JPH07267729A - Production of grain boundary insulated semiconductor porcelain - Google Patents

Production of grain boundary insulated semiconductor porcelain

Info

Publication number
JPH07267729A
JPH07267729A JP6080899A JP8089994A JPH07267729A JP H07267729 A JPH07267729 A JP H07267729A JP 6080899 A JP6080899 A JP 6080899A JP 8089994 A JP8089994 A JP 8089994A JP H07267729 A JPH07267729 A JP H07267729A
Authority
JP
Japan
Prior art keywords
grain boundary
germanium
compacts
molded body
semiconductor porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6080899A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tanaka
喜佳 田中
Yoshiaki Iguchi
喜章 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP6080899A priority Critical patent/JPH07267729A/en
Publication of JPH07267729A publication Critical patent/JPH07267729A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To keep the action of Ge uniform and to reduce the cost of production by firing compacts of a grain boundary insulated semiconductor porcelain material contg. Ge (compd.) in an atmosphere of Ge vapor. CONSTITUTION:Water is added to an SrTiO3-Nb2O5-GeO2 mixture and this mixture is pulverized and dried to obtain powdery starting material. This starting material is granulated with an org. binder and compacted to form many compacts 5 of a grain boundary insulated semiconductor porcelain material contg. Ge (compd.). The compacts 5 are arranged in a laminated state on a table 4 put in a sheath 1, solid Ge balls 6 are dispersed on the table 4 so that they do not come in contact with the compacts 5 and a lid 2 is put on the sheath 1 in a reducing atmosphere. The resultant enclosure 3 is fired at 1,300-1,500 deg.C for 1-5hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒界絶縁型半導体磁器
における結晶粒子の均一性を改善するための製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method for improving the uniformity of crystal grains in a grain boundary insulating semiconductor ceramic.

【0002】[0002]

【従来の技術】従来の磁器コンデンサ用の粒界絶縁型半
導体磁器の典型的な製造方法は、チタン酸ストロンチウ
ム等の主成分とNb2 5 等の原子価制御剤と結晶粒子
を安定させる効果のあるGeの酸化物(GeO2 )とか
ら成る半導体磁器材料の成形体を形成する工程と、成形
体を還元性雰囲気中で焼成して焼結体を得る工程と、焼
結体の表面にBi2 3 、Pb3 4 、B2 3 等の粒
界絶縁化物質のペーストを塗布して大気中で熱処理を施
して半導体磁器を得る工程とから成る。
2. Description of the Related Art A typical method for manufacturing a grain boundary insulation type semiconductor porcelain for a conventional porcelain capacitor has an effect of stabilizing crystal grains with a main component such as strontium titanate, a valence control agent such as Nb 2 O 5 and the like. On the surface of the sintered body, a step of forming a molded body of a semiconductor porcelain material composed of a Ge oxide (GeO 2 ) having a certain amount of heat, a step of firing the molded body in a reducing atmosphere to obtain a sintered body. A step of applying a paste of a grain boundary insulating material such as Bi 2 O 3 , Pb 3 O 4 , B 2 O 3 and performing heat treatment in the atmosphere to obtain a semiconductor porcelain.

【0003】[0003]

【発明が解決しようとする課題】ところで、結晶粒子を
制御する作用を有するGeO2 は、焼成工程において還
元され、成形体から外部に放出される。このため、焼成
工程中にGeを成形体中に均一に分布させることが困難
であり、結晶粒子のバラツキが生じ、所望の電気的特性
を得ることができないことがある。また、放出される分
量を見込んでGeO2 を過剰に添加する必要があり、原
料コストが高くなった。
By the way, GeO 2 , which has the function of controlling the crystal grains, is reduced in the firing step and released from the molded body to the outside. For this reason, it is difficult to uniformly distribute Ge in the compact during the firing step, and variations in crystal particles occur, which may make it impossible to obtain desired electrical characteristics. Further, it is necessary to add GeO 2 excessively in consideration of the amount to be released, which increases the raw material cost.

