JPH07266091A - Powder press - Google Patents

Powder press

Info

Publication number
JPH07266091A
JPH07266091A JP15408693A JP15408693A JPH07266091A JP H07266091 A JPH07266091 A JP H07266091A JP 15408693 A JP15408693 A JP 15408693A JP 15408693 A JP15408693 A JP 15408693A JP H07266091 A JPH07266091 A JP H07266091A
Authority
JP
Japan
Prior art keywords
punch
kinematics
hole
lateral
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15408693A
Other languages
Japanese (ja)
Other versions
JP2739412B2 (en
Inventor
Ryota Hirai
良太 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5154086A priority Critical patent/JP2739412B2/en
Publication of JPH07266091A publication Critical patent/JPH07266091A/en
Application granted granted Critical
Publication of JP2739412B2 publication Critical patent/JP2739412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to carry out mass production of powder molded goods which are homogenous in respective parts by forming the side wall surfaces of a mortar hole corresponding to the longitudinal main surfaces of the molded goods of continuous surfaces of punch surfaces of cross pestles at the stroke end point of these cross pestles. CONSTITUTION:The upper pestle is made vertically movable and is provided with the punch surfaces of the shape corresponding to the peak surface of the molded goods to be formed. The mortar 2 is provided with the mortar hole 21 of the depth corresponding to the length of the longitudinal main surface of the molded goods to be formed and the plural cross grooves 22 extending radially therefrom. The lower pestle is advanced into the mortar hole 21. The cross pestles 4 are freely slidably fitted into the cross grooves 22. The positions, sizes and shapes of the mortar hole 21 and the cross grooves 22 are determined in correspondence to the shapes of the molded goods to be formed. The side wall surfaces of the mortar hole 21 corresponding to the longitudinal main surface of the molded goods to be formed are formed of the continuous surfaces of the punch surfaces 41 of the cross pestles 4 thereof. As a result, contribution is made to mass production of diversified kinds of powder metallurgical products by sintering of the molded goods.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の目的】この発明は縦横比の大きい、棒状、パイ
プ状、つば付きのパイプ状、コップ状等の成型物であっ
て、均質なものを粉体の圧縮成型により生産する手段を
提供するのがその目的である。前記したような形状の成
型物を粉体の圧縮成型により生産することはそれらが短
小であれば従来から行われて来た。しかしながら、従来
の圧縮成型技術により生産されるのは縦横比が2:1程
度までであって、これを越えるものを工業的に生産する
には水その他の溶液や何等かの媒質を併用する湿式押出
法、スリップキャスティング法、射出成型法などによる
より外はなく、高圧粉体プレスの使用による大量生産は
不可能であった。すなわち、従来の粉体プレスは一定断
面積のウス穴に装入した粉体を上下から加圧して成型す
るものであり、パイプのような中空体を成型する場合は
コアロッドをウス穴に挿入して使用し、予定成型物の管
壁に対応するウス穴の部分に粉体を装入するのである
が、いずれにせよウス穴の縦横比が大きいと得られる成
型物の均質性が急激に低下して、それに起因して局部的
に脆弱な成型物しか得られないからである。特に、焼結
品を目的とする場合は焼結の際の高熱により不規則的に
変形するので、目的とする形状、寸度のものを量産する
ことができない。従来の粉体プレスにより成型した成型
物、特に縦横比の大きい成型物が均質性に欠けるのは粉
体が大きいカサ比重をもち、かつ流動摩擦抵抗が大きい
ためである。たとえば直径5mm長さ100mmの棒状
品を生産しようとする場合、カサ比重が4であればウス
穴への充填深さが400mmであることを要するが、直
径5mmのウス穴に粉体を400mmも均等な密度で装
入することは至難である。このためウス穴への装入完了
時において粉体の層の密度が長手にそう各部において不
均等であり、このような装入時の密度不均等性に起因
し、成型物もまた均質性に欠けることになるのである。
この発明は、上述のような粉体装入の際の密度不均等性
を事実上解消する手段を見出し、かくして縦横比の大き
い成型物を量産する手段を提供したものである。
It is an object of the present invention to provide a means for producing a rod-shaped, pipe-shaped, pipe-shaped pipe with a brim, cup-shaped or the like having a large aspect ratio, which is homogeneous by compression molding of powder. Is the purpose. It has been conventionally practiced to produce a molded product having the above-mentioned shape by compression molding of powder if it is short or short. However, the conventional compression molding technology produces an aspect ratio of up to about 2: 1, and in order to industrially produce more than this, a wet method in which water or other solution or some medium is used in combination is used. Mass production using a high-pressure powder press was not possible, as was the case with extrusion, slip casting, injection molding and the like. That is, the conventional powder press is to press the powder charged in the uss hole with a constant cross-sectional area from above and below to mold it.When molding a hollow body such as a pipe, insert the core rod into the uss hole. The powder is charged into the part of the uss hole corresponding to the pipe wall of the planned molding, but in any case, if the aspect ratio of the uss hole is large, the homogeneity of the obtained molding will drop sharply. Then, because of that, only a locally fragile molded product can be obtained. In particular, when a sintered product is intended, it is deformed irregularly due to high heat during sintering, so that a product having a desired shape and size cannot be mass-produced. A molded product formed by a conventional powder press, particularly a molded product having a large aspect ratio, lacks homogeneity because the powder has a large bulk specific gravity and a large flow friction resistance. For example, when a rod-shaped product having a diameter of 5 mm and a length of 100 mm is to be produced, if the bulk specific gravity is 4, the filling depth into the us hole is 400 mm, but the powder having a diameter of 5 mm is 400 mm. It is extremely difficult to charge with a uniform density. For this reason, the density of the powder layer is uneven in each part when the charging into the us hole is completed, and due to the density unevenness at the time of charging, the molded product also becomes homogeneous. It will be lacking.
The present invention has found means for practically eliminating the density nonuniformity at the time of powder charging as described above, and thus provides means for mass-producing molded products having a large aspect ratio.

