JPH07262992A - Manufacture of positive electrode active material for lead-acid battery - Google Patents

Manufacture of positive electrode active material for lead-acid battery

Info

Publication number
JPH07262992A
JPH07262992A JP6078046A JP7804694A JPH07262992A JP H07262992 A JPH07262992 A JP H07262992A JP 6078046 A JP6078046 A JP 6078046A JP 7804694 A JP7804694 A JP 7804694A JP H07262992 A JPH07262992 A JP H07262992A
Authority
JP
Japan
Prior art keywords
lead
active material
positive electrode
fibers
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6078046A
Other languages
Japanese (ja)
Inventor
Toshihiro Inoue
利弘 井上
Nobuyuki Koura
延幸 小浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6078046A priority Critical patent/JPH07262992A/en
Publication of JPH07262992A publication Critical patent/JPH07262992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To generate the active material in a short time, and to improve the utilization factor of the positive electrode active material, and to obtain a lightweight lead-acid battery having a high output by using a fluidization tank to electrically deposit lead dioxide onto the surface of the conductive fibers. CONSTITUTION:A fluidization tank 1 is filled with the solution of lead nitrate and nitric acid, and electric deposit is performed to the conductive fibers, which are obtained by performing the electroless plating to coat the carbon fibers or glass fibers with lead, at a constant current. At this stage, as a collector 3 for holding the fibers in the tank and as a reference electrode 4, platinum wire is used, and the electrolyte is fed from a liquid inlet 5 to a liquid outlet 6, and the electrolyte is agitated by an agitating bar 7 for circulation. Thereafter, a predetermined quantity of the binder made of tetrafluoroethylene is added to the fibers, on which surface lead dioxide is electrically deposited, and the fibers are pressed onto a sheet made of Pb-Ca-Sn alloy to obtain a positive electrode plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車のエンジンスタ
ート用や電気自動車用電源として広く用いられる鉛電池
の、とくにその正極活物質の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead battery widely used as a power source for starting an engine of an automobile or an electric vehicle, and more particularly to a method for producing a positive electrode active material thereof.

【0002】[0002]

【従来の技術】鉛電池の極板は、従来から鉛合金からな
る格子体に酸化鉛粉、希硫酸、水さらには各種添加剤を
混合して練り合わせたペーストを充填することによって
製造されてきた。上記で得られたペーストは、極板状態
での熟成乾燥、化成などの化学反応による工程を重ねて
活物質とする必要があった。また、従来から用いられて
いる化成方法は、化成槽(タンク)内に正極板と負極板
を交互に配置し、希硫酸を電解液として注入して20時
間程度の時間を費やして通電することで行ってきた。化
成を施した極板は、その後水洗および乾燥の工程を経
て、セパレータなどと組み合わせて極板群とされ、電池
電槽に収納することで電池が組み立てられていた。
2. Description of the Related Art An electrode plate of a lead battery has been conventionally manufactured by filling a grid body made of a lead alloy with lead oxide powder, dilute sulfuric acid, water and various additives and kneading the paste. . The paste obtained above was required to be made into an active material by repeating the steps of chemical reaction such as aging and drying in an electrode plate state and chemical conversion. Further, the conventional chemical conversion method is to alternately arrange the positive electrode plate and the negative electrode plate in the chemical conversion tank (tank), inject dilute sulfuric acid as an electrolytic solution, and spend about 20 hours to conduct electricity. I went there. The chemically processed electrode plate was then washed with water and dried, and then combined with a separator or the like to form an electrode plate group, which was then stored in a battery container to assemble the battery.

【0003】[0003]

【発明が解決しようとする課題】上記従来の製造方法で
はペーストを用いて極板を製造するため、ペーストの練
合、熟成乾燥、極板化成などの化学反応を利用して活物
質を生成させる必要があった。これらの化学反応は均一
な反応を短時間で行なわせることが困難で、均一な極板
を製造しようとすると、長い生産所要時間が必要であ
り、従来方法によれば、極板が最終使用可能状態に仕上
るまでに1週間以上を必要としていた。
In the above conventional manufacturing method, since the electrode plate is manufactured by using the paste, the active material is produced by utilizing chemical reactions such as kneading, aging and drying of the paste, and electrode plate formation. There was a need. It is difficult for these chemical reactions to carry out a uniform reaction in a short time, and it takes a long production time to manufacture a uniform electrode plate, and according to the conventional method, the electrode plate can be finally used. It took more than a week to finish.