【0004】そこで、本発明の目的は、Geの作用の均
一性を保つことができ、且つ製造コストの低減を図るこ
とができる粒界絶縁型半導体磁器の製造方法を提供する
ことにある。
Therefore, an object of the present invention is to provide a method of manufacturing a grain boundary insulation type semiconductor ceramic which can maintain the uniformity of the action of Ge and can reduce the manufacturing cost.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明は、ゲルマニウム又はこの化合物を含む粒界絶
縁型半導体磁器材料の成形体を形成する工程と、前記成
形体をゲルマニウム蒸気の雰囲気中で焼成する工程とを
有する粒界絶縁型半導体磁器の製造方法に係わるもので
ある。なお、請求項2に示すように固体のゲルマニウム
を成形体に接触しないように包囲体に配置し、加熱する
ことによって焼成することが望ましい。
The present invention for achieving the above object comprises a step of forming a molded body of a grain boundary insulating semiconductor ceramic material containing germanium or a compound thereof, and an atmosphere of germanium vapor in the molded body. The present invention relates to a method for manufacturing a grain boundary insulating type semiconductor ceramic having a step of firing in the inside. It is desirable that the solid germanium is placed in the enclosure so as not to come into contact with the molded body and heated to be fired.

【0006】[0006]

【発明の作用及び効果】本発明に従ってゲルマニウム蒸
気の雰囲気で焼成すると、成形体又は焼結体内部からの
ゲルマニウムの放出が抑制され、ゲルマニウムの作用を
均一に得ることが可能になり、結晶粒子の均一性を高
め、電気的特性の改善及び電気的特性のバラツキを低減
できる。請求項2の方法によれば、蒸発したゲルマニウ
ムが焼成後の冷却過程で凝固して球形の塊(固体)にな
るので、容易に回収して再び使用することができる。従
って、原料コストの低減を図ることができる。
Calculating according to the present invention in the atmosphere of germanium vapor suppresses the release of germanium from the inside of the molded body or the sintered body, and makes it possible to obtain the function of germanium uniformly, and It is possible to improve uniformity, improve electrical characteristics, and reduce variations in electrical characteristics. According to the method of claim 2, the evaporated germanium solidifies into a spherical mass (solid) in the cooling process after firing, so that it can be easily recovered and reused. Therefore, the raw material cost can be reduced.

【0007】[0007]

【実施例】次に、本発明の実施例に係わる粒界絶縁型半
導体磁器コンデンサの製造方法を説明する。SrTiO
3 (チタン酸ストロンチウム)100.00重量部、N
2 5 (酸化ニオブ)0.25重量部及び、GeO2
(酸化ゲルマニウム)0.05重量部の混合物に、水を
加えてボールミルで15時間攪拌し、これを乾燥して原
料粉末を得た。次に、この原料粉末の100重量部に対
して、10〜15重量部のポリビニルアルコール水溶液
を有機結合材として加えて混練し、造粒したものを約1
トン/cm2 の圧力で成形し、直径12.5mm、厚さ
0.3mmの円板状成形体を得た。
Next, a method of manufacturing a grain boundary insulating type semiconductor ceramic capacitor according to an embodiment of the present invention will be described. SrTiO
3 (Strontium titanate) 100.00 parts by weight, N
b 2 O 5 (niobium oxide) 0.25 parts by weight and GeO 2
Water was added to a mixture of 0.05 parts by weight of (germanium oxide), the mixture was stirred with a ball mill for 15 hours, and dried to obtain a raw material powder. Next, to 100 parts by weight of this raw material powder, 10 to 15 parts by weight of an aqueous polyvinyl alcohol solution was added as an organic binder, kneaded, and granulated to about 1 part.
It was molded at a pressure of ton / cm 2 to obtain a disk-shaped molded body having a diameter of 12.5 mm and a thickness of 0.3 mm.

