JPH07268561A - High strength stainless steel excellent in hot workability and free from welding softening - Google Patents

High strength stainless steel excellent in hot workability and free from welding softening

Info

Publication number
JPH07268561A
JPH07268561A JP8113794A JP8113794A JPH07268561A JP H07268561 A JPH07268561 A JP H07268561A JP 8113794 A JP8113794 A JP 8113794A JP 8113794 A JP8113794 A JP 8113794A JP H07268561 A JPH07268561 A JP H07268561A
Authority
JP
Japan
Prior art keywords
less
stainless steel
steel
value
nieq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8113794A
Other languages
Japanese (ja)
Inventor
Takao Oda
田 敬 夫 小
Takashi Igawa
川 孝 井
Katsuhisa Miyakusu
楠 克 久 宮
Hiroshi Fujimoto
本 廣 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP8113794A priority Critical patent/JPH07268561A/en
Publication of JPH07268561A publication Critical patent/JPH07268561A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To impart excellent hot workability to a stainless steel and to prevent the generation of edge cracking caused by delta ferrite at the time of hot rolling by adding B to a high strength stainless steel. CONSTITUTION:This stainless steel has a compsn. contg., by weight, <=0.10% C, <=4.5% Si, <=5.0% Mn, <=0.04% P, <=0.020% S, 10.0 to 17.0% Cr, 3.0 to 10.0% Ni, <=0.10% N and 0.0010 to 0.0100% B, and the balance Fe with inevitable impurities, and in which the value of Nieq defined by the formula I is regulated to 13.0 to 17.5 and the value of deltaC expressed by the formula II lies from -20 to 20. If required, one or more kinds among Cu, Mo, Co or/and Ti, Nb and V are added thereto. This steel is subjected to inverse transforming treatment in the temp. range of 575 to 750 deg.C to form its structure into a composite phase one in which a fine austenitic phase is dispersed into a martensitic phase at a room temp., and it 15 used at >=1000N/mm<2> tensile strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両構体や建築物など
の構造材料に係り、適量のBを添加することにより熱間
圧延時の耳切れを防止することを特徴とする熱間加工性
に優れ溶接軟化のない高強度ステンレス鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural material such as a vehicle structure or a building, and by adding an appropriate amount of B, it is possible to prevent edge cutting during hot rolling. High strength stainless steel with excellent welding softening.

【0002】[0002]

【従来の技術】車両構体や建築物などの構造物は高強度
薄肉化による軽量化が推進されている。この目的達成の
ために要求される特性としては、高い耐力や引張強さお
よび構造物部材としての形状に曲げ加工を施したり、溶
接施工時の熱歪みを修正するための延性や、溶接施工時
の溶接入熱で溶接部の強度低下が少ないこと等が挙げら
れる。これらの要求に対し、例えば、特開昭63−21
0234号公報には、加工性に優れ溶接軟化のない高強
度ステンレス鋼の製造方法として、C:0.10%以
下、N:0.10%以下、Si:4.5%以下、Mn:
5.0%以下、Cu:1.0%以下、Ni:3.0〜1
0.0%、Cr:10〜17.0%で、残部Feおよび
不純物からなる組成で、かつNieq を限定式で成分限定
し、熱処理温度および時間を限定した、加工性に優れ溶
接軟化のない高強度ステンレス鋼の製造方法が開示され
ている。
2. Description of the Related Art Structures such as vehicle structures and buildings have been promoted to be lightweight due to high strength and thinness. The properties required to achieve this purpose include high yield strength, tensile strength, ductility for bending the shape as a structure member, correction of thermal strain during welding, and welding during welding. There is little decrease in the strength of the welded part due to the welding heat input. To meet these demands, for example, Japanese Patent Laid-Open No. 63-21
Japanese Patent No. 0234 discloses a method for producing high-strength stainless steel having excellent workability and no weld softening, C: 0.10% or less, N: 0.10% or less, Si: 4.5% or less, Mn:
5.0% or less, Cu: 1.0% or less, Ni: 3.0 to 1
0.0%, Cr: 10 to 17.0%, composition consisting of balance Fe and impurities, and Nieq component limited by limited formula, heat treatment temperature and time limited, excellent workability, no welding softening A method of making high strength stainless steel is disclosed.

【0003】ここで提案している特開昭63−2102
34号公報における熱処理条件は、575〜750℃の
温度範囲内で60分未満の範囲で熱処理を施すことによ
って、マルテンサイト相からオーステナイト相へ逆変態
を生じせしめて室温では、マルテンサイ相と微細なオー
ステナイト相の複相組織とする(逆変態処理)ことによ
り、加工性に優れ溶接軟化のない高強度ステンレス鋼と
するものである。
Japanese Patent Application Laid-Open No. 63-2102 proposed here.
The heat treatment condition in JP-A-34-34 is that a heat treatment is performed within a temperature range of 575 to 750 ° C. for less than 60 minutes to cause reverse transformation from a martensite phase to an austenite phase, and at room temperature, a martensite phase and a fine grain are formed. By forming a multi-phase structure of austenite phase (reverse transformation treatment), it is possible to obtain high-strength stainless steel having excellent workability and no weld softening.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の熱処理
に供される従来技術の材料は以下に述べる問題が残され
ている。耐力および引張強さなどの機械的性質ならびに
加工性に優れ、しかも、溶接軟化抵抗も高い特徴を付与
することができるが、Siなどのフェライト生成元素を
多量に含む熱処理素材鋼製造時の連続鋳造スラブを熱間
圧延する場合、熱延材端部より、δフェライトを起点に
した割れが生じ、歩留りの低下を生じる場合があった。
However, the conventional materials used for the above heat treatment have the following problems. It has excellent mechanical properties such as proof stress and tensile strength, as well as workability, and can be given high weld softening resistance, but continuous casting during the production of heat treated material steel containing a large amount of ferrite-forming elements such as Si. When the slab is hot-rolled, cracks may occur from the edge of the hot-rolled material starting from δ ferrite, which may reduce the yield.

