JPH07268624A - Electric discharge device - Google Patents

Electric discharge device

Info

Publication number
JPH07268624A
JPH07268624A JP6110592A JP11059294A JPH07268624A JP H07268624 A JPH07268624 A JP H07268624A JP 6110592 A JP6110592 A JP 6110592A JP 11059294 A JP11059294 A JP 11059294A JP H07268624 A JPH07268624 A JP H07268624A
Authority
JP
Japan
Prior art keywords
cathode
discharge
discharge device
magnetic
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6110592A
Other languages
Japanese (ja)
Inventor
Tatsuo Asamaki
立男 麻蒔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6110592A priority Critical patent/JPH07268624A/en
Publication of JPH07268624A publication Critical patent/JPH07268624A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To provide an electric discharge device having high-speed treatability and excellent bottom coverage without stopping the electric discharge in high vacuum by providing this device with a means for applying energy to the electrons existing in the space between substrate and cathode. CONSTITUTION:This electric discharge device is provided with the means 50 (abbreviated as an E means) for applying energy to the electrons existing in the space between the cathode mechanism (preferably high vacuum, flat plate magnetron) 30 and the system 20 to be treated including the substrate 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】〔産業上の利用分野〕この発明は,放電装
置に関し,スパッタ装置,エッチング装置,表面改質装
置などに適用して特に効果がある。なお,以下の説明に
おいては,スパッタ装置への適用を中心に説明するが特
に限定するものではない。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge device, and is particularly effective when applied to a sputtering device, an etching device, a surface modification device, and the like. In the following description, application to a sputtering device will be mainly described, but the present invention is not particularly limited thereto.

【0002】〔従来の技術〕平板マグネトロン形スパッ
タ装置やエッチング装置に代表されるこの種の装置は,
比較的低い圧力下で高速な処理を行うことができて広い
方面で利用されている(例えば,発明者著,日刊工業新
聞社刊,“薄膜作成の基礎”)。最近では,セルフスパ
ッタ(ターゲット材料自身が,従来のスパッタのアルゴ
ンの代りをし,材料自身のみでスパッタを行う)や高真
空スパッタ(特願平3−62766)が登場し,その特
色ある成膜技術によりアスペクト比の大きいsub−μ
mの穴のうめ込の研究がされ次世代技術として期待され
始めている。
[Prior Art] This type of apparatus typified by a flat plate magnetron type sputtering apparatus and an etching apparatus is
It can perform high-speed processing under a relatively low pressure and is used in a wide range of fields (eg, Inventor, Nikkan Kogyo Shimbun, "Basics of Thin Film Preparation"). Recently, self-sputtering (the target material itself substitutes argon for conventional sputtering, and sputtering is performed by the material itself) and high-vacuum sputtering (Japanese Patent Application No. 3-62766) have been introduced, and their characteristic film formation is possible. Sub-μ with large aspect ratio due to technology
Research into the filling of holes in m has been conducted, and it is beginning to be expected as a next-generation technology.

【0003】しかし,この種の装置,特に平板マグネト
ロン形の放電装置は,特定の圧力例えば10−3Tor
r以下では放電が停止してしまい使えない。これを改良
した高真空スパッタ装置は,低い圧力で放電するが放電
々流やスパッタ速度が思うような大きな値を得ることが
できない。一方,セルフスパッタはどんな低い圧力でも
放電するが,一度放電が停止するとまた10−3Tor
rくらい迄圧力を上げて放電を再スタートとする必要が
ある
However, an apparatus of this type, particularly a flat plate magnetron type discharge apparatus, has a specific pressure, for example, 10 −3 Tor.
If it is less than r, the discharge is stopped and cannot be used. The improved high-vacuum sputtering system discharges at a low pressure, but the discharge current and sputtering rate cannot be as large as expected. On the other hand, self-sputtering discharges at any low pressure, but once discharge stops, 10 -3 Torr
It is necessary to raise the pressure to about r and restart the discharge.