【発明の構成】以下、図示の実施例につきこの発明を説
明する。まず図1および図2を参照すれば、1は上下可
動な上キネで、予定成型物の頂面に対応する形状のパン
チ面11をもっている。2はウスで、予定成型物の長手
主面の長さに対応する深さのウス穴21とウス穴21か
ら放射状に伸びる複数の横溝22を有している。前記し
た予定成型物には図3〜図10に例示したように種々の
ものがある。また、ここで長手主面というのは図3、図
4、図6〜図8においては長手の外側面全体を指してお
り、図5、図10のようにつば部が張り出している場合
は張出し部を除いた長手外側面を指している。ただし、
図9のような半割りパイプの場合は図面上不可視である
大きい凸筒面全体を指し、可視の小径である凹筒面や半
割りによる細い縁面は長手であっても主面ではない。図
10のようなつば付き半割りパイプの場合、つば部を除
いた不可視の凸筒面が長手主面である。なお、図1およ
び図2に示す実施例は図3に示すような丸棒成型用の粉
体プレスであることが理解されよう。さて、この発明に
おいて、3は下キネで、上キネ1の軸線Xにそい上下可
動である。下キネ3のパンチ面31は予定成型物の底面
に対応する形状をそなえ、図1のように下キネ3がウス
2に進入した際、図示のようにパンチ面31がウス穴2
1の底面を形成する。4は横キネで、それぞれ対応する
横溝22に摺動自在に嵌設されている。この発明によれ
ば、ウス穴21の深さ、横溝22の深さ、および横キネ
4の高さはいずれも予定成型物の前記した長手主面の長
さに対応している。また、この発明によれば、横キネ4
のパンチ面41はそのパンチ面41に対応する予定成型
物の長手主面の部分の形状に対応している。さらにこの
発明によれば、図2に示すように、すべての横キネ4の
前進ストロークの終点において、予定成型物の長手主面
に対応するウス穴21の側壁面はそれらのパンチ面41
の連続面により形成される。以下、この発明の若干の実
施例につき説明する。すなわち、図1および図2の例に
おいては、予定成型物は前記したように丸棒であり、4
個の横キネのそれぞれのパンチ面41はそれぞれ丸棒の
長手主面である円筒面を縦に4等分した部分筒面の形状
を呈している。なお、図中の1点鎖線aは横キネ4の後
退ストローク終点におけるパンチ面41の位置、bは同
じく尾端の位置を示している。図1および図2に示す例
では予定成型物の長手主面を4分割した部分筒面を4個
の横キネがそれぞれ担当しているが、径が比較的大きい
成型物を対象とする場合は長手主面をたとえば6等分に
分割し、それらの部分筒面を6個の横キネにより担当す
るような変型は容易である。また、短いパイプの成型に
おいて中空部を形成するためウス穴にコアロッドを挿入
することはよく知られているので、図1および図2に示
す例において図11に示すコアロッド12を用いること
により、図4に示すような長いパイプを成型できること
が容易に了解されよう。図7に示す平角棒又は図8に示
す三角棒生産用の実施例は図示されていないが、平角棒
を対象とする場合、図1および図2における横キネのパ
ンチ面41を平角柱の長手主面のそれぞれの寸度に対応
する平面とし、かつそれぞれ相対する2組の横キネの前
進ストロークおよび後退ストロークの各終点の位置を違
えることにより、平角棒が生産できる。図8の三角棒を
成型するには、3個の横キネを使用し、たがいに隣り合
う2個づつの横キネ相互間の角度をそれぞれ三角棒の頂
角に対応させればよい。図11に示すのは図5に示すよ
うなつば付きパイプ生産用の実施例で、上キネ1および
下キネ2のパンチ面はそれぞれ環状で、下キネ2にはコ
アロッド32が挿通されている。また、成型物5のつば
部51を成型するため、ウス2にはつば部51と同径の
中心孔をもつ上蓋23が固定されている。なお、図は充
填された粉体の成型が終了した状態で描かれている。図
12に示すのは図6に断面を示したコップ状物生産用の
実施例で、下キネ2のパンチ面が環状であること、コア
ロッド32が下キネ2に挿通されていること、ウス2は
上蓋23をそなえることは図11の例と同様である。た
だし、この例の上蓋23の中心孔の径は成型物5の直径
に等しく設定されている。またコップ底52の部分を成
型するため、上昇静止の際のコアロッド32の頂面の位
置は横キネ4の頂面の下方に設定されている。図13に
示したのは図9に示すような半割パイプ生産用の実施例
で、ウス2は予定成型物の凹筒面53および半割りの長
手縁面54に対応する面が軸線Xにそって設けられてい
る。横キネ4は2個で、それぞれ対応する横溝22に嵌
挿されており、パンチ面41は予定成型物である半割パ
イプの長手主面を縦に2等分した分割筒面に対応してい
る。なお、図は横キネ4の後退ストロークの終点におい
てウス穴に粉体が挿入された状態として描かれており、
予定成型物の長手主面の位置を示す1点鎖線の位置に横
キネのパンチ面41が前進したとき、半割パイプの長手
主面に対応するウス穴の側面が形成されるようになって
いる。以下、主として図1および図2を参照し、この発
明の使用法および作用につき説明する。この発明は前述
のようにしてなるので、下キネ3をウス2に進入させ、
そのパンチ面31を予定成型物の底面に対応する位置に
パンチ面31を保持する。横溝22の深さは予定成型物
の長手主面の長さに対応しているので、前記パンチ面3
1と横溝22の底のレベルは一致している。つぎに各横
キネ4を後退させる。横キネ4の後退ストロークは予定
成型物の前記した長手主面に対応する部分の容積と、装
入すべき粉体のカサ比重とから容易に計算できる。な
お、このような横キネ4の後退はあらかじめ行っておい
ても差し支えない。つぎに、上キネ1を上昇させた状態
で、前記のようにして求めた計算量の粉体をウス穴21
に装入し、続いて上キネ1の下降ストロークと横キネ4
の前進ストロークを同時に開始する。上キネのパンチ面
11の下降ストロークの終点は予定成型物の長さに対応
して決定され、横キネのパンチ面41の前進の終点は予
定成型物の長手主面の径に対応して決定される。上キネ
のパンチ面11および横キネのパンチ面41はそれぞれ
同時に終点に到達するように動作を制御すべきである。
このようにしてウス穴21に装入された計算量の粉体は
予定成型物の形状に圧縮成型されるので、ついで上キネ
1を上昇させかつ横キネ4を後退させた後下キネ3を図
示の位置から上昇させれば成型物がウス2の上方に排出
される。なお、成型物の排出は下キネ3を図示の位置に
固定したままウス2を下降させることによっても行うこ
とができる。すなわち、この発明によれば、各横キネ4
のパンチ面41は、そのパンチ面に対応する予定成型物
の長手主面の部分の形状に対応し、かつ予定成型物の長
手主面に対応するウス穴の側壁面は、すべての横キネ4
の前進ストロークの終点において、それらの横キネのパ
ンチ面41の連続面として形成される。それゆえ、粉体
を圧縮する横キネ4のストロークは予定成型物の長手主
面の全長と較べて非常に短小である。従って圧縮の際に
発生する粉体粒子の移動距離が小さく、かつ粉体は長手
主面の全長にわたって均等な圧力で圧縮されるので、成
型後における成型物の密度はその全長にわたって実質的
に均等になる。なお、図11および図12に示す実施例
につき注釈すれば、図示のような中空品の成型において
は周知のようにウス2内にコアロッド32を挿入する必
要があるが、コアロッド32の挿入はウス穴への粉体の
装入前に行う必要がある。また、図11のように予定成
型物がつば51つきのもの、あるいは図12のようにコ
ップ底52をそなえる場合、これらのつば51やコップ
底52の成型には上キネ1の移動による縦方向の圧力が
必要なので、そのためのウス穴の延長部を構成するウス
蓋23をウス2に冠装固定する。これらのつば51やコ
ップ底52を成型するための上キネ1のストローク距離
が横キネ4のストローク距離と大差がなければ、それら
の部分の成型物の密度は長手主面に対応する部分の密度
と実質的にかわらない。図13に示すのは図9に示す半
割パイプ又は図10に示すつば付き半割パイプ生産用の
実施例である。この実施例ではウス2の非可動な側壁面
の形状が特殊であるほか、その作用効果は既に説明した