【0005】このようなことから、熱間圧延時に生じた
割れを熱間圧延後に除去したり、δフェライト量を減少
させるため熱間圧延前に長時間加熱を施す方法や、熱間
加工性低下に影響を及ぼすSを溶解時に10ppm 以下にす
るなどの対策を講じる必要が生じ、これに対する経費は
多大のものであった。本発明はこのような熱間圧延時の
割れを解決するもので、熱間加工性に優れた溶接軟化の
ない高強度ステンレス鋼を提供するものである。
From the above, a crack generated during hot rolling is removed after hot rolling, a method of heating for a long time before hot rolling in order to reduce the amount of δ ferrite, or a reduction in hot workability. It was necessary to take measures such as reducing the amount of S, which influences to 10ppm or less, at the time of dissolution, and the cost for this was great. The present invention solves such cracks during hot rolling and provides a high-strength stainless steel excellent in hot workability and free from welding softening.

【0006】本発明の課題は熱間圧延時にδフェライト
を起点に生じる耳切れを解決するもので、熱間加工性に
優れた溶接軟化のない高強度ステンレス鋼を提供するこ
とにある。
[0006] An object of the present invention is to solve the problem of edge cutting that occurs from δ ferrite during hot rolling, and it is an object of the present invention to provide a high-strength stainless steel which is excellent in hot workability and does not cause welding softening.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、発明者らは詳細な検討を行った結果、適量のBを添
加すれば優れた熱間加工性を有する知見を得た。この知
見により、鋭意検討した結果、本発明を完成するに至っ
た。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the inventors have made a detailed study and as a result, have found that if an appropriate amount of B is added, it has excellent hot workability. As a result of intensive studies based on this knowledge, the present invention has been completed.

【0008】1. 重量%で、C :0.10%以下、
Si:4.5%以下、Mn:5.0%以下、P :0.
04%以下、S :0.020%以下、Cr:10.0
〜17.0%、Ni:3.0〜10.0%、N :0.
10%以下、B :0.0010〜0.0100%、を
含み、残部がFeと不可避的不純物からなり、かつ Nieq=Ni+Mn+0.5Cr+0.3Si+20(C+N) で定義されるNieq の値が13.0〜17.5 δc=-87-182(C+N)+16Si-3.0Ni+5Cr で定義されるδc の値が−20〜20の範囲にある熱間
加工性に優れ溶接軟化のない高強度ステンレス鋼。
1. % By weight, C: 0.10% or less,
Si: 4.5% or less, Mn: 5.0% or less, P: 0.
04% or less, S: 0.020% or less, Cr: 10.0
.About.17.0%, Ni: 3.0-10.0%, N: 0.
10% or less, B: 0.0010 to 0.0100%, the balance consisting of Fe and unavoidable impurities, and defined by Nieq = Ni + Mn + 0.5Cr + 0.3Si + 20 (C + N) Nieq value is 13.0 to 17.5 δc = -87-182 (C + N) + 16Si-3.0Ni + 5Cr Hot workability with δc value in the range of -20 to 20 High strength stainless steel with excellent welding softening.

【0009】2. 重量%で、C :0.10%以下、
Si:4.5%以下、Mn:5.0%以下、P :0.
04%以下、S :0.020%以下、Cr:10.0
〜17.0%、Ni:3.0〜10.0%、N :0.
10%以下、B :0.0010〜0.0100%、を
含み、さらにCu,Mo,Coの1種以上の合計が4.
0%以下含有し、残部がFeと不可避的不純物からな
り、かつ、 Nieq=Ni+Mn+0.5Cr+0.3Si+20(C+N)+Cu+Mo+0.2Co で定義されるNieq の値が13.0〜17.5 δc=-87-182(C+N)+16Si-3.0(Ni+Cu+Co)+5Cr で定義されるδc の値が−20〜20の範囲にある熱間
加工性に優れ溶接軟化のない高強度ステンレス鋼。
2. % By weight, C: 0.10% or less,
Si: 4.5% or less, Mn: 5.0% or less, P: 0.
04% or less, S: 0.020% or less, Cr: 10.0
.About.17.0%, Ni: 3.0-10.0%, N: 0.
10% or less, B: 0.0010 to 0.0100%, and the total of one or more of Cu, Mo, and Co is 4.
Nieq value of 0% or less, balance of Fe and inevitable impurities, and Nieq = Ni + Mn + 0.5Cr + 0.3Si + 20 (C + N) + Cu + Mo + 0.2Co Is defined as 13.0 to 17.5 δc = -87-182 (C + N) + 16Si-3.0 (Ni + Cu + Co) + 5Cr and the value of δc is in the range of -20 to 20 High-strength stainless steel with excellent workability and no welding softening.