【0008】次に、図1及び図2に示すようにアルミナ
から成る容器即ちサヤ1とアルミナから成る蓋2との組
合わせから成る実質的に気密な包囲体3を用意し、サヤ
1の中にZrO2 板から成る載置板4を置き、この板4
の上に多数の上述の半導体磁器材料の成形体5を積層状
配置し、更に成形体5に接触しないように固体のゲルマ
ニウム球6を複数個分散配置し、N2 +H2 から成る還
元性雰囲気中で気密的に蓋2を覆せて炉に入れた。な
お、包囲体3は完全に気密である必要はない。
Next, as shown in FIGS. 1 and 2, a substantially airtight enclosure 3 comprising a container made of alumina, that is, a sheath 1 and a lid 2 made of alumina is prepared. Place the mounting plate 4 made of ZrO 2 plate on the
A large number of the above-mentioned semiconductor porcelain compacts 5 are stacked on top of each other, and a plurality of solid germanium spheres 6 are dispersed so as not to contact the compacts 5, and a reducing atmosphere of N 2 + H 2 is provided. The lid 2 was airtightly covered and placed in a furnace. The enclosure 3 does not have to be completely airtight.

【0009】次に、包囲体3の内及び外をN2 (96容
積%)+H2 (4容積%)の還元性雰囲気(非酸化性雰
囲気)中で、包囲体3と共に成形体5及びゲルマニウム
球6を1400℃、3時間加熱(焼成)して円板状半導
体磁器(焼結体)を得た。この工程において、ゲルマニ
ウム球6からゲルマニウムの蒸発が生じ、包囲体3の中
にゲルマニウム蒸気が均一に分布した雰囲気が得られ
た。成形体5はゲルマニウム蒸気に接しているので、成
形体又は焼結体に含まれているGeO2 が還元されて気
相のGeとなって外部へ放出されることが抑制され、ゲ
ルマニウムの作用を均一に保持した状態で焼成が行わ
れ、均一化された結晶粒子が得られた。
Next, the inside and outside of the enclosure 3 are in a reducing atmosphere (non-oxidizing atmosphere) of N 2 (96% by volume) + H 2 (4% by volume) together with the enclosure 3 and the compact 5 and germanium. The sphere 6 was heated (fired) at 1400 ° C. for 3 hours to obtain a disc-shaped semiconductor ceramic (sintered body). In this step, germanium was evaporated from the germanium spheres 6 and an atmosphere in which germanium vapor was uniformly distributed in the enclosure 3 was obtained. Since the compact 5 is in contact with the germanium vapor, GeO 2 contained in the compact or the sintered compact is suppressed from being reduced to Ge in the gas phase and released to the outside, and the action of germanium is suppressed. Firing was performed in a state of being uniformly held, and uniformed crystal particles were obtained.

【0010】次に、得られた半導体磁器の表面に周知の
粒界絶縁化用の金属酸化物ペースト、具体的には、Bi
2 3 が40重量部、Pb3 4 が46重量部、B2
3 が7重量部の割合の金属酸化物とバインダとしての樹
脂に溶剤を添加してペーストを作り、このペーストを半
導体磁器の表面に塗布し、1150℃で2時間の熱拡散
処理を行って結晶粒子を絶縁化した。
Next, on the surface of the obtained semiconductor porcelain, a known metal oxide paste for grain boundary insulation, specifically, Bi
40 parts by weight of 2 O 3, 46 parts by weight of Pb 3 O 4 , B 2 O
3 is 7 parts by weight of a metal oxide and a resin as a binder to which a solvent is added to form a paste, and the paste is applied to the surface of the semiconductor porcelain and subjected to thermal diffusion treatment at 1150 ° C. for 2 hours to crystallize. The particles were insulated.

【0011】次に、図3に示す結晶粒界絶縁化後の半導
体磁器の一対の主面に導電性ペーストとして銀ペースト
を塗布して800℃で1時間焼付けて一対の電極11、
12を形成して同一製造条件の100個の半導体磁器コ
ンデンサを完成させた。
Next, a silver paste as a conductive paste is applied to the pair of main surfaces of the semiconductor porcelain after crystal grain boundary insulation shown in FIG. 3 and baked at 800 ° C. for 1 hour to form a pair of electrodes 11.
12 was formed to complete 100 semiconductor ceramic capacitors under the same manufacturing conditions.