【0004】また、ペーストの練合、熟成乾燥、極板化
成などはいずれもバッチ単位で行われることが多く、バ
ッチ間のばらつきを小さくしなければ、均一な極板を数
多く得ることができにくいという課題をかかえていた。
Further, kneading of paste, aging drying, electrode plate formation, etc. are often carried out in batch units, and it is difficult to obtain many uniform electrode plates unless variation between batches is reduced. Had a problem.

【0005】さらに、上記の方法では、化学反応を利用
して活物質粒子間の結合力を高めて活物質の反応表面積
の十分な確保と、高出力化に不可欠な薄く、多孔質な極
板を得ることは、その取扱い上の問題から量産が難しい
という問題点を有していた。
Further, in the above method, a thin and porous electrode plate is indispensable for securing sufficient reaction surface area of the active material by utilizing chemical reaction to enhance the binding force between the active material particles and for high output. However, it was difficult to mass-produce the product because of its handling problems.

【0006】そのため、極板は1mm以上の厚みが必要
であり、活物質の利用率を高めることが難しく、その結
果として電池の高出力化、軽量化は困難であった。
Therefore, the electrode plate needs to have a thickness of 1 mm or more, and it is difficult to increase the utilization rate of the active material, and as a result, it has been difficult to increase the output and weight of the battery.

【0007】本発明は、上記従来の問題点を解決するも
ので、ペースト式極板の製造における正極活物質の不均
一性をなくし、短い生産所要時間で、高性能な極板を製
造する方法をもたらすものである。
The present invention solves the above-mentioned conventional problems and is a method for producing a high-performance electrode plate in a short production time by eliminating the non-uniformity of the positive electrode active material in the production of the paste-type electrode plate. Will bring about.

【0008】すなわち、流動槽での電析により、導電性
繊維の表面に短時間で活物質を生成させ、正極活物質の
利用率を向上させて、高出力で軽量な鉛電池を提供する
ものである。
[0008] That is, by providing an active material on the surface of the conductive fiber in a short time by electrodeposition in a fluidized tank to improve the utilization rate of the positive electrode active material, a high output and lightweight lead battery is provided. Is.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するものであり、充電状態の活物質を出発原料とし、流
動槽を用いて導電性繊維の表面に二酸化鉛を電析させる
ことを特徴としている。
Means for Solving the Problems The present invention is intended to solve the above-mentioned problems, in which an active material in a charged state is used as a starting material, and lead dioxide is electrodeposited on the surface of a conductive fiber using a fluidized tank. It has a feature.

【0010】また、流動槽を用いて電析を行うため、連
続して活物質を製造することができると共に、導電性繊
維の表面に正極活物質を直接電析するため、電子伝導性
に優れた活物質を得ることができる。
Further, since the electrodeposition is carried out using the fluidized tank, the active material can be continuously produced, and the positive electrode active material is directly electrodeposited on the surface of the conductive fiber, so that the electron conductivity is excellent. Active material can be obtained.

【0011】さらに、流動槽を用いた電析により、電気
化学的に正極活物質を連続して、かつ短時間で得ること
ができ、しかも粒子形状や結晶化度が揃った正極活物質
であるため、活物質の利用効率、サイクル寿命などの特
性を向上することができる。
Further, the positive electrode active material can be electrochemically obtained continuously and in a short time by electrodeposition using a fluidized tank, and the particle shape and crystallinity are uniform. Therefore, characteristics such as utilization efficiency of the active material and cycle life can be improved.

【0012】[0012]

【作用】流動層を用いて電析を行うことにより、導電性
のある繊維表面に導電性に優れた活物質を得ることがで
きる。また、このような活物質を用いることで極板の反
応表面積を大きくすることができ、充放電反応における
電流密度を小さくすることができる。したがって、従来
に比べてより大きな電流での充放電ができるようになる
ため、活物質としての利用効率を高くすることができ、
電池の高出力化を図ることができる。
By performing electrodeposition using the fluidized bed, an active material having excellent conductivity can be obtained on the surface of the conductive fiber. Further, by using such an active material, the reaction surface area of the electrode plate can be increased, and the current density in the charge / discharge reaction can be decreased. Therefore, since it becomes possible to charge and discharge with a larger current than in the past, it is possible to increase the utilization efficiency as an active material,
It is possible to increase the output of the battery.