【0010】3. 重量%で、C :0.10%以下、
Si:4.5%以下、Mn:5.0%以下P :0.0
4%以下、S :0.020%以下、Cr:10.0%
〜17.0%、Ni:3.0〜10.0%、N :0.
10%以下、B :0.0010〜0.0100%、を
含み、さらにTi,Nb,V,の1種以上の合計が1.
0%以下を含み、残部がFeと不可避的不純物からな
り、かつ、 Nieq=Ni+Mn+0.5Cr+0.3Si で定義されるNieq の値が13.0〜17.5 δc=-87+16Si-3.0(Ni+Cu+Co)+5Cr で定義されるδc の値が−20〜20の範囲にある熱間
加工性に優れ溶接軟化のない高強度ステンレス鋼。
3. % By weight, C: 0.10% or less,
Si: 4.5% or less, Mn: 5.0% or less P: 0.0
4% or less, S: 0.020% or less, Cr: 10.0%
.About.17.0%, Ni: 3.0-10.0%, N: 0.
10% or less, B: 0.0010 to 0.0100%, and the total of one or more of Ti, Nb, and V is 1.
0% or less, the balance consisting of Fe and unavoidable impurities, and the value of Nieq defined by Nieq = Ni + Mn + 0.5Cr + 0.3Si is 13.0 to 17.5 δc = -87 + 16Si. High-strength stainless steel with excellent hot workability and no weld softening, with a δc value defined by -3.0 (Ni + Cu + Co) + 5Cr in the range of -20 to 20.

【0011】4. 重量%で、C :0.10%以下、
Si:4.5%以下、Mn:5.0%以下P :0.0
4%以下、S :0.020%以下、Cr:10.0%
〜17.0%、Ni:3.0〜10.0%、N :0.
10%以下、B :0.0010〜0.0100%、を
含み、さらにCu,Mo,Coの1種以上の合計が4.
0%以下、またTi,Nb,V,の1種以上の合計が
1.0%以下含有し、残部がFeと不可避的不純物から
なり、かつ、 Nieq=Ni+Mn+0.5Cr+0.3Si+Cu+Mo+0.2Co で定義されるNieq の値が13.0〜17.5 δc=-87+16Si-3.0(Ni+Cu+Co)+5Cr で定義されるδc の値が−20〜20の範囲にある熱間
加工性に優れ溶接軟化のない高強度ステンレス鋼。
4. % By weight, C: 0.10% or less,
Si: 4.5% or less, Mn: 5.0% or less P: 0.0
4% or less, S: 0.020% or less, Cr: 10.0%
.About.17.0%, Ni: 3.0-10.0%, N: 0.
10% or less, B: 0.0010 to 0.0100%, and the total of one or more of Cu, Mo, and Co is 4.
0% or less, 1.0% or less of the total of one or more of Ti, Nb, and V, the balance consisting of Fe and inevitable impurities, and Nieq = Ni + Mn + 0.5Cr + 0.3Si + The Nieq value defined by Cu + Mo + 0.2Co is 13.0 to 17.5 δc = -87 + 16Si-3.0 (Ni + Cu + Co) + 5Cr and the δc value is -20 to 20. High strength stainless steel with excellent hot workability and no welding softening in the range of.

【0012】[0012]

【作用】上記したような本発明について、その化学的成
分組成範囲について説明すると、以下のごとくである。
The chemical composition of the present invention as described above will be described as follows.

【0013】C:Cはオーステナイト形成元素であり、
逆変態処理を施す場合の高温でのオーステナイト相形成
に有効であり、逆変態処理後のオーステナイト相および
マルテンサイト相の強化に有効であるが、多すぎると伸
び率を低下させ、また、溶接部の耐食性を劣化させるの
で、0.10%を上限とする。
C: C is an austenite forming element,
It is effective for forming austenite phase at high temperature when performing reverse transformation treatment, and is effective for strengthening austenite phase and martensite phase after reverse transformation treatment. 0.10% is made the upper limit because it deteriorates the corrosion resistance.

【0014】N:NはCと同様にオーステナイト形成元
素であり、高温でのオーステナイト相形成に有効であ
り、逆変態処理後のオーステナイト相の強度を上げ、強
化に有効であるが、多すぎると伸び率を低下させるので
0.10%を上限とする。
N: N, like C, is an austenite forming element, is effective in forming an austenite phase at high temperatures, and is effective in increasing and strengthening the strength of the austenite phase after reverse transformation treatment, but if too much, Since the elongation rate is lowered, 0.10% is made the upper limit.

【0015】Si:Siは逆変態処理後のマルテンサイ
ト相およびオーステナイト相の強化に有効であるが、多
すぎると、凝固時や溶接時の凝固割れを促進したり、熱
間加工性を著しく阻害するので4.5%を上限とする。
Si: Si is effective in strengthening the martensite phase and austenite phase after reverse transformation treatment, but if too much, it promotes solidification cracking during solidification or welding, and significantly impairs hot workability. Therefore, the upper limit is 4.5%.

【0016】Mn:Mnはオーステナイト形成元素であ
り、Ms点の調整に必要な元素であるが、多すぎると製
鋼時に弊害となるので、5.0%を上限とする。
Mn: Mn is an austenite forming element and is an element necessary for adjusting the Ms point, but if it is too much, it will be a harmful effect during steelmaking, so 5.0% is made the upper limit.