幾つかの場合と実質的にかわらない。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to the illustrated embodiments. First, referring to FIG. 1 and FIG. 2, reference numeral 1 denotes an upper kinematic that is movable up and down, and has a punching surface 11 having a shape corresponding to the top surface of a planned molding. Reference numeral 2 denotes a uss, which has a uss hole 21 having a depth corresponding to the length of the longitudinal main surface of the expected molding and a plurality of lateral grooves 22 radially extending from the uss hole 21. There are various types of the above-mentioned planned moldings as illustrated in FIGS. The term “longitudinal principal surface” as used herein refers to the entire longitudinal outer surface in FIGS. 3, 4, and 6 to 8, and when the brim portion is overhanging as in FIGS. 5 and 10, it is overhanging. It refers to the longitudinal outer surface excluding the parts. However,
In the case of the half-divided pipe as shown in FIG. 9, it refers to the entire large convex cylindrical surface which is invisible in the drawing, and the concave cylindrical surface having the small visible diameter and the thin edge surface due to the half-division are not main surfaces even if they are long. In the case of a half-divided pipe with a collar as shown in FIG. 10, the invisible convex cylindrical surface excluding the collar is the longitudinal main surface. It will be understood that the embodiment shown in FIGS. 1 and 2 is a powder press for round bar molding as shown in FIG. In the present invention, reference numeral 3 is a lower kinematic, which is vertically movable along the axis X of the upper kinematics 1. The punch surface 31 of the lower kinematics 3 has a shape corresponding to the bottom surface of the planned molded product, and when the lower kinematics 3 enters the uss 2 as shown in FIG.
1 to form the bottom surface. Reference numeral 4 is a lateral tine, which is slidably fitted in the corresponding lateral groove 22. According to the present invention, the depth of the us hole 21, the depth of the lateral groove 22, and the height of the lateral kinematics 4 all correspond to the length of the longitudinal main surface of the planned molding. Further, according to the present invention, the horizontal kinematics 4
The punch surface 41 of No. 1 corresponds to the shape of the longitudinal main surface portion of the planned molding corresponding to the punch surface 41. Further, according to the present invention, as shown in FIG. 2, at the end points of the forward strokes of all the lateral kinematics 4, the side wall surface of the us hole 21 corresponding to the longitudinal main surface of the planned molding has the punch surface 41.
Is formed by a continuous surface of. Hereinafter, some embodiments of the present invention will be described. That is, in the example of FIGS. 1 and 2, the planned molded product is a round bar as described above, and
Each of the punch surfaces 41 of the individual horizontal kinematics has a shape of a partial cylinder surface obtained by vertically dividing the cylinder surface, which is the longitudinal main surface of the round bar, into four equal parts. In the figure, the alternate long and short dash line a indicates the position of the punch surface 41 at the end point of the backward stroke of the lateral kinematics 4, and b indicates the position of the tail end. In the example shown in FIG. 1 and FIG. 2, the four horizontal kines are in charge of the partial cylinder surface obtained by dividing the longitudinal main surface of the planned molded product into four, but when the molded product having a relatively large diameter is targeted, For example, it is easy to make a modification in which the longitudinal main surface is divided into, for example, 6 equal parts, and these partial cylindrical surfaces are handled