【0013】また、従来方法では、化学反応を利用して
極板製造を行っていたため、極板の生産所要時間には1
週間以上の時間が必要であったが、本発明によればその
所要時間はわずか1日と大幅に短縮化が図れる。さら
に、流動槽での電析により、活物質の連続生産も可能で
ある。
Further, in the conventional method, since the electrode plate is manufactured by utilizing the chemical reaction, it takes 1 time to produce the electrode plate.
Although it took more than a week, the present invention can significantly reduce the required time to just one day. Furthermore, continuous production of active material is possible by electrodeposition in a fluidized tank.

【0014】[0014]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0015】0.1mol/lの硝酸鉛と1mol/l
の硝酸の溶液を、図1に示す電析用の流動槽1に注入さ
せて、定電流にて電析を行った。電析させる導電性の繊
維2としては、平均直径13μmのカーボン繊維、およ
び平均直径15μmのガラス繊維に鉛を無電解メッキに
よりコーティングしたものを用いた。なお、繊維を槽内
に保持する集電体3および参照極4には白金線を用い、
電解液は攪拌と濃度を一定に保つため、液入口5から液
出口6に向け送り込むとともに攪拌棒7で攪拌しながら
循環させた。上記の繊維の長さは2〜6mmである。図
1に示す電解槽1では電解液量は約0.5lである。図
1中8は液透過の隔壁、9は電析用対極である。
0.1 mol / l lead nitrate and 1 mol / l
The nitric acid solution of was injected into the fluidization tank 1 for electrodeposition shown in FIG. 1 and electrodeposition was performed at a constant current. As the conductive fibers 2 to be electrodeposited, carbon fibers having an average diameter of 13 μm and glass fibers having an average diameter of 15 μm coated with lead by electroless plating were used. A platinum wire is used for the current collector 3 and the reference electrode 4 for holding the fiber in the tank,
The electrolytic solution was fed from the liquid inlet 5 toward the liquid outlet 6 and circulated while being stirred by the stirring rod 7 in order to keep the stirring and the concentration constant. The length of the above fibers is 2-6 mm. In the electrolytic cell 1 shown in FIG. 1, the amount of electrolytic solution is about 0.5 l. In FIG. 1, 8 is a liquid-permeable partition wall, and 9 is a counter electrode for electrodeposition.

【0016】電析により得られた二酸化鉛が表面に電着
した繊維の形状の電子顕微鏡写真を図2に示した。図2
から繊維の表面に二酸化鉛が均一に電着していることが
わかる。二酸化鉛を表面に電析させたカーボン繊維ある
いは鉛をコーティングしたガラス繊維は、十分な水洗の
後、120℃で1時間乾燥して活物質とした。
FIG. 2 shows an electron micrograph of the shape of the fibers on the surface of which lead dioxide obtained by electrodeposition was electrodeposited. Figure 2
From this, it can be seen that lead dioxide is uniformly electrodeposited on the surface of the fiber. The carbon fiber electrodeposited with lead dioxide or the glass fiber coated with lead was thoroughly washed with water and then dried at 120 ° C. for 1 hour to obtain an active material.

【0017】電析により得られた二酸化鉛が表面に電析
した繊維には、テトラフルオロエチレンの結合剤を2重
量%加え、厚さ0.5mmの通常用いられているPb−
Ca−Sn合金のシート上にプレス成型して正極板とし
た。極板の放電評価は1×10-3A/dm2の電流密度
で極板を放電し、活物質の利用効率により行った。
The lead dioxide obtained by electrodeposition has 2% by weight of a binder of tetrafluoroethylene added to the surface of the electrodeposited fibers, and a commonly used Pb-containing layer having a thickness of 0.5 mm is used.
A sheet of Ca-Sn alloy was press-molded to obtain a positive electrode plate. The discharge evaluation of the electrode plate was performed by discharging the electrode plate at a current density of 1 × 10 −3 A / dm 2 and using the utilization efficiency of the active material.