【0017】Cr:Crは耐食性を付与する基本的成分
であり、10%未満ではその効果がなく一方17%を越
えると、高温でオーステナイト単相もしくはオーステナ
イトを主体とする金属組織を得るのにオーステナイト形
成元素を多量に必要とし、その結果、常温での所望の組
織が得られないので17.0%を上限とする。
Cr: Cr is a basic component which imparts corrosion resistance. When it is less than 10%, it has no effect. On the other hand, when it exceeds 17%, austenite single phase or a metal structure mainly composed of austenite is obtained at high temperature. Since a large amount of forming element is required, and as a result, a desired structure cannot be obtained at room temperature, the upper limit is 17.0%.

【0018】Ni:Niはオーステナイト形成元素であ
り、高温での金属組織のオーステナイト化および逆変態
処理後の室温冷却時のオーステナイト量の調整に必要な
元素である。他の元素の含有量によって必要なNiの含
有量は異なってくる。高温でのオーステナイト化とMs
点調整のためには少なくとも約3%を必要とするが、他
の成分の量を低減してもNiが約10%を越えると所望
の組織が得られなくなる。
Ni: Ni is an austenite-forming element, and is an element necessary for adjusting the amount of austenite at room temperature cooling after the austenitization of the metal structure at high temperature and the reverse transformation treatment. The required Ni content differs depending on the contents of other elements. Austenitization and Ms at high temperature
At least about 3% is required for the point adjustment, but even if the amount of other components is reduced, if Ni exceeds about 10%, the desired structure cannot be obtained.

【0019】P:Pは溶製時に原料、副原料から混入し
てくる不可避的不純物であるが、多く含まれると、鋼を
脆くするので、0.04%を上限とする。
P: P is an unavoidable impurity mixed from raw materials and auxiliary raw materials during smelting, but if a large amount is contained, the steel becomes brittle, so 0.04% is made the upper limit.

【0020】S:Sも溶製時に原料、副原料から混入し
てくる不可避的不純物であるが、多く含まれると、鋼を
脆くし、熱間加工性を阻害するので、0.020%を上
限とする。
S: S is also an unavoidable impurity mixed from raw materials and auxiliary raw materials during smelting, but if contained in a large amount, it embrittles steel and impairs hot workability, so 0.020% is added. The upper limit.

【0021】B:本発明においてもっとも重要である、
Bの熱間加工性への影響について調査した結果の一例と
して、鋼の組成および熱間圧延での耳切れ量を表1に示
す。δc が約11のB無添加鋼および、Bを0.000
4、0.0010、0.0048、0.0098、0.
0176%添加した鋼である。B添加量0.0004%
では熱間圧延時に熱延材端部より耳切れが発生してお
り、0.0010%以上添加すると耳切れは認められな
い。したがって、0.0010%を下限とする。このB
の熱間加工性改善効果の理由について、現時点では必ず
しも明らかではないが、δフェライト量およびδフェラ
イトの大きさに及ぼすBの影響を図1、図2に示す。こ
れからわかるように、δフェライトの量および大きさは
0.0010%の添加によっても大きく変化し、0.0
100%以上ではその変化は飽和する。一方、多量のB
添加は表面疵の発生を招くなどの弊害をもたらすので、
Bの上限は0.0100%とする。
B: Most important in the present invention,
As an example of the results of the investigation of the effect of B on the hot workability, Table 1 shows the composition of steel and the amount of edge cutting in hot rolling. δc of about 11 B-free steel and B of 0.000
4, 0.0010, 0.0048, 0.0098, 0.
It is a steel added with 0176%. B addition amount 0.0004%
In the hot rolling, edge cutting occurred from the end of the hot rolled material, and when 0.0010% or more was added, edge cutting was not observed. Therefore, the lower limit is 0.0010%. This B
Although the reason for the effect of improving hot workability is not always clear at this point in time, the influence of B on the amount of δ ferrite and the size of δ ferrite is shown in FIGS. 1 and 2. As can be seen from the above, the amount and size of δ-ferrite significantly change even with the addition of 0.0010%, and
At 100% or more, the change is saturated. On the other hand, a large amount of B
Since the addition causes adverse effects such as the occurrence of surface defects,
The upper limit of B is 0.0100%.

【0022】[0022]

【表1】 [Table 1]

【0023】Cu:Cuは元来耐食性を向上させるのに
有効な元素であるが、本願発明においてはMs点を低下
させるのに有効である。約4.0%を越えると、熱間加
工性を著しく害するので4%を上限とする。
Cu: Cu is an element which is originally effective in improving the corrosion resistance, but is effective in lowering the Ms point in the present invention. If it exceeds about 4.0%, the hot workability is significantly impaired, so the upper limit is 4%.

【0024】Mo:Moも耐食性を向上させ、オーステ
ナイトの強度を上昇させ、Ms点を低下させるのに有効
であるが、高価なため鋼材の価格を上昇させるので4.
0%に限定される。
Mo: Mo is also effective in improving the corrosion resistance, increasing the strength of austenite, and lowering the Ms point, but since it is expensive, it raises the price of steel materials, so 4.
Limited to 0%.