by the six lateral kinematics. Further, it is well known to insert the core rod into the us hole to form the hollow portion in the molding of the short pipe. Therefore, by using the core rod 12 shown in FIG. 11 in the example shown in FIGS. It will be readily appreciated that long pipes such as those shown in Figure 4 can be molded. Although the flat bar shown in FIG. 7 or the triangular bar shown in FIG. 8 for producing the bar is not shown, when the flat bar is used, the punch surface 41 of the horizontal bar in FIGS. A flat bar can be produced by forming a flat surface corresponding to each dimension of the main surface and by making the positions of the respective end points of the forward stroke and the backward stroke of the two pairs of lateral kinematics facing each other different. In order to mold the triangular bar of FIG. 8, three lateral kinematics are used, and the angle between two lateral kinematics adjacent to each other may be made to correspond to the apex angle of the triangular bar. FIG. 11 shows an embodiment for producing a pipe with a collar as shown in FIG. 5, in which the punch surfaces of the upper kine 1 and the lower kine 2 are annular, and the core rod 32 is inserted into the lower kine 2. Further, in order to mold the collar portion 51 of the molded article 5, the upper lid 23 having a central hole of the same diameter as the collar portion 51 is fixed to the uss 2. The figure is drawn in a state where the molding of the filled powder is completed. FIG. 12 shows an embodiment for producing a cup-shaped material whose cross section is shown in FIG. 6, in which the punch surface of the lower kine 2 is annular, the core rod 32 is inserted in the lower kine 2, The upper lid 23 is provided in the same manner as in the example of FIG. However, the diameter of the central hole of the upper lid 23 in this example is set equal to the diameter of the molded product 5. Further, since the cup bottom 52 is molded, the position of the top surface of the core rod 32 at the time of rising and stationary is set below the top surface of the lateral kinematics 4. FIG. 13 shows an embodiment for producing a half-divided pipe as shown in FIG. 9, in which the surface of the uss 2 corresponding to the concave cylindrical surface 53 and the half-divided longitudinal edge surface 54 of the planned molding is the axis X. It is provided along with it. Two horizontal kinematics 4 are fitted into the corresponding lateral grooves 22, and the punch surface 41 corresponds to a split cylindrical surface obtained by vertically dividing the longitudinal main surface of the half-split pipe, which is a planned molding, into two equal parts. There is. In addition, the figure is drawn as a state in which the powder is inserted into the us hole at the end of the backward stroke of the horizontal kinematics 4.
When the punch surface 41 of the horizontal kinematics advances to the position of the one-dot chain line showing the position of the longitudinal main surface of the planned molding, the side surface of the us hole corresponding to the longitudinal main surface of the half pipe comes to be formed. There is. The use and operation of the present invention will be described below mainly with reference to FIGS. 1 and 2. Since the present invention is as described above, the lower kinematics 3 is inserted into the us 2,
The punch surface 31 is held at a position corresponding to the bottom surface of the planned molding. Since the depth of the lateral groove 22 corresponds to the length of the longitudinal main surface of the planned molding, the punch surface 3