【0018】なお、電解液には比重1.30の希硫酸
を、負極板には従来品のペースト式の極板をそれぞれ用
いた。極板寸法は30mm×40mm、正極板の厚みは
1.3mm、負極板の厚みは1.0mmとし、セルの容
量は正極律則となるように工夫した。
Dilute sulfuric acid having a specific gravity of 1.30 was used as the electrolytic solution, and a conventional paste-type electrode plate was used as the negative electrode plate. The size of the electrode plate was 30 mm × 40 mm, the thickness of the positive electrode plate was 1.3 mm, the thickness of the negative electrode plate was 1.0 mm, and the capacity of the cell was devised so as to be the positive electrode law.

【0019】また、電池としての評価は、得られた正極
板を厚さ0.8mmの微細なガラスマットからなるセパ
レータを介して上記の負極板と組合せ、電解液には比重
1.30の希硫酸を用いたセルで行った。集電部の鉛合
金シートを除けば、正極板の厚みは0.8mmである。
Further, the battery was evaluated by combining the obtained positive electrode plate with the above negative electrode plate through a separator made of a fine glass mat having a thickness of 0.8 mm, and a rare electrolyte having a specific gravity of 1.30 was used. It was carried out in a cell using sulfuric acid. The thickness of the positive electrode plate is 0.8 mm, excluding the lead alloy sheet of the current collector.

【0020】図3には電解液の硝酸鉛濃度と極板の放電
電気量との関係を示した。電析時の電流密度は1×10
-3A/dm2であり、通電電気量は20C/cm2とし
た。この実施例では、カーボン繊維約5gを流動槽に入
れて電解した。通電時間は、100C/cm2の通電電
気量のとき約17分である。硝酸鉛濃度は0.1mol
/lの濃度の時がもっとも放電容量が大きくなり、利用
効率の高い正極活物質とすることができた。
FIG. 3 shows the relationship between the lead nitrate concentration in the electrolytic solution and the quantity of electricity discharged from the electrode plate. Current density during electrodeposition is 1 x 10
-3 A / dm 2 , and the amount of electricity supplied was 20 C / cm 2 . In this example, about 5 g of carbon fiber was placed in a fluidized tank and electrolyzed. The energizing time is about 17 minutes when the energizing amount is 100 C / cm 2 . Lead nitrate concentration is 0.1 mol
When the concentration was / l, the discharge capacity was the largest, and a positive electrode active material with high utilization efficiency could be obtained.

【0021】このときの電析効率はいずれもほぼ100
%であり、電析により得られた二酸化鉛の平均粒子径は
およそ5〜15μmである。なお、電析は導電性繊維の
表面に均一に行われているが、通電電気量を大きくする
と、電析する二酸化鉛の粒子径は50μmをこえて大き
くなり、放電反応にとっては好ましくなく、利用効率が
低下することが認められた。
At this time, the electrodeposition efficiency is almost 100 in all cases.
%, And the average particle diameter of lead dioxide obtained by electrodeposition is about 5 to 15 μm. It should be noted that although the electrodeposition is uniformly performed on the surface of the conductive fiber, when the amount of electricity supplied is increased, the particle size of the lead dioxide to be electrodeposited becomes larger than 50 μm, which is not preferable for the discharge reaction. It was observed that the efficiency was reduced.

【0022】したがって、電析活物質の利用効率にとっ
ては、電解液濃度および電析通電電気量の望ましい点が
存在することになる。
Therefore, there are desirable points for the utilization efficiency of the electrodeposition active material, such as the concentration of the electrolytic solution and the amount of electricity supplied for electrodeposition.

【0023】また、図4には電析の通電電気量を変えた
時の、得られた活物質の放電容量を示した。電流密度な
どの条件は図3と同じである。いずれも電析活物質が反
応性の高いことが示されている。
Further, FIG. 4 shows the discharge capacity of the obtained active material when the amount of electricity for electrodeposition was changed. The conditions such as the current density are the same as those in FIG. It is shown that the electrodeposited active material has high reactivity.