【0025】Co:Coは高温域でのオーステナイト化
作用が大きい割にMs点を過度に低下させない有効成分
である。Cr含有量の大きい系の組成調整に非常に有効
な元素であるが、多すぎると、鋼の価格を上昇させるの
で4.0%に限定する。
Co: Co is an effective component that does not excessively lower the Ms point, despite its large austenitizing effect in the high temperature range. It is a very effective element for adjusting the composition of a system having a large Cr content, but if it is too much, it will increase the cost of steel, so it is limited to 4.0%.

【0026】以上のCu、Mo、Coの3元素はいずれ
も耐食性を向上させながら、マルテンサイト形成能力を
他の成分との関係において調整するのに有効である。こ
の意味において均等物である。
All of the above three elements of Cu, Mo and Co are effective for adjusting the martensite forming ability in relation to other components while improving the corrosion resistance. Equivalent in this sense.

【0027】Ti:Tiは炭窒化物形成元素であり、溶
接時のCr炭化物の析出によるCr欠乏層発生の抑制や
オーステナイト相の結晶粒成長の抑制に有効な元素であ
るが、多すぎると表面疵の原因となったり、溶接時にス
カム形成の原因となるので1.0%を上限とする。
Ti: Ti is a carbonitride forming element, and is an element effective for suppressing the generation of a Cr-deficient layer due to the precipitation of Cr carbide during welding and suppressing the growth of austenite phase crystal grains. The upper limit is 1.0% because it may cause flaws or scum formation during welding.

【0028】Nb:Nbは溶接時のCr炭化物の析出に
よるCr欠乏層発生の抑制やオーステナイト相の結晶粒
成長の抑制に有効な元素であるが、多すぎると鋳造時や
溶接時の凝固割れを促進するばかりでなく、材料の延性
をも害するので1.0%を上限とする。
Nb: Nb is an element effective in suppressing the generation of a Cr-depleted layer due to the precipitation of Cr carbide during welding and in suppressing the growth of austenite phase crystal grains, but if it is too much, it causes solidification cracking during casting or welding. The upper limit is 1.0% because it not only accelerates but also impairs the ductility of the material.

【0029】V:Vは溶接時のCr炭化物の析出による
Cr欠乏層発生の抑制やオーステナイト相の結晶粒成長
の抑制に有効な元素であるが、多すぎると材料の延性を
害するので1.0%を上限とする。
V: V is an element effective for suppressing the generation of a Cr-depleted layer due to the precipitation of Cr carbide during welding and suppressing the growth of austenite phase crystal grains, but if too much V impairs the ductility of the material, it is 1.0 % Is the upper limit.

【0030】以上のTi,Nb,V,の3元素は、炭化
物、窒化物形成元素であって、いずれもオーステナイト
の結晶粒成長を抑制し、その効果が著しい。その意味で
均等物である。
The above three elements of Ti, Nb, and V are carbide and nitride forming elements, and both suppress the grain growth of austenite, and their effects are remarkable. In that sense, they are equivalent.

【0031】本発明鋼の組成範囲内にあっても、オース
テナイト量の指標となる Nieq=Ni+Mn+0.5Cr+0.3Si+20(C+N)+Cu+Mo+0.2Co で定義されるニッケル当量値が13未満の鋼はMs点が高
すぎて、特開昭63−210234号公報において提案
した、加工性に優れ溶接軟化のない高強度ステンレス鋼
の製造方法に示す、熱処理を施しても所望の高い伸びを
達成できない。また、この値が17.5より大きい鋼は
溶接のような熱履歴を受けると溶接部が軟化し、目的と
する高強度部材が得られない。ニッケル当量値の式は、
各成分元素の変態に対する寄与度を考慮してNiのオー
ステナイト形成能を基準として係数を定めてNi量に換
算したものである。
Even within the composition range of the steel of the present invention, it is defined as Nieq = Ni + Mn + 0.5Cr + 0.3Si + 20 (C + N) + Cu + Mo + 0.2Co which is an index of the amount of austenite. Steel having a nickel equivalent value of less than 13 has a too high Ms point, and is subjected to heat treatment as shown in the method for producing high-strength stainless steel excellent in workability and free from welding softening proposed in JP-A-63-210234. Also fails to achieve the desired high elongation. Further, in the case of steel having this value larger than 17.5, the welded part is softened when subjected to heat history such as welding, and the desired high strength member cannot be obtained. The formula for the nickel equivalent value is
In consideration of the contribution of each component element to the transformation, a coefficient is determined based on the austenite forming ability of Ni and converted into the amount of Ni.

【0032】また、鋳造スラブのδフェライト量の指標
となる、 δc=-87-182(C+N)+16Si-3.0(Ni+Cu+Co)+5Cr で定義されるδc の値が−20以下の場合は熱間圧延時
にオーステナイト相が多いためB添加しなくても熱間圧
延時の耳切れは認められないため、B添加の必要はなく
下限を−20とした。また、δc の値が20以上の場合
は耳切れの起点となるδフェライトが多く析出しB添加
による改善効果が発生しないため上限を20とした。
The value of δc defined by δc = -87-182 (C + N) + 16Si-3.0 (Ni + Cu + Co) + 5Cr, which is an index of the amount of δ ferrite in the cast slab, is -20. In the following cases, since there are many austenite phases at the time of hot rolling, the edge cutting at the time of hot rolling is not recognized even if B is not added. Therefore, it is not necessary to add B and the lower limit was made -20. Further, when the value of δc is 20 or more, a large amount of δ ferrite, which is a starting point of edge cutting, is precipitated and the improvement effect by the addition of B does not occur, so the upper limit was made 20.