1 and the bottom level of the lateral groove 22 are coincident with each other. Next, each lateral kinematics 4 is retracted. The retracting stroke of the lateral kinematics 4 can be easily calculated from the volume of the portion corresponding to the above-mentioned longitudinal main surface of the planned molding and the bulk specific gravity of the powder to be charged. It should be noted that such retraction of the lateral kinematics 4 may be performed in advance. Next, with the upper kinematics 1 being raised, the calculated amount of powder obtained as described above
Then, the lower stroke of the upper kine 1 and the lateral kine 4
Simultaneously start the forward stroke of. The end point of the lower stroke of the punch surface 11 of the upper kinematics is determined according to the length of the planned molding, and the end point of the advance of the punch surface 41 of the lateral kinematics is determined according to the diameter of the longitudinal main surface of the planned molding. To be done. The upper kinematic punch surface 11 and the lateral kinematic punch surface 41 should be controlled so as to reach the end points at the same time.
In this way, the calculated amount of powder charged in the hole 21 is compression-molded into the shape of the expected molding, and then the upper kine 1 is raised and the lateral kine 4 is retracted, and then the lower kine 3 is removed. If the mold is lifted from the position shown in the figure, the molded product is discharged above the uss 2. The molded product can also be discharged by lowering the mouse 2 with the lower kinematics 3 fixed at the position shown. That is, according to the present invention, each lateral kinematics 4
The punch surface 41 of No. 1 corresponds to the shape of the part of the longitudinal main surface of the planned molding corresponding to the punch surface, and the side wall surface of the us hole corresponding to the longitudinal main surface of the planned molding has all the lateral kinematics 4
At the end of the forward stroke of, the punch surface 41 is formed as a continuous surface of the punch surfaces 41 of the lateral kinematics. Therefore, the stroke of the lateral kinematics 4 for compressing the powder is extremely short compared with the total length of the longitudinal main surface of the planned molding. Therefore, the moving distance of the powder particles generated during compression is small, and the powder is compressed with a uniform pressure over the entire length of the longitudinal main surface, so the density of the molded product after molding is substantially uniform over the entire length. become. Note that the core rod 32 needs to be inserted into the us 2 as is well known in the molding of the hollow product as shown in the drawings. Must be done before charging powder into the holes. Further, when the planned molding has a brim 51 as shown in FIG. 11 or has a cup bottom 52 as shown in FIG. 12, the brim 51 and the cup bottom 52 are molded in the vertical direction by the movement of the upper kine 1. Since pressure is required, the us lid 23, which forms the extension of the us hole for that, is fixedly mounted on the us 2. If the stroke distance of the upper kine 1 for molding the collar 51 and the cup bottom 52 is not significantly different from the stroke distance of the lateral kine 4, the density of the moldings of those parts is the density of the part corresponding to the longitudinal main surface. Is virtually unchanged. FIG. 13 shows an embodiment for producing the half-split pipe shown in FIG. 9 or the half-split pipe with a collar shown in FIG. In this embodiment, the shape of the non-movable side wall surface of the mouse 2 is special, and its function and effect are substantially the same as those of the several cases already described.