【0012】次に、完成した100個のコンデンサの見
掛けの比誘電率ε、誘電損失tan δ、破壊電圧BDV、
絶縁抵抗IRを測定してその平均値を求めたところ、ε
は56000、tan δは0.36%、BDVは300
V、IRは1600MΩであった。また、100個のコ
ンデンサの静電容量を測定し、このバラツキを求めたと
ころ4.76%であった。なお、ε及びtan δは、温度
25℃、印加電圧値1V、周波数1kHzの条件で測定
し、BDVはコンデンサ電極11、12間に1mAの電
流が流れた時の電圧値であり、IRは25℃で25Vの
直流電圧を15秒間印加した後に測定し、静電容量のバ
ラツキは(標準偏差値/平均値)×100%の式で求め
た。
Next, the apparent relative permittivity ε, dielectric loss tan δ, breakdown voltage BDV of 100 completed capacitors,
The insulation resistance IR was measured and the average value was calculated.
Is 56000, tan δ is 0.36%, BDV is 300
V and IR were 1600 MΩ. Further, the capacitance of 100 capacitors was measured, and the variation was found to be 4.76%. Note that ε and tan δ are measured under the conditions of a temperature of 25 ° C., an applied voltage value of 1 V and a frequency of 1 kHz, BDV is a voltage value when a current of 1 mA flows between the capacitor electrodes 11 and 12, and IR is 25 It was measured after applying a direct current voltage of 25 V at 15 ° C. for 15 seconds, and the variation in capacitance was calculated by the formula of (standard deviation value / average value) × 100%.

【0013】比較のために、ゲルマニウム球6を包囲体
3の中に置く代りに、半導体磁器材料中に加えるGeO
2 (酸化ゲルマニウム)の量を0.15重量部に増やし
た他は実施例と全く同一の方法で磁器コンデンサを作
り、同一の方法で特性を測定したところ、εは5400
0、tan δは0.36、BDVは270V、IRは14
00MΩ、静電容量のバラツキは6.85%であった。
For comparison, instead of placing the germanium sphere 6 in the enclosure 3, GeO is added in the semiconductor porcelain material.
A porcelain capacitor was manufactured by the same method as in the example except that the amount of 2 (germanium oxide) was increased to 0.15 parts by weight, and the characteristics were measured by the same method.
0, tan δ is 0.36, BDV is 270V, IR is 14
The variation in capacitance was 00 MΩ and the capacitance was 6.85%.

【0014】上記の実施例と比較例との対比から明らか
なように本実施例によれば、ε、BDV、及びIRが高
くなり、静電容量のバラツキが小さくなる。これはゲル
マニウム蒸気中で焼成したための効果である。また、本
実施例では、焼成後の冷却過程で気相のGeが球状に凝
固し、これを回収することができた。この回収されたG
eは再使用可能なものであった。従って、材料費の低減
を図ることができる。
As is clear from the comparison between the above embodiment and the comparative example, according to this embodiment, ε, BDV, and IR are increased, and the variation in capacitance is reduced. This is the effect of firing in germanium vapor. In addition, in this example, the vapor phase Ge was spherically solidified in the cooling process after firing and could be recovered. This recovered G
e was reusable. Therefore, the material cost can be reduced.