【0033】[0033]

【実施例】以下、実施例により本発明を具体的に例示す
る。本発明および比較例の組成を表2に示す。試料No.
1〜No.10は本発明の対象とする組成を有する鋼であ
る。No.11〜No.14鋼は比較例の素材鋼で、No.1
1鋼はNieq およびδc も範囲内にあるがBが添加され
ていない。No.12、No.13、No.14鋼の各成分組
成は規定された組成範囲内にあるが、No.12およびN
o.13鋼はNieq が18.3および12.4であり本
発明範囲外である。また、No.14鋼はδc が22.0
と本発明範囲外である。
EXAMPLES The present invention will be specifically described below with reference to Examples. The compositions of the present invention and comparative examples are shown in Table 2. Sample No.
1-No. 10 is steel having the composition targeted by the present invention. No. 11-No. Steel No. 14 is a comparative example steel, and No. 14 1
Steel No. 1 has Nieq and δc within the range, but B is not added. No. 12, No. 13, No. The composition of each of the No. 14 steels is within the specified composition range. 12 and N
o. The No. 13 steels have Nieq of 18.3 and 12.4, which are outside the scope of the present invention. In addition, No. 14 steel has δc of 22.0
That is outside the scope of the present invention.

【0034】[0034]

【表2】 [Table 2]

【0035】試料作製の方法は図3に示した。試料鋼は
30kg鋼塊を真空高周波炉で溶製し、鋼塊の柱状晶部
より板厚33mm×幅100mm×長さ150mmに切
出して熱間圧延を実施した。また、熱間引張試験片とし
て15mm角×長さ110mmを切出した後、1220
℃×2hrの熱処理を施し試験を行った。熱間圧延は抽
出温度1220℃で2時間均熱処理した後、厚さ6mm
まで5パスにて仕上げた。その後、1050℃×在炉6
minの焼鈍、酸洗を施し、700℃×均熱0minの
逆変態処理後、酸洗した。この材料を用いて引張試験を
行なった。また、熱延板を用いて光学顕微鏡によりδフ
ェライトの量および径を測定した。
The method of sample preparation is shown in FIG. As a sample steel, a 30 kg steel ingot was melted in a vacuum high frequency furnace, cut into a plate thickness of 33 mm × width 100 mm × length 150 mm from a columnar crystal part of the steel ingot, and hot rolling was performed. Moreover, after cutting out a 15 mm square × 110 mm length as a hot tensile test piece, 1220
A test was performed by applying a heat treatment of ° C x 2 hours. For hot rolling, after soaking at an extraction temperature of 1220 ° C for 2 hours, a thickness of 6 mm
Finished in 5 passes. After that, 1050 ℃ x 6 in the furnace
Annealing for min and pickling were performed, and after reverse transformation treatment at 700 ° C. × soaking for 0 min, pickling was performed. A tensile test was performed using this material. Further, the amount and the diameter of δ ferrite were measured by an optical microscope using a hot rolled plate.

【0036】実施例の熱間圧延結果および熱延板のδフ
ェライト量,粒径、1000℃での熱間引張試験におけ
る絞り率、逆変態処理後の機械的性質をまとめて表3に
示す。表3によれば熱間圧延における仕上げ温度はいず
れも940℃前後である。熱間圧延時の本発明鋼No.1〜
No.10の耳切れは認められず、熱間圧延後のδフェライ
ト量は1〜8%と少量であるとともに、δフェライト粒
径は6〜15μmと微細である。また、本発明鋼の熱間
引張試験1000℃における絞り率は、60%以上を有してお
り、熱間加工性に優れるとともに逆変態処理後の機械的
性質においても本発明鋼は高強度、高延性を有する。こ
れに対し、比較鋼No.11はBを含有していないためδ
フェライトの量が多く、径も大きい。したがって、耳切
れも発生し、熱間引張試験1000℃による絞り率は50%以
下である。また、比較鋼No.14はBを含有している
が、本発明範囲外のδc が21.7と大きいため比較鋼
No.11以上にδフェライトの量は多く、径も大きい。
したがって、耳切れも認められ、絞り率も38%と低い。
一方、比較鋼No.12,No.13鋼は、本発明範囲外の
Nieq であるためδフェライト量は少なく耳切れは認め
られないが、No.12鋼については耐力および引張強さ
が低く、No.13鋼は伸びが低い。
Table 3 shows the results of hot rolling, the amount of δ ferrite in the hot rolled sheet, the grain size, the reduction ratio in the hot tensile test at 1000 ° C., and the mechanical properties after the reverse transformation treatment in the examples. According to Table 3, the finishing temperatures in hot rolling are all around 940 ° C. Steel No. 1 of the present invention during hot rolling
No. No edge cutting of 10 was observed, the amount of δ ferrite after hot rolling was as small as 1 to 8%, and the δ ferrite grain size was as fine as 6 to 15 μm. Further, the drawing ratio of the present invention steel in the hot tensile test at 1000 ° C. is 60% or more, and the present invention steel has high strength in the mechanical properties after the reverse transformation treatment as well as being excellent in hot workability. It has high ductility. On the other hand, comparative steel No. 11 does not contain B, so δ
Large amount of ferrite and large diameter. Therefore, edge cutting also occurs, and the drawing ratio by the hot tensile test at 1000 ° C is 50% or less. In addition, comparative steel No. No. 14 contained B, but δc outside the range of the present invention was as large as 21.7, so comparative steel
No. The amount of δ ferrite is larger than 11 and the diameter is also large.
Therefore, deafening of the ears is also recognized, and the drawing ratio is as low as 38%.
On the other hand, comparative steel No. 12, No. The No. 13 steel has a Nieq content outside the range of the present invention, so the amount of δ-ferrite is small and no cutting edge is observed. No. 12 steel has low yield strength and tensile strength, No. 13 steel has low elongation.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】以上、詳述したように、本発明によれば
適量のBを添加することにより、熱間加工性の優れた高
強度ステンレス鋼が得られ、本分野への本発明がもたら
す効果は大きなものがある。
As described above in detail, according to the present invention, by adding an appropriate amount of B, a high-strength stainless steel excellent in hot workability can be obtained, which brings the present invention to this field. The effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間圧延後のδフェライト量とB含有量の関係
の説明図である。
FIG. 1 is an explanatory diagram of a relationship between a δ ferrite content and a B content after hot rolling.