【発明の効果】かくしてこの発明によれば、図3〜図1
0に例示したような各種形状の縦横比の大きい粉体成型
物であって、その各部が均質なものが容易に量産され、
従ってこれらの成型物は高温下でも変形が避けられるの
で、成型物の焼結による多様な粉末冶金製品の量産化に
寄与するところが多大である。
Thus, according to the present invention, FIGS.
It is easy to mass-produce powder moldings of various shapes with a large aspect ratio as shown in Fig.
Therefore, since these molded products can be prevented from being deformed even at high temperatures, they greatly contribute to mass production of various powder metallurgy products by sintering the molded products.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例の縦断面図で、図2のB
−B断面に対応する。
FIG. 1 is a vertical cross-sectional view of an embodiment of the present invention, taken along the line B in FIG.
-Corresponds to the B cross section.

【図2】 同実施例の横断面図で、図1のA−A断面に
対応する。
FIG. 2 is a cross-sectional view of the same embodiment, which corresponds to the AA cross section of FIG.

【図3】 この発明にかかる粉体プレスによる成型物の
一例で丸棒の斜視図。
FIG. 3 is a perspective view of a round bar in an example of a molded product by the powder press according to the present invention.

【図4】 同じく他の一例でパイプの斜視図。FIG. 4 is a perspective view of a pipe according to another example.

【図5】 同じくつば付きパイプの斜視図。FIG. 5 is a perspective view of a pipe with a collar.

【図6】 同じくコップ状物の縦断面図。FIG. 6 is a vertical cross-sectional view of the same cup-shaped material.