【0015】[0015]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1) 主成分はSrTiO3 に限ることなく、ABO
3 (但しAはSr、Ca、Ba、Mgの内の1種又は複
数種の元素、BはTi、Zrの1種又は複数種の元素)
で示すことができるチタン酸ストロンチウム系の成分と
することができる。 (2) 半導体化剤(原子化制御剤)としては、Nb2
5 の代りに又はこれに加えて、W、Ta、Y、希土類
元素(La、Ce、Pr、Nd、Sm、Dy、Pm、E
u、Gd、Tb、Ho、Er、Tm、Yb、Lu等)等
の酸化物(WO3 、Ta2 5 、La2 3 、Ce
2 、Nd2 3 、Y2 3 、Sm2 5 、Pr
6 11、Dy2 3 等)の1種又は複数種を100重量
部のSrTiO3 又は前述のABO3 から成る主成分に
対して好ましくは0.1〜5.0重量部の範囲で使用す
ることができる。 (3) 磁器材料に対するその他の添加物としてAl2
3 、SiO2 、CuO、MnO2 、Ag2 Oから選択
された1種又は複数種を100重量部のSrTiO3
は前述のABO3 から成る主成分に対して好ましくは
0.05〜0.50重量部の範囲で添加することができ
る。 (4) 粒界の絶縁化物質として、Bi2 3 、Pb3
4 、B2 3 の代りに、これ等とMnO2 、CuO、
Tl2 3 、Sb2 5 、Fe2 3 等の金属酸化物か
ら選択された1種又は複数種を使用して金属酸化物ペー
ストを作り、これを磁器に塗布することができる。 (5) SrTiO3 の代りに、これが得られる割合に
出発材料としてSrCO3 、TiO2 を使用することが
できる。 (6) 成形体を形成する前に大気雰囲気(酸化性雰囲
気)中、1000〜1200℃で1〜5時間仮焼し、仮
焼後の原料粉末を使用して成形体を作ることができる。 (7) 磁器原料に含めるGeO2 の量を、100重量
部のSrTiO3 又は前述のABO3 に対して好ましく
は0.01〜5.0重量部の範囲で変えることができ
る。 (8) 磁器の製造条件を種々変えることができる。例
えば、還元性雰囲気(非酸化性雰囲気)での焼成を13
00〜1500℃、1〜5時間とすることができる。ま
た、前述の金属酸化物ペーストの塗布後の拡散処理を8
00〜1300℃、1〜5時間とすることができる。
MODIFICATION The present invention is not limited to the above-mentioned embodiments, and the following modifications are possible. (1) The main component is not limited to SrTiO 3 , but ABO
3 (However, A is one or more elements of Sr, Ca, Ba and Mg, B is one or more elements of Ti and Zr)
Can be used as the strontium titanate-based component. (2) Nb 2 as a semiconducting agent (atomization control agent)
Instead of or in addition to O 5 , W, Ta, Y, rare earth elements (La, Ce, Pr, Nd, Sm, Dy, Pm, E
u, Gd, Tb, Ho, Er, Tm, Yb, Lu and the like oxides (WO 3 , Ta 2 O 5 , La 2 O 3 , Ce).
O 2 , Nd 2 O 3 , Y 2 O 3 , Sm 2 O 5 , Pr
6 O 11 , Dy 2 O 3, etc.) is used preferably in the range of 0.1 to 5.0 parts by weight with respect to 100 parts by weight of SrTiO 3 or the above main component consisting of ABO 3. can do. (3) Al 2 as other additive to porcelain material
O 3, SiO 2, CuO, preferably with respect to the main component consisting of MnO 2, Ag 2 O is selected from one or more of SrTiO 3 or above of ABO 3 in 100 parts by weight of 0.05 to 0. It can be added in the range of 50 parts by weight. (4) Bi 2 O 3 , Pb 3 as an insulating material at the grain boundary
Instead of O 4 , B 2 O 3 , these and MnO 2 , CuO,
It is possible to prepare a metal oxide paste using one or more kinds selected from metal oxides such as Tl 2 O 3 , Sb 2 O 5 , Fe 2 O 3 and the like, and apply the paste to a porcelain. (5) Instead of SrTiO 3 , SrCO 3 or TiO 2 can be used as a starting material in a proportion to obtain it. (6) Before forming the molded body, the molded body can be calcined in the air atmosphere (oxidizing atmosphere) at 1000 to 1200 ° C. for 1 to 5 hours, and the calcined raw material powder can be used to form the molded body. (7) The amount of GeO 2 contained in the porcelain raw material can be changed within the range of preferably 0.01 to 5.0 parts by weight with respect to 100 parts by weight of SrTiO 3 or the above ABO 3 . (8) The manufacturing conditions of porcelain can be variously changed. For example, firing in a reducing atmosphere (non-oxidizing atmosphere) 13
The temperature can be set to 00 to 1500 ° C. for 1 to 5 hours. In addition, the diffusion process after applying the metal oxide paste described above
The temperature can be set to 00 to 1300 ° C. and 1 to 5 hours.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わる成形体とゲルマニウム
球を収容した包囲体を示す断面図である。
FIG. 1 is a cross-sectional view showing a molded body according to an embodiment of the present invention and an enclosure containing a germanium ball.

【図2】図1の包囲体の中を蓋をとって示す平面図であ
る。
FIG. 2 is a plan view showing the inside of the enclosure of FIG. 1 with a lid removed.

【図3】完成した磁器コンデンサを示す正面図である。FIG. 3 is a front view showing a completed porcelain capacitor.

【符号の説明】[Explanation of symbols]

1 サヤ 5 成形体 6 ゲルマニウム球 1 Saya 5 Molded body 6 Germanium ball

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01G 4/12 325 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01G 4/12 325

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゲルマニウム又はこの化合物を含む粒界
絶縁型半導体磁器材料の成形体を形成する工程と、 前記成形体をゲルマニウム蒸気の雰囲気中で焼成する工
程とを有する粒界絶縁型半導体磁器の製造方法。
1. A grain boundary insulating semiconductor porcelain having a step of forming a molded body of a grain boundary insulating semiconductor ceramic material containing germanium or a compound thereof, and a step of firing the molded body in an atmosphere of germanium vapor. Production method.
【請求項2】 前記焼成工程は、実質的に密封された包
囲体の中に前記成形体を配置すると共に、前記成形体に
接触しないように固体のゲルマニウム(Ge)を配置
し、前記成形体と前記ゲルマニウムとを前記包囲体と共
に加熱する工程である請求項1記載の粒界絶縁型半導体
磁器の製造方法。
2. In the firing step, the molded body is arranged in a substantially sealed enclosure, and solid germanium (Ge) is arranged so as not to come into contact with the molded body. The method of manufacturing a grain boundary insulating semiconductor ceramic according to claim 1, which is a step of heating the germanium and the germanium together with the envelope.
JP6080899A 1994-03-28 1994-03-28 Production of grain boundary insulated semiconductor porcelain Withdrawn JPH07267729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6080899A JPH07267729A (en) 1994-03-28 1994-03-28 Production of grain boundary insulated semiconductor porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6080899A JPH07267729A (en) 1994-03-28 1994-03-28 Production of grain boundary insulated semiconductor porcelain

Publications (1)

Publication Number Publication Date
JPH07267729A true JPH07267729A (en) 1995-10-17

Family

ID=13731220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6080899A Withdrawn JPH07267729A (en) 1994-03-28 1994-03-28 Production of grain boundary insulated semiconductor porcelain

Country Status (1)

Country Link
JP (1) JPH07267729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515782A (en) * 2011-12-22 2012-06-27 许昌学院 Method for sintering Chinese Jun porcelain at oxidizing atmosphere with addition of nano-material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515782A (en) * 2011-12-22 2012-06-27 许昌学院 Method for sintering Chinese Jun porcelain at oxidizing atmosphere with addition of nano-material

Similar Documents

Publication Publication Date Title
US4761711A (en) Barrier layer ceramic dielectric capacitor containing barium plumbate
US4308571A (en) Low temperature-sinterable dielectric composition and thick film capacitor using the same
JPH07267729A (en) Production of grain boundary insulated semiconductor porcelain
JPH0583508B2 (en)
JP3325051B2 (en) Dielectric porcelain composition
JPH07309661A (en) Ceramic composition, sintering method, sintering ceramic body and multilayer capacitor
JP2005158895A (en) Grain-boundary-insulated semiconductor ceramic and laminated semiconductor capacitor
JPH0867562A (en) Grain boundary insulating type semiconductor porcelain
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPS6032344B2 (en) Grain boundary insulated semiconductor porcelain capacitor material
JP2970405B2 (en) Grain boundary insulating semiconductor porcelain composition and method for producing the same
JP2984115B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain capacitor
JPS6231108A (en) Ceramic capacitor
JP2934388B2 (en) Manufacturing method of semiconductor porcelain
JP2506286B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JP2838249B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain
JPH0761896B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPS633442B2 (en)
JP2000016866A (en) Production of barium titanate-based semiconductor material
JP2005158897A (en) Grain-boundary-insulated semiconductor ceramic and laminated semiconductor capacitor
JPH0761897B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same
JPS6357931B2 (en)
JPS6364887B2 (en)
JPH0761898B2 (en) Grain boundary insulating semiconductor ceramic composition and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605