【0004】〔この発明の課題と目的〕この発明の課題
は,例えば10−4あるいは10−5Torr以下の圧
力においても,大電流あるいは高速処理を可能にする放
電装置を提供することである。
[Problem and Object of the Present Invention] An object of the present invention is to provide a discharge device capable of a large current or a high-speed treatment even at a pressure of 10 −4 or 10 −5 Torr or less.

【0005】〔課題を解決するための手段と作用〕高真
空スパッタの基板とターゲットの間に空間に存在する電
子へのエネルギ供給手段(以下単にE手段)を設け,こ
れにより高真空においても大電流や高速処理を行わせる
ことができる。
[Means and Actions for Solving the Problem] An energy supplying means (hereinafter simply referred to as E means) for electrons existing in a space is provided between the substrate and the target of the high vacuum sputtering, so that even in a high vacuum. Electric current and high speed processing can be performed.

【0006】〔実施例〕次にこの発明を詳しく説明す
る。この発明は次の論文及び特許願に立脚する。なお,
記入方法は学述論文の例に従っている。即ち, 文献1:麻蒔ら,雑誌真空,“高真空平板マグネトロン
放電の開発”,第35巻(1992)70〜75頁 文献2:T.Asamakiら,“High−vacu
um planar magnetron disch
arge”,J.Vac.Sci.Technol.
A.vol10(1992)3430〜3433頁 文献3:T.Asamakiら,“High−Vacu
um Planar Magnetron Sputt
erring”,Jpn.J.Appl.Phys.v
ol32(1993)902〜906頁 文献4:特願平3−62766.麻蒔立男出願“面状陰
極放電装置” 文献5:T.Asamakiら“Copper Sel
f−Sputtering by Planar Ma
gnetron”Jpn.J.Appl.Phys.v
ol33(1994)in press. 文献1〜4に示す高真空平板マグネトロン(以下単にH
V−PMC)による放電は,確かに10−3Torr以
下のいかなる圧力においても放電するが,電流すなわち
処理能力が圧力に比例して小さくなる。
EXAMPLES Next, the present invention will be described in detail. This invention is based on the following papers and patent applications. In addition,
The entry method follows the example of the academic paper. That is, Reference 1: Masaki et al., Magazine Vacuum, "Development of High Vacuum Flat Plate Magnetron Discharge", Volume 35 (1992) pp. 70-75 Reference 2: T.M. Asamaki et al., "High-vacu.
um planner magnetron disch
age ", J. Vac. Sci. Technol.
A. vol10 (1992) 3430-3433 Reference 3: T.S. Asamaki et al., "High-Vacu.
um Planar Magnetron Sputt
error ", Jpn. J. Appl. Phys. v.
ol32 (1993) pages 902-906 Reference 4: Japanese Patent Application No. 3-62766. Tachio Masaki Application "Flat cathode discharge device" Reference 5: T.M. Asamaki et al. “Copper Sel”
f-Sputtering by Planar Ma
gnetron "Jpn.J.Appl.Phys.v
ol33 (1994) in press. High-vacuum flat plate magnetrons shown in References 1 to 4 (hereinafter simply referred to as H
The discharge by V-PMC certainly discharges at any pressure of 10 −3 Torr or less, but the current, that is, the processing capacity decreases in proportion to the pressure.