【図7】 同じく平角棒の斜視図。FIG. 7 is a perspective view of the same rectangular bar.

【図8】 同じく三角棒の斜視図。FIG. 8 is a perspective view of a triangular rod.

【図9】 半割パイプの斜視図。FIG. 9 is a perspective view of a half pipe.

【図10】 つば付き半割パイプの斜視図。FIG. 10 is a perspective view of a half pipe with a collar.

【図11】 この発明の他の実施例の縦断面図。FIG. 11 is a vertical sectional view of another embodiment of the present invention.

【図12】 同じく他の実施例の縦断面図。FIG. 12 is a vertical sectional view of another embodiment of the present invention.

【図13】 同じく他の実施例の縦断面図。FIG. 13 is a vertical sectional view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

Xは軸線、1は上キネ、11はパンチ面、2はウス、2
1はウス穴、22は横溝、3は下キネ、31はパンチ
面、4は横キネ、41はパンチ面である。
X is an axis line, 1 is upper kinematics, 11 is a punch surface, 2 is a us, 2
1 is a us hole, 22 is a lateral groove, 3 is a lower punch, 31 is a punch surface, 4 is a horizontal punch, and 41 is a punch surface.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】上下可動で予定成型物の頂面に対応する形
状のパンチ面を有する上キネと、 予定成型物の長手主面の長さに対応する深さのウス穴お
よびウス穴から放射状に伸びる複数の横溝を有するウス
と、 上キネの軸線にそい上下可動で予定成型物の底面に対応
する形状のパンチ面を有し、ウスに進入してそのパンチ
面がウス穴の底面を形成する下キネと、 対応する前記横溝にそれぞれ摺動自在に嵌設した横キネ
とを有し、 前記ウス穴の深さ、横溝の深さ、および横キネの高さは
それぞれ予定成型物の長手主面の長さに対応し、 各横キネのパンチ面はそのパンチ面に対応する予定成型
物の長手主面の部分の形状に対応し、 すべての横キネの前進ストロークの終点において、予定
成型物の長手主面に対応するウス穴の側壁面をそれらの
横キネのパンチ面の連続面により形成してなる粉体プレ
ス。
1. An upper kinematic body which is vertically movable and has a punch surface having a shape corresponding to the top surface of the planned molding, and a radius of a us hole and a us hole having a depth corresponding to the length of the longitudinal main surface of the planned molding. Has a lateral groove that extends in the direction of the mouse, and a punch surface that can move up and down along the axis of the upper kinematics and that corresponds to the bottom surface of the planned molding, and enters the us to form the bottom surface of the us hole. The lower kinematics and the lateral kinematics that are slidably fitted in the corresponding lateral grooves, respectively, and the depth of the us hole, the depth of the lateral groove, and the height of the lateral kinematics are respectively the longitudinal length of the planned molding. Corresponding to the length of the main surface, the punch surface of each horizontal kinematic corresponds to the shape of the longitudinal main surface part of the planned molding corresponding to that punch surface, and the planned forming at the end of the forward stroke of all lateral kinematics. The side wall surface of the us hole corresponding to the longitudinal main surface of the Powder pressing obtained by forming a continuous surface of the punch surface.
JP5154086A 1993-05-21 1993-05-21 Powder molding method for objects with large aspect ratio Expired - Lifetime JP2739412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5154086A JP2739412B2 (en) 1993-05-21 1993-05-21 Powder molding method for objects with large aspect ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5154086A JP2739412B2 (en) 1993-05-21 1993-05-21 Powder molding method for objects with large aspect ratio

Publications (2)

Publication Number Publication Date
JPH07266091A true JPH07266091A (en) 1995-10-17
JP2739412B2 JP2739412B2 (en) 1998-04-15

Family

ID=15576594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5154086A Expired - Lifetime JP2739412B2 (en) 1993-05-21 1993-05-21 Powder molding method for objects with large aspect ratio

Country Status (1)