【0024】図5には上記のカーボン繊維A、鉛をコー
ティングしたガラス繊維Bおよび酸化鉛粉Cを用いた正
極板と負極板を組み合わせて、電解液を規制したシール
形電池とした時のセルの放電電圧を示した。放電電流密
度は1×10-3A/dm2で、放電終止電圧は1.7V
である。放電電圧は平坦性が良好で、活物質の電子伝導
性が高いことが示されている。また、このときの活物質
の利用効率は50%を上回り、充放電の電流効率もほぼ
100%であった。
FIG. 5 shows a cell in which a positive electrode plate and a negative electrode plate using the above carbon fiber A, glass fiber B coated with lead and lead oxide powder C are combined to form a sealed battery in which the electrolytic solution is regulated. The discharge voltage of Discharge current density is 1 × 10 -3 A / dm 2 and discharge end voltage is 1.7V.
Is. It has been shown that the discharge voltage has good flatness and the active material has high electron conductivity. At this time, the utilization efficiency of the active material was more than 50%, and the current efficiency of charging / discharging was almost 100%.

【0025】導電性繊維にカーボン繊維を用いた場Aの
方が低コストの極板とすることができるが、極板として
用いた場合、充電中にアノード酸化を受け、カーボン繊
維の溶解が認められた。一方、平均直径15μmのガラ
ス繊維に鉛を無電解メッキによりコーティングした繊維
Bを用いると、集電体の繊維と活物質の密着が良好とな
り、繊維状の鉛皮膜と二酸化鉛の良好な接触を保つこと
ができた。
In the case A in which carbon fiber is used as the conductive fiber, a lower cost electrode plate can be obtained, but when it is used as an electrode plate, it undergoes anodic oxidation during charging and carbon fiber dissolution is observed. Was given. On the other hand, when the fiber B obtained by coating lead on glass fiber having an average diameter of 15 μm by electroless plating is used, the adhesion between the current collector fiber and the active material is good, and the good contact between the fibrous lead coating and lead dioxide I was able to keep it.

【0026】図6には図5と同様A,B,Cの正極板を
用いた電池を、放電電流密度は1×10-3A/dm2
放電電流密度で終止電圧1.7Vまで放電し、2.45
Vの定電圧充電を6時間行ったときの充放電サイクル特
性を示した。図6で明らかなように、充放電に優れた極
板をもたらすことができる。なお、従来例Cの極板厚み
は0.8mmとした。
FIG. 6 shows a battery using positive electrode plates A, B and C as in FIG. 5, discharged at a discharge current density of 1 × 10 −3 A / dm 2 to a final voltage of 1.7V. And 2.45
The charging / discharging cycle characteristic at the time of carrying out the constant voltage charging of V for 6 hours was shown. As is clear from FIG. 6, it is possible to provide an electrode plate excellent in charge and discharge. The thickness of the electrode plate of Conventional Example C was 0.8 mm.

【0027】電解液に過塩素酸鉛と過塩素酸溶液との混
合液を用いた場合も、電解液濃度と電析の通電電気量の
最適化を図ることにより、同様な繊維を得ることができ
た。また、これらの繊維状活物質からなる正極板の放電
特性も同様であった。
Even when a mixed solution of lead perchlorate and a perchloric acid solution is used as the electrolytic solution, similar fibers can be obtained by optimizing the concentration of the electrolytic solution and the amount of electricity supplied for electrodeposition. did it. The discharge characteristics of the positive electrode plate made of these fibrous active materials were also the same.

【0028】[0028]

【発明の効果】以上のように、本発明によればペースト
式極板において行われる、複雑な化学反応を用いて活物
質を生成させることなく、組成の均一性が良好な電析に
よる二酸化鉛を正極活物質として用いることで、短時間
に所定の極板を連続的に製造することができる。
Industrial Applicability As described above, according to the present invention, lead dioxide obtained by electrodeposition having good composition uniformity without forming an active material by using a complicated chemical reaction, which is carried out in a paste type electrode plate. By using as a positive electrode active material, a predetermined electrode plate can be continuously manufactured in a short time.

【0029】すなわち、薄い極板を安定して生産できる
ため、電池の利用率向上による軽量化、高出力化などか
ら、鉛電池のコンパクト化に寄与するところが大であ
る。
That is, since thin electrode plates can be stably produced, the weight utilization and the power output of the battery are improved, which contributes to the downsizing of the lead battery.