【図2】熱間圧延後のδフェライト径とB含有量の関係
の説明図である。
FIG. 2 is an explanatory diagram of a relationship between a δ ferrite diameter after hot rolling and a B content.

【図3】本発明における試料の作製方法を示す図であ
る。
FIG. 3 is a diagram showing a method for producing a sample in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤 本 廣 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiro Fujimoto 4976 Nomura-Minamimachi, Shinnanyo-shi, Yamaguchi Nisshin Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.10%以下、 Si:4.5%以下、 Mn:5.0%以下、 P :0.04%以下、 S :0.020%以下、 Cr:10.0〜17.0%、 Ni:3.0〜10.0%、 N :0.10%以下、 B :0.0010〜0.0100%、を含み、残部が
Feと不可避的不純物からなり、かつ、 Nieq=Ni+Mn+0.5Cr+0.3Si+20(C+N) で定義されるNieq の値が13.0〜17.5 δc=-87-182(C+N)+16Si-3.0Ni+5Cr で定義されるδc の値が−20〜20の範囲にある熱間
加工性に優れ溶接軟化のない高強度ステンレス鋼。
1. By weight%, C: 0.10% or less, Si: 4.5% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.020% or less, Cr : 10.0 to 17.0%, Ni: 3.0 to 10.0%, N: 0.10% or less, B: 0.0010 to 0.0100%, with the balance being Fe and unavoidable impurities And the value of Nieq defined by Nieq = Ni + Mn + 0.5Cr + 0.3Si + 20 (C + N) is 13.0 to 17.5 δc = -87-182 (C + N) + High-strength stainless steel with excellent hot workability and δc value defined by 16Si-3.0Ni + 5Cr in the range of -20 to 20 without weld softening.
【請求項2】 重量%で、 C :0.10%以下、 Si:4.5%以下、 Mn:5.0%以下、 P :0.04%以下、 S :0.020%以下、 Cr:10.0〜17.0%、 Ni:3.0〜10.0%、 N :0.10%以下、 B :0.0010〜0.0100%、を含み、さらに
Cu,Mo,Coの1種以上の合計が4.0%以下含有
し、残部がFeと不可避的不純物からなり、かつ、 Nieq=Ni+Mn+0.5Cr+0.3Si+20(C+N)+Cu+Mo+0.2Co で定義されるNieq の値が13.0〜17.5 δc=-87-182(C+N)+16Si-3.0(Ni+Cu+Co)+5Cr で定義されるδc の値が−20〜20の範囲にある熱間
加工性に優れ溶接軟化のない高強度ステンレス鋼。
2. In% by weight, C: 0.10% or less, Si: 4.5% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.020% or less, Cr : 10.0 to 17.0%, Ni: 3.0 to 10.0%, N: 0.10% or less, B: 0.0010 to 0.0100%, and further Cu, Mo, Co The total content of one or more kinds is 4.0% or less, the balance is Fe and unavoidable impurities, and Nieq = Ni + Mn + 0.5Cr + 0.3Si + 20 (C + N) + Cu + Mo + 0.2. The value of Nieq defined by Co is 13.0 to 17.5 δc = -87-182 (C + N) + 16Si-3.0 (Ni + Cu + Co) +5 The value of δc defined by Cr is -20. High-strength stainless steel with excellent hot workability and no welding softening in the range of up to 20.
【請求項3】 重量%で、 C :0.10%以下、 Si:4.5%以下、 Mn:5.0%以下、 P :0.04%以下、 S :0.020%以下、 Cr:10.0〜17.0%、 Ni:3.0〜10.0%、 N :0.10%以下、 B :0.0010〜0.0100%、を含み、さらに
Ti,Nb,V,の1種以上の合計が1.0%以下含有
し、残部がFeと不可避的不純物からなり、かつ、 Nieq=Ni+Mn+0.5Cr+0.3Si で定義されるNieq の値が13.0〜17.5 δc=-87+16Si-3.0(Ni+Cu+Co)+5Cr で定義されるδc の値が−20〜20の範囲にある熱間
加工性に優れ溶接軟化のない高強度ステンレス鋼。
3. In% by weight, C: 0.10% or less, Si: 4.5% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.020% or less, Cr 10.0 to 17.0%, Ni: 3.0 to 10.0%, N: 0.10% or less, B: 0.0010 to 0.0100%, and further Ti, Nb, V, The total content of one or more of Ni is 1.0% or less, the balance is Fe and inevitable impurities, and the value of Nieq defined by Nieq = Ni + Mn + 0.5Cr + 0.3Si is 13.0 to 17.5 δc = -87 + 16Si-3.0 (Ni + Cu + Co) + 5Cr with δc value in the range of -20 to 20 High strength stainless steel with excellent hot workability and no weld softening .
【請求項4】 重量%で、 C :0.10%以下、 Si:4.5%以下、 Mn:5.0%以下、 P :0.04%以下、 S :0.020%以下、 Cr:10.0〜17.0%、 Ni:3.0〜10.0%、 N :0.10%以下、 B :0.0010〜0.0100%、を含み、さらに
Cu,Mo,Coの1種以上の合計が4.0%以下、ま
たTi,Nb,V,の1種以上の合計が1.0%以下含
有し、残部がFeと不可避的不純物からなり、かつ、 Nieq=Ni+Mn+0.5Cr+0.3Si+Cu+Mo+0.2Co で定義されるNieq の値が13.0〜17.5 δc=-87+16Si-3.0(Ni+Cu+Co)+5Cr で定義されるδc の値が−20〜20の範囲にある熱間
加工性に優れ溶接軟化のない高強度ステンレス鋼。
4. In% by weight, C: 0.10% or less, Si: 4.5% or less, Mn: 5.0% or less, P: 0.04% or less, S: 0.020% or less, Cr : 10.0 to 17.0%, Ni: 3.0 to 10.0%, N: 0.10% or less, B: 0.0010 to 0.0100%, and further Cu, Mo, Co The total content of one or more elements is 4.0% or less, the total content of one or more elements of Ti, Nb, V is 1.0% or less, the balance is Fe and inevitable impurities, and Nieq = Ni + The value of Nieq defined by Mn + 0.5Cr + 0.3Si + Cu + Mo + 0.2Co is defined by 13.0 to 17.5 δc = -87 + 16Si-3.0 (Ni + Cu + Co) + 5Cr High strength stainless steel with excellent δc value in the range of -20 to 20 with excellent hot workability and no welding softening.
JP8113794A 1994-03-29 1994-03-29 High strength stainless steel excellent in hot workability and free from welding softening Withdrawn JPH07268561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8113794A JPH07268561A (en) 1994-03-29 1994-03-29 High strength stainless steel excellent in hot workability and free from welding softening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8113794A JPH07268561A (en) 1994-03-29 1994-03-29 High strength stainless steel excellent in hot workability and free from welding softening