Country Link
JP (1) JP2739412B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097089A (en) * 2004-09-29 2006-04-13 Tdk Corp Forming device and forming method
JP2006097091A (en) * 2004-09-29 2006-04-13 Tdk Corp Forming device and forming method
JP2008221340A (en) * 2002-04-24 2008-09-25 Mitsubishi Electric Corp Permanent magnet molding apparatus
CN106001578A (en) * 2016-07-26 2016-10-12 郑州磨料磨具磨削研究所有限公司 Radial pressure application sintering forming mould
EP3107672A1 (en) * 2014-02-17 2016-12-28 Ceratizit Austria Gesellschaft m.b.H. Moulding tool, method for producing a green body, and use of the moulding tool
CN110785245A (en) * 2017-03-14 2020-02-11 吉凯恩粉末冶金工程有限公司 Method for producing a green body with a pressing tool, green body and sintered part

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417995A (en) * 1990-05-11 1992-01-22 Hitachi Ltd Method and apparatus for press-forming magnetic substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417995A (en) * 1990-05-11 1992-01-22 Hitachi Ltd Method and apparatus for press-forming magnetic substance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221340A (en) * 2002-04-24 2008-09-25 Mitsubishi Electric Corp Permanent magnet molding apparatus
JP2006097089A (en) * 2004-09-29 2006-04-13 Tdk Corp Forming device and forming method
JP2006097091A (en) * 2004-09-29 2006-04-13 Tdk Corp Forming device and forming method
EP3107672A1 (en) * 2014-02-17 2016-12-28 Ceratizit Austria Gesellschaft m.b.H. Moulding tool, method for producing a green body, and use of the moulding tool
JP2017511842A (en) * 2014-02-17 2017-04-27 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング Forming tool, method for producing green body and method for using forming tool
US10315253B2 (en) 2014-02-17 2019-06-11 Ceratizit Austria Gesellschaft M.B.H. Mould, method for producing a green compact and use of the mould
CN106001578A (en) * 2016-07-26 2016-10-12 郑州磨料磨具磨削研究所有限公司 Radial pressure application sintering forming mould
CN110785245A (en) * 2017-03-14 2020-02-11 吉凯恩粉末冶金工程有限公司 Method for producing a green body with a pressing tool, green body and sintered part
JP2020512484A (en) * 2017-03-14 2020-04-23 ゲーカーエン シンター メタルズ エンジニアリング ゲーエムベーハー Method for producing green compact using pressing tool, pressing tool, green compact, and sintered part
US11318533B2 (en) 2017-03-14 2022-05-03 Gkn Sinter Metals Engineering Gmbh Method for producing a green compact using a pressing tool, a pressing tool, a green compact, and a sintered part
CN110785245B (en) * 2017-03-14 2022-08-19 吉凯恩粉末冶金工程有限公司 Method for producing a green body with a pressing tool, green body and sintered part

Also Published As

Publication number Publication date
JP2739412B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US5043123A (en) Method and apparatus for manufacturing finished parts as composite bodies from pulverulent rolling materials
CN110695111B (en) Radial-reverse combined extrusion forming die for thin-walled cylindrical part with outer boss
GB2125434A (en) Producing a composite sintered article such as a compound valve seat
US20020022063A1 (en) Device for forming annular articles from powder material
WO2018221497A1 (en) Powder molding press method of green compact for cutting insert, and powder molding press device
CN1231315C (en) Method for manufacturing of plate involving intermediate proforming and final shaping
CN110899693A (en) Forming method and forming device for powder metallurgy part
JPH07266091A (en) Powder press
US3840631A (en) Method of making a composite tablet
KR101072702B1 (en) Device and method for manufacturing endmill
CN109574772A (en) A kind of abnormity explosive column molding die
US4065950A (en) Formation of articles
US4390488A (en) Pressing metal powder into shapes
CN111618981A (en) Powder briquetting die and powder briquetting machine
JPS6077903A (en) Method and device for molding powder
US4401615A (en) Method of molding a perforated article
JP3788559B2 (en) Method for manufacturing sintered parts
CN219335968U (en) Female die structure
CN219855116U (en) Forming device for activated alumina micropowder green bricks
CN209987131U (en) Powder briquetting die and powder briquetting machine
CN216728911U (en) Annular magnetic steel shaping device
CN218983182U (en) Manual two-way pipe die
CN118060538A (en) Powder metallurgy forming male die
JPH0344880B2 (en)
SU1187912A1 (en) Method of pressing intermittent-section articles of powder in rigid injection die