【0007】一方最近の発明者の研究によると(文献
5),例えば図5の装置からE手段50を除いたような
装置で,條件(放電々圧,放電々流,磁場,電極形状)
を最適に選ぶと(文献5,Fig6参照),いかなる圧
力においても放電が自続し,穴埋などに素晴らしい能力
を示す。例えば,図2に示すsubμmの直径(入口の
径は0.6μm,底は0.4μm,深さ1.2μm,し
がってアスペクト比は,.2である)の穴のある基板に
薄膜をつけると図1に示すように秀れたボトムカバレー
ジpが得られた,曲線Sはセルフスパッタ(3×10
−3Pa=2.3×10−5Torr)によるもので,
基板とターゲット間の距離Dstをエロージョンセンタ
の直径Der(ターゲット上で最もスパッタによって消
耗したところの直径,磁石などを回転させた場合も同
様)の2倍にとると極めて良いBが得られる,スパッタ
された原子は,図3に示すようにエロジョンセンタから
cosine lawに從ってほゞ放出される。これら
のうちエロージョンセンタ(↑印)からDeの中心に向
けて放出された原子はbやbのように互にビーム化
を助長するように動き,基板上ではほゞ基板に垂直に入
射しよい結果が得られたものと考えられている。曲線S
ではDst/Derの比を大きくしてもBは変らない
が,曲線Cでは,Dst/Derの比を大きくするとB
は低下する。これは残留気体によりスパッタされた原子
がスキャッタされるためである。このことは図4に示す
Bと圧力Pの関係からもわかる。これらのことからセル
フスパッタが有用な技術であることはよくわかるが,セ
ルフスパッタには,放電が一度停止すると,圧力を10
−3Torr程度迄上昇させ再スタートさせなければな
らないと云う致命的欠陥がある。しかし,セルフスパッ
タは高速(從来のDst=50mm程度と云った場合,
Cuで数μm/minも得られる)で,しかも良い穴埋
特性を得るにはDstを大きくすることが望ましい。そ
こで,この基板とターゲット間の空間にE手段を設け,
一層プラズマの高密度化をはかりこれらの欠点を補った
(從来は,Dstが小さいためこのようなことができな
かった)。
On the other hand, according to a recent study by the inventor (Reference 5), for example, in the device shown in FIG. 5, except the E means 50, the conditions (discharge pressure, discharge flow, magnetic field, electrode shape)
When the optimum is selected (Ref. 5, Fig. 6), the discharge continues at any pressure, and it shows a wonderful ability to fill holes. For example, as shown in FIG. 2, a thin film is formed on a substrate having a hole with a diameter of sub μm (inlet diameter is 0.6 μm, bottom is 0.4 μm, depth is 1.2 μm, and aspect ratio is 0.2). , An excellent bottom coverage p was obtained as shown in FIG. 1. The curve S shows self-sputtering (3 × 10
-3 Pa = 2.3 × 10 −5 Torr),
If the distance Dst between the substrate and the target is twice as large as the diameter Der of the erosion center (the diameter on the target where the sputter is most consumed, the same applies when the magnet is rotated), a very good B can be obtained. The generated atoms are almost released from the erosion center along the cosine law as shown in FIG. Of these, the atoms emitted from the erosion center (↑ mark) toward the center of De move to promote beam formation with each other like b 1 and b 2 and are incident on the substrate almost vertically to the substrate. It is believed that good results have been obtained. Curve S
B does not change even if the Dst / Der ratio is increased, but in curve C, if the Dst / Der ratio is increased, B
Will fall. This is because the sputtered atoms are scattered by the residual gas. This can be seen from the relationship between B and pressure P shown in FIG. From these facts, it is clear that self-sputtering is a useful technology, but self-sputtering requires a pressure of 10
There is a fatal defect that the temperature must be raised to about -3 Torr and restarted. However, self-sputtering is high speed (when it comes to Dst of about 50 mm,
With Cu, several μm / min can be obtained), and it is desirable to increase Dst in order to obtain good hole filling characteristics. Therefore, E means is provided in the space between the substrate and the target,
These deficiencies were compensated for by further increasing the density of plasma (in the case of Kirai, this was not possible because Dst was small).

【0008】図5に示す実施例において,10は真空容
器,11が反応室,12及び14が排気系,13が予備
排気室,15が反応室と予備排気室との仕切弁,16が
予備室扉,17が被処理体21を搬入搬出する機構であ
る。18はバリアブルリーフ,19はボンベで両者でガ
ス導入系を構成する。20は被処理体系で,22がホル
ダ,23が導入管,24が絶縁石,25が被処理体を所
定の電位に保つための電源(直流からマイクロ波迄何で
も必要により用いることができる。以下に用いる各種電
源についても同様に周波数は必要により定める),26
は冷媒の出し入れあるいは加熱のための用力や被処理体
の位置の変更を意味する矢印である。30は,HV−P
MCを構成するための陰極機構で,31は磁気機構で,
継鉄,中心磁石(陰極の放電にさらされない面(以下裏
面)に接するのが磁極)とからなる。周囲磁石と中心磁
石とで磁力線33を発生する。32はエロージョンセン
タ,34は絶縁石,35はターゲット電源(前述のよう
にDC〜μ波迄),36は冷媒の出し入れやDstの変
更を意味する。50はこの発明の特徴とするE手段であ
る。51がコイル電極,52はカップリングコイル,5
3は交流電源,54がコイルバイアス電源,55は絶縁
石である。この実施例では,コイル電極が磁力線に添う
ように作ってある。陰極30に対する陽極は,陰極より
高い電位にある全ての構造物が当るが,中でも陰極に最
も近くて,陰極の発する磁力線と交る位置(図のコイル
51のように)の電極に主たる陽極電流が流れる。例え
ばこうすると,ホルダ22を陰極30と同電位にしても
(つまり強力なバイアススパッタ)放電を自続させるこ
とができる。勿論もっと外の磁力線あるいは内側の磁力
線,さらには形状も円筒状,ラッパ状,ワンターンコイ
ルなど,材料もターゲット材あるいは,所望の合金を作
る(コイルもスパッタされることがある)ための各種材
料を用いるなど,いろいろな変更が可能である。エロー
ジョン近くの磁束密度も,コイルとの関係において低い
圧力において放電すればよいのであって,高い方が望ま
しいが経済的に見るとむやみと高い必要はない。
In the embodiment shown in FIG. 5, 10 is a vacuum container, 11 is a reaction chamber, 12 and 14 are exhaust systems, 13 is a preliminary exhaust chamber, 15 is a sluice valve between the reaction chamber and the preliminary exhaust chamber, and 16 is a spare valve. The chamber door 17 is a mechanism for loading and unloading the object to be processed 21. Reference numeral 18 is a variable leaf, and 19 is a cylinder, which together constitute a gas introduction system. 20 is a processing system, 22 is a holder, 23 is an introducing tube, 24 is an insulating stone, and 25 is a power source for keeping the object to be processed at a predetermined potential (anything from DC to microwave can be used if necessary. Similarly, the frequency of each power source used for
Is an arrow signifying a change in the power for putting in and out the refrigerant or for heating and the position of the object to be processed. 30 is HV-P
31 is a magnetic mechanism for forming the MC, 31 is a magnetic mechanism,
It consists of a yoke and a central magnet (a magnetic pole is in contact with the surface of the cathode that is not exposed to discharge (hereinafter referred to as the back surface)). Magnetic lines of force 33 are generated by the peripheral magnet and the central magnet. Reference numeral 32 is an erosion center, 34 is an insulating stone, 35 is a target power source (from DC to .mu.wave as described above), and 36 is a refrigerant inlet / outlet and Dst is changed. Reference numeral 50 is an E means which is a feature of the present invention. 51 is a coil electrode, 52 is a coupling coil, 5
3 is an AC power supply, 54 is a coil bias power supply, and 55 is an insulating stone. In this embodiment, the coil electrode is made to follow the magnetic field lines. The anode with respect to the cathode 30 is hit by all the structures having a higher potential than the cathode, but among them, the anode current that is the closest to the cathode and intersects with the magnetic field lines emitted by the cathode (such as the coil 51 in the figure) is the main anode current. Flows. For example, in this case, the discharge can be self-sustained even if the holder 22 has the same potential as the cathode 30 (that is, strong bias sputtering). Of course, the outer magnetic field lines or the inner magnetic field lines, as well as the shape of a cylinder, a trumpet, a one-turn coil, etc., can be used as a target material or various materials for making a desired alloy (the coil may be sputtered). Various changes are possible such as using. Regarding the magnetic flux density near the erosion, it suffices that the magnetic flux density near the erosion is discharged at a low pressure in relation to the coil. It is preferable that the magnetic flux density is high, but it is not necessary to be unnecessarily high from the economical point of view.

【0009】この装置の運転の基本的な部分は,通常の
装置と同様に(スパッタの場合平板マグネトロンスパッ
タ装置と同様に,エッチングの場合エッチング装置と同
様に,表面改質などの場合も,イオン源の場合もそれぞ
れ同様に運転する)行うので,その詳細は省略する。通
常のスパッタ状態(平板マグネトロンや文献4に求べら
れたHV−PMCのように)にして,E主段に13,5
6,27,40MH程度のRF電力をコイル51に供
給すると,放電々流や処理速度は飛躍的に増大した。セ
ルフスパッタのように放電が停止することはなく,從っ
て放電が停止したら,もう一度圧力を上昇させる必要は
なく致命的な欠陥を除くことができた。さらに文献5F
ig.6に示すような動作條件がせまいと云うことも大
巾に改善された。勿論HV−PMCに比転するとはるか
に高い放電々流と処理速度を得ることができた。陰極に
は,スパッタしたい場合にはスパッタしたい材料をター
ゲットとして用いる。特に化学的に活性な材料例えばフ
ッ素系の材料を用いるとエッチング系のイオンや活性種
を取り出すことができ,エッチング,表面改質,イオン
源などに用いることができる。勿論ガス導入系から導入
してもよい。
The basic part of the operation of this apparatus is the same as in a normal apparatus (in the case of sputtering, as in the flat plate magnetron sputtering apparatus, in the case of etching, like the etching apparatus, in the case of surface modification, etc. The same operation is performed for each of the power sources), and the details are omitted. In a normal sputtering state (like a flat plate magnetron or the HV-PMC found in Ref. 4), the E main stage has 13,5
When RF power of about 6, 27, 40 MH 2 was supplied to the coil 51, the discharge flow and the processing speed increased dramatically. Unlike self-sputtering, the discharge did not stop, and once the discharge stopped, it was not necessary to raise the pressure again and fatal defects could be eliminated. Further 5F
ig. The fact that the motion condition as shown in 6 is small has been greatly improved. Of course, when compared with HV-PMC, much higher discharge flow and treatment speed could be obtained. When sputtering is desired, the cathode is made of a material desired to be sputtered. In particular, when a chemically active material such as a fluorine-based material is used, etching ions and active species can be taken out, and the material can be used for etching, surface modification, ion source and the like. Of course, it may be introduced from the gas introduction system.

【0010】図6には,E手段として熱電子を用いた場
合の実施例を示してある。図中60は熱電子によるE手
段,61は反射板,62は熱陰極,63はグリッド,6
4はフィラメントトランス,65はフィラメントバイア
ス電源で通常反射板に61に対して正の電位を与へる。
66は反射板電源で反射板の電位を定める。これは陰極
30との関係を定める。67は加速電極63対するもの
で,通常フィラメント62に対して正に保つ。熱陰極か
らの豊富な電子により電子に十分なエネルギーを与える
ことができる。
FIG. 6 shows an embodiment in which thermoelectrons are used as E means. In the figure, 60 is E means by thermoelectrons, 61 is a reflector, 62 is a hot cathode, 63 is a grid, 6
Reference numeral 4 is a filament transformer, and 65 is a filament bias power source, which normally applies a positive potential to the reflecting plate 61.
Reference numeral 66 denotes a reflector power source which determines the potential of the reflector. This defines the relationship with the cathode 30. 67 is for the accelerating electrode 63 and is normally kept positive with respect to the filament 62. The abundant electrons from the hot cathode can give sufficient energy to the electrons.

【0011】図7には,ペニング放電を利用したE手段
を示してある。71は陽極,72は磁界であるが,図5
の実施例におけるように軸方向の磁界Bと同様に,ま
た紙面に直角の磁界Bのように印加してもよい。
FIG. 7 shows E means utilizing Penning discharge. Reference numeral 71 is an anode and 72 is a magnetic field.
Of in the same manner as the magnetic field B 1 in the axial direction as in Example, or may be applied as a right-angled magnetic field B 2 in the paper.

【0012】図8には,マイクロ波によるE手段の例を
示してある。80はマイクロ波形E手段,81はキャビ
ティー,82はホーン,83は窓,84はμ波電源接続
を示す矢印,BとBは磁場でその形状によって方向
を定める。勿論ECR條件を用いたり,それ以上の磁場
あるいは2倍,3倍を用いるのがよい。
FIG. 8 shows an example of E means using microwaves. 80 is a micro-waveform E means, 81 is a cavity, 82 is a horn, 83 is a window, 84 is an arrow indicating a μ-wave power supply connection, B 1 and B 2 are magnetic fields, and their directions are determined by their shapes. Of course, it is better to use the ECR condition, or use a magnetic field higher than that, or 2 or 3 times.

【0013】図9には別の実施例を示してある。90は
カゴ形コイルによるE手段,91はコイル,Bは磁界
である。
FIG. 9 shows another embodiment. 90 is an E means by a cage coil, 91 is a coil, and B 1 is a magnetic field.

【0014】以上の60〜90のE手段は,図5のE手
段50のところに設けて使用するが,磁場の形状と放行
及び電極の形状は,夛数の方式が可能で実験的に定める
のがよい。磁場の作り方も外部からのコイル,バケット
形磁石,反射板や陽極の内部に内蔵する,あるいは内蔵
した磁石を電極のすぐ近くに設けるなど夛くの設計が可
能である。この発明の放電装置の陰極やターゲットは消
耗が激しいので,特願平5−325705のような方
法,つまり図5の矢印36の方向に磁石や磁界設定手段
を動かして,陰極面の後退による磁場の補正を行うこと
が望ましい。この特願平5−325705は,本願と一
体となって実施されるのが望ましい。さらに陰極と基板
との距離を小さくするには,エロージョンセンタを幾重
にでもして設けるのがよい。このことは,文献4に図示
してある。前述の文献に述べてあることも本願と一体と
なって実施されることが望ましい。文献4には,この他
にも電極や磁界の形状について述べてあるが,これらも
利用できることは云う迄もない。
The E means 60 to 90 described above are used by being provided at the E means 50 in FIG. 5, but the shape of the magnetic field and the shape of the discharge and the electrode can be determined experimentally because a number of methods are possible. Is good. The magnetic field can also be designed in such a way that it is built in the coil, bucket magnet, reflector or anode from the outside, or the built-in magnet is installed in the immediate vicinity of the electrode. Since the cathode and target of the discharge device of the present invention are heavily consumed, a method such as Japanese Patent Application No. 5-325705, that is, a magnet or magnetic field setting means is moved in the direction of arrow 36 in FIG. It is desirable to correct This Japanese Patent Application No. 5-325705 is preferably implemented integrally with the present application. Furthermore, in order to reduce the distance between the cathode and the substrate, it is preferable to provide erosion centers in multiple layers. This is illustrated in document 4. It is desirable that what is described in the above-mentioned document is also implemented together with the present application. Reference 4 describes other shapes of electrodes and magnetic fields, but it goes without saying that these can also be used.

【0015】以上は,何ら限定的な意味をもつものでは
なく夛数の変形が可能である。各種実施例は互に組み合
けたりその一部を利用しあったり,永久磁石を電磁石に
変えたりしてさらに透れた製品を生むことができる。特
にこの放電装置は広範囲の装置やシステム,部品に応用
できる。例えば応用の一部が述べられているので参考に
するとよい(下記文献に) (1) 実用真空技術総覧:塙輝雄編,産業技術サービ
スセンター1990年11月26日発行 (2) 薄膜作成の基礎:発明者著,日刊工業新聞社刊
The above description has no limited meaning, and a large number of modifications are possible. The various embodiments can be combined with each other or some of them can be used together, or the permanent magnet can be replaced with an electromagnet to produce a more transparent product. In particular, this discharge device can be applied to a wide range of devices, systems and parts. For example, some of the applications are mentioned, so it may be helpful to refer to it. (1) Practical vacuum technology overview: Teruo Hanawa, Industrial Technology Service Center, issued November 26, 1990 (2) Basics of thin film formation : Inventor, Published by Nikkan Kogyo Shimbun

【0016】〔発明の効果〕以上説明したように,本発
明の放電装置によれば,高真空において秀れたステップ
カバレージ特性をもち,高速・高品位処理を行うことの
できる各種のシステム,例えばスパッタシステム,エッ
チングシステム,表面改質システムなどを提供できる。
[Effects of the Invention] As described above, according to the discharge device of the present invention, various systems having excellent step coverage characteristics in a high vacuum and capable of performing high-speed and high-quality processing, for example, We can provide sputtering system, etching system, surface modification system, etc.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第4図はセルフスパッタの特性を示す図 第5図は,この発明のコイルによE手段を用いた実施例
を示す図 第6図は,E手段として熱陰極を用いた実施例を示す図 第7図は,E手段としてペニング放電を用いた実施例を
示す図 第8図は,E手段としてマイクロ波放電を用いた実施例
を示す図 第9図は,E手段としてカゴ形コイルを用いた実施例を
示す図
1 to 4 are diagrams showing characteristics of self-sputtering. FIG. 5 is a diagram showing an embodiment using E means by the coil of the present invention. FIG. 6 is an implementation using hot cathode as E means. Fig. 7 shows an example. Fig. 7 shows an embodiment using Penning discharge as E means. Fig. 8 shows an embodiment using microwave discharge as E means. Fig. 9 shows basket as E means. The figure which shows the example which used the shape coil

【付号の説明】[Explanation of supplements]

10 真空容器 12 排気系 18と19 ガス導入系 30 陰極機構 31 磁気機構 33 磁力線 35 電力を供給する手段 50 コイルによるE手段(電子へのエネルギー供給手
段) 60 熱電子によるE手段 70 ペニング放電によるE手段 80 マイクロ波放電によるE手段 90 カゴ形コイルによるE手段 20 被処理体系 21 基板
10 vacuum container 12 exhaust system 18 and 19 gas introduction system 30 cathode mechanism 31 magnetic mechanism 33 magnetic field line 35 means for supplying electric power 50 E means by coil (energy supplying means for electrons) 60 E means by thermoelectrons 70 E by Penning discharge Means 80 E means by microwave discharge 90 E means by cage coil 20 Processed system 21 Substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内部を真空にできる真空容器,前記真空
容器の内部に設けられた陰極機構,前記陰極機構内の放
電にさらされる面(表面)の反対側の面(裏面)に磁気
機構を配し,前記磁気機構により陰極の放電にさらされ
る面の一部から出て他部に入る磁力線を発生せしめ陰極
表面上にほゞこれと平行な成分をもつ磁界を設定する手
段,前記陰極に電力を供給して表面にある磁界と少くと
も直交する成分を有する電界を発生する手段,放電空間
の圧力を調整することのできる放電装置において,前記
圧力,電力及び磁界を調整して前記陰極の近くに負空間
電荷放電を行わせ,かつ電子へのエネルギ供給手段を設
えることを特徴とする放電装置。
1. A vacuum vessel capable of forming a vacuum inside, a cathode mechanism provided inside the vacuum vessel, and a magnetic mechanism on a surface (rear surface) opposite to a surface (front surface) exposed to discharge in the cathode mechanism. Means for setting a magnetic field having a component substantially parallel to the cathode surface by generating magnetic field lines that come out from a part of the surface exposed to the discharge of the cathode and enter the other part by the magnetic mechanism. A means for supplying electric power to generate an electric field having a component at least orthogonal to the magnetic field on the surface, and a discharge device capable of adjusting the pressure of the discharge space, wherein the pressure, the power and the magnetic field are adjusted to A discharge device characterized in that a negative space charge discharge is performed in the vicinity and a means for supplying energy to electrons is provided.
【請求項2】 陰極と陽極との間の電位差が1000V
以上あることを特徴とする請求項1記載の放電装置。
2. The potential difference between the cathode and the anode is 1000V.
The discharge device according to claim 1, wherein there are the above.
【請求項3】 陰極面と平行な磁束密度成分が,放電空
間の少なくとも一部で,0.05テスラを越えることを
特徴とする請求項1記載の放電装置。
3. The discharge device according to claim 1, wherein the magnetic flux density component parallel to the cathode surface exceeds 0.05 Tesla in at least a part of the discharge space.
【請求項4】 磁気機構の磁極と磁極の間に凹みを設
け,磁束密度の最大の空間を利用したことを特徴とする
請求項1記載の放電装置。
4. The discharge device according to claim 1, wherein a recess is provided between the magnetic poles of the magnetic mechanism to utilize a space having a maximum magnetic flux density.
【請求項5】 面間角度が鈍角をなすことを特徴とする
請求項1記載の放電装置
5. The discharge device according to claim 1, wherein the face-to-face angle is an obtuse angle.
【請求項6】 請求項1記載の装置を用い,アスペクト
比2以上の微細な穴を,基板と陰極間の距離をエロージ
ョンセンタの直径の2倍以上に保って穴の内部に薄膜を
付着させることを特徴とするスパッタ成膜方法。
6. The apparatus according to claim 1, wherein a fine hole having an aspect ratio of 2 or more is kept at a distance between the substrate and the cathode at least twice the diameter of the erosion center to deposit a thin film inside the hole. A sputter film forming method characterized by the above.
JP6110592A 1994-03-25 1994-03-25 Electric discharge device Pending JPH07268624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6110592A JPH07268624A (en) 1994-03-25 1994-03-25 Electric discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6110592A JPH07268624A (en) 1994-03-25 1994-03-25 Electric discharge device

Publications (1)

Publication Number Publication Date
JPH07268624A true JPH07268624A (en) 1995-10-17

Family

ID=14539771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6110592A Pending JPH07268624A (en) 1994-03-25 1994-03-25 Electric discharge device

Country Status (1)

Country Link
JP (1) JPH07268624A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022461A (en) * 1995-11-13 2000-02-08 Anelva Corporation Sputtering apparatus
KR100301749B1 (en) * 1997-06-06 2001-09-22 니시히라 순지 Sputtering device and sputtering method
KR100299782B1 (en) * 1997-04-14 2001-09-22 니시히라 순지 Ionizing sputtering device
JP2013117072A (en) * 1996-05-09 2013-06-13 Applied Materials Inc Coil for generating plasma and for sputtering

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022461A (en) * 1995-11-13 2000-02-08 Anelva Corporation Sputtering apparatus
JP2013117072A (en) * 1996-05-09 2013-06-13 Applied Materials Inc Coil for generating plasma and for sputtering
JP2013256719A (en) * 1996-05-09 2013-12-26 Applied Materials Inc Coils for generating plasma and for sputtering
KR100299782B1 (en) * 1997-04-14 2001-09-22 니시히라 순지 Ionizing sputtering device
KR100301749B1 (en) * 1997-06-06 2001-09-22 니시히라 순지 Sputtering device and sputtering method

Similar Documents

Publication Publication Date Title
EP0726967B1 (en) A method for generation of a discharge in own vapors of a radio frequency electrode for sustained self-sputtering and evaporation of the electrode
US4911814A (en) Thin film forming apparatus and ion source utilizing sputtering with microwave plasma
US6896773B2 (en) High deposition rate sputtering
JPH073450A (en) Magnetron sputtering source for low-pressure operation
EP0148504A2 (en) Method and apparatus for sputtering
US6444099B1 (en) Ionizing sputtering method
JPH0816266B2 (en) Device for depositing material in high aspect ratio holes
US6929720B2 (en) Sputtering source for ionized physical vapor deposition of metals
JPS5845892B2 (en) Sputter deposition equipment
JPH03122273A (en) Film forming device using microwave
US6066242A (en) Conical sputtering target
JPH0641739A (en) High-vacuum and high-speed ion treatment device
JPH07268624A (en) Electric discharge device
US6235170B1 (en) Conical sputtering target
US6432286B1 (en) Conical sputtering target
JPH09272973A (en) Low pressure discharge sputtering device
JP2849771B2 (en) Sputter type ion source
JPH0699799B2 (en) Vacuum deposition method
JP2552697B2 (en) Ion source
JP2878997B2 (en) Vacuum deposition equipment
JP2984746B2 (en) Ion beam sputtering equipment
JP2566602B2 (en) Ion source
JPH05179438A (en) Sputtering device
JPS6353261B2 (en)
JPH0721993B2 (en) Sputter type ion source