Publications (1)

Publication Number Publication Date
JPH07268561A true JPH07268561A (en) 1995-10-17

Family

ID=13738021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8113794A Withdrawn JPH07268561A (en) 1994-03-29 1994-03-29 High strength stainless steel excellent in hot workability and free from welding softening

Country Status (1)

Country Link
JP (1) JPH07268561A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997039158A1 (en) * 1996-04-12 1997-10-23 Abb Research Ltd. Martensitic-austentitic steel
JP2001271140A (en) * 2000-01-21 2001-10-02 Nisshin Steel Co Ltd High strength and high toughness martensitic stainless steel sheet, method for suppressing edge cutting caused by cold rolling and method for producing steel sheet
JP2007224425A (en) * 2007-05-17 2007-09-06 Nisshin Steel Co Ltd Austenitic stainless steel superior in high temperature salt corrosion resistance
WO2008126911A1 (en) 2007-04-05 2008-10-23 Nippon Steel Corporation Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997039158A1 (en) * 1996-04-12 1997-10-23 Abb Research Ltd. Martensitic-austentitic steel
JP2001271140A (en) * 2000-01-21 2001-10-02 Nisshin Steel Co Ltd High strength and high toughness martensitic stainless steel sheet, method for suppressing edge cutting caused by cold rolling and method for producing steel sheet
WO2008126911A1 (en) 2007-04-05 2008-10-23 Nippon Steel Corporation Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
JP2007224425A (en) * 2007-05-17 2007-09-06 Nisshin Steel Co Ltd Austenitic stainless steel superior in high temperature salt corrosion resistance

Similar Documents

Publication Publication Date Title
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP5157257B2 (en) Low yield ratio steel sheet
JP2765392B2 (en) Method for manufacturing hot-rolled duplex stainless steel strip
JP3961341B2 (en) Manufacturing method of high strength duplex stainless steel sheet for welded structures
JP2007253199A (en) Thin steel plate having excellent surface cracking resistance during hot rolling, and its manufacturing method
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH06287635A (en) Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JPH07268561A (en) High strength stainless steel excellent in hot workability and free from welding softening
JPS62199721A (en) Production of steel sheet or strip of ferritic stainless steel having good workability
JPS63213619A (en) Manufacture of high strength stainless steel material having superior workability and causing no softening due to welding
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JP3243987B2 (en) Manufacturing method of high strength and high corrosion resistance martensitic stainless steel
JPH05195054A (en) Production of high strength stainless steel material for structural use excellent in workability
JP2581267B2 (en) Method for producing high strength, high ductility 13Cr stainless steel
WO2019039339A1 (en) Method for production of ni-containing steel sheet
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPH0841594A (en) Dual phase stainless steel sheet excellent in elongation characteristic and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605