【0030】また、活物質の有効反応表面積を大きくで
きるため、相対的に電流密度を小さくできる。その結
果、電池を大電流で放電できるようになるため、UPS
などの大電流負荷をもつ電源電池として極めて有利であ
る。また、充電電流も大きくできるため、電池を短時間
で充電ができるなど、その利用価値は極めて大きい。
Since the effective reaction surface area of the active material can be increased, the current density can be relatively reduced. As a result, the battery can be discharged with a large current, so UPS
It is extremely advantageous as a power supply battery with a large current load such as. In addition, since the charging current can be increased, the battery can be charged in a short time and its utility value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる流動槽を示す概略図FIG. 1 is a schematic view showing a flow tank used in the present invention.

【図2】本発明の表面に二酸化鉛が電析したカーボン繊
維の形状を示す電子顕微鏡写真
FIG. 2 is an electron micrograph showing the shape of carbon fibers having lead dioxide deposited on the surface of the present invention.

【図3】電解液の硝酸鉛濃度と電析によって得られた活
物質の放電電気量との関係を示す図
FIG. 3 is a diagram showing the relationship between the lead nitrate concentration of an electrolytic solution and the amount of discharged electricity of an active material obtained by electrodeposition.

【図4】電析の通電電気量と電析によって得られた活物
質の放電電気量との関係を示す図
FIG. 4 is a diagram showing the relationship between the amount of electricity supplied by electrodeposition and the amount of discharge electricity of the active material obtained by electrodeposition.

【図5】電池の放電電圧を示す図FIG. 5 is a diagram showing a discharge voltage of a battery.

【図6】電池の充放電サイクル特性を示す図FIG. 6 is a diagram showing charge / discharge cycle characteristics of a battery.

【符号の説明】[Explanation of symbols]

1 流動槽 2 導電性の繊維 3 集電体 4 参照極 5 液入口 6 液出口 7 攪拌棒 A カーボン繊維を用いた本発明の実施例 B ガラス繊維に鉛をコーティングした本発明の実施例 C 従来例 DESCRIPTION OF SYMBOLS 1 Fluidized tank 2 Conductive fiber 3 Current collector 4 Reference electrode 5 Liquid inlet 6 Liquid outlet 7 Stirring bar A Example of the present invention using carbon fiber B Example of the present invention in which lead is coated on glass fiber C Conventional An example

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉛電池用正極活物質の製造方法であって、
流動槽を用いてカーボン繊維または繊維状基材の表面に
導電性処理を施した導電性繊維の表面に、二酸化鉛を電
析させることを特徴とする鉛電池用正極活物質の製造方
法。
1. A method for producing a positive electrode active material for a lead battery, comprising:
A method for producing a positive electrode active material for a lead battery, comprising depositing lead dioxide on the surface of a conductive fiber obtained by subjecting a surface of a carbon fiber or a fibrous base material to a conductive treatment using a fluidized tank.
【請求項2】ガラス繊維を基材とし、その表面に鉛のコ
ーティングを施した繊維またはこの繊維より構成したマ
ット状のフェルトを用いて、その表面に二酸化鉛を電析
することを特徴とする請求項1記載の鉛電池用正極活物
質の製造方法。
2. A method in which lead dioxide is electrodeposited on the surface of a glass fiber as a base material and a fiber coated with lead on the surface or a mat-like felt composed of the fiber. The method for producing a positive electrode active material for a lead battery according to claim 1.
【請求項3】流動槽中の電解液が、硝酸鉛と硝酸溶液ま
たは過塩素酸鉛と過塩素酸溶液のいずれかであることを
特徴とする請求項1記載の鉛電池用正極活物質の製造方
法。
3. The positive electrode active material for a lead battery according to claim 1, wherein the electrolytic solution in the fluidized tank is either lead nitrate and nitric acid solution or lead perchlorate and perchloric acid solution. Production method.
JP6078046A 1994-03-23 1994-03-23 Manufacture of positive electrode active material for lead-acid battery Pending JPH07262992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6078046A JPH07262992A (en) 1994-03-23 1994-03-23 Manufacture of positive electrode active material for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6078046A JPH07262992A (en) 1994-03-23 1994-03-23 Manufacture of positive electrode active material for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH07262992A true JPH07262992A (en) 1995-10-13

Family

ID=13650915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6078046A Pending JPH07262992A (en) 1994-03-23 1994-03-23 Manufacture of positive electrode active material for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH07262992A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062891A (en) * 2014-09-18 2016-04-25 テグ キョンバック インスティテュート オブ サイエンス アンド テクノロジーDaegu Gyeongