4】 連通フォーム材から成るコア材を、内面
に金属箔又は金属蒸着膜を設けたガスバリア容器で覆
い、内部を真空排気して減圧し、周囲をヒートシールし
て密閉したことを特徴とする真空パック式断熱材。
4. A core material made of a continuous foam material is covered with a gas barrier container having a metal foil or a metal vapor deposition film on its inner surface, the interior is evacuated to reduce the pressure, and the periphery is heat-sealed and hermetically sealed. A vacuum-pack type heat insulating material.
【請求項5】 ガスバリア容器を、外層と、外層の内側
に金属箔を貼りつけて形成したことを特徴とする請求項
4記載の真空パック式断熱材。
5. The vacuum-pack type heat insulating material according to claim 4, wherein the gas barrier container is formed by bonding an outer layer and a metal foil to the inner side of the outer layer.
【請求項6】 ガスバリア容器を、外層と、外層の内側
に金属を蒸着した金属蒸着層とで形成したことを特徴と
する請求項4記載の真空パック式断熱材。
6. The vacuum-pack type heat insulating material according to claim 4, wherein the gas barrier container is formed of an outer layer and a metal vapor deposition layer in which a metal is vapor deposited inside the outer layer.
【請求項7】 ガスバリア容器を、金属箔と、金属箔の
外側に一体に射出成形した外層とで形成することを特徴
とする請求項4記載の真空パック式断熱材。
7. The vacuum-pack type heat insulating material according to claim 4, wherein the gas barrier container is formed of a metal foil and an outer layer integrally injection-molded on the outside of the metal foil.
JP6061425A 1994-03-30 1994-03-30 Vacuum pack type heat insulating material Pending JPH07269778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6061425A JPH07269778A (en) 1994-03-30 1994-03-30 Vacuum pack type heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6061425A JPH07269778A (en) 1994-03-30 1994-03-30 Vacuum pack type heat insulating material

Publications (1)

Publication Number Publication Date
JPH07269778A true JPH07269778A (en) 1995-10-20

Family

ID=13170719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6061425A Pending JPH07269778A (en) 1994-03-30 1994-03-30 Vacuum pack type heat insulating material

Country Status (1)

Country Link
JP (1) JPH07269778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032605A1 (en) * 1995-04-13 1996-10-17 Imperial Chemical Industries Plc Non-planar evacuated insulation panels and a method for making same
KR101257361B1 (en) * 2009-05-04 2013-04-23 한국과학기술원 Vacuum insulator and method for fabricating thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032605A1 (en) * 1995-04-13 1996-10-17 Imperial Chemical Industries Plc Non-planar evacuated insulation panels and a method for making same
US5843353A (en) * 1995-04-13 1998-12-01 Imperial Chemical Industries Plc Non-planar evacuated insulation panels and a method for making same
KR101257361B1 (en) * 2009-05-04 2013-04-23 한국과학기술원 Vacuum insulator and method for fabricating thereof

Similar Documents

Publication Publication Date Title
JP3049204B2 (en) Insulated double wall container made of synthetic resin
JPH07167377A (en) Vacuum heat insulating material
JPH04260648A (en) Method for manufacture of heat insulating material
US5494740A (en) Method of high vacuum heat insulation and a vacuum heat insulator used therein
JP2001108187A (en) Vacuum heat insulating body, manufacturing method of vacuum heat insulating body and heat reserving vessel
JPH07269778A (en) Vacuum pack type heat insulating material
JPH0886394A (en) Vacuum heat insulation material and its manufacture
JP2000310392A (en) Vacuum heat insulating material
JP2000320786A (en) Vacuum thermal insulation material
JP2004197760A (en) Vacuum heat insulating material
AU2018412205B2 (en) Vacuum heat insulating material and heat insulating box
JPH06281089A (en) Vacuum heat-insulating material
JPH0684798B2 (en) Method for accommodating adsorbent in the insulating space of a vacuum-insulated double-walled container for storing low-boiling liquefied gas and vacuum-insulated double-walled container
JP2001295986A (en) Vacuum heat insulating material and its manufacturing method
JPS6356858B2 (en)
JPH08152258A (en) Vacuum heat insulator
JPH0383637A (en) Heat insulating structure
JPH11124120A (en) Container for high temperature food and method for preventing deformation of container side face
JP2694356B2 (en) Insulation structure
KR0159717B1 (en) Preparation of vacuum insulatating panel filled with non-woven fabrics
JPH07293783A (en) Heat insulating material and heat insulating box using it
JP2757374B2 (en) Vacuum container
JPH0446908Y2 (en)
JPS63318398A (en) Superlow temperature container
JPS6210579A (en) Vacuum heat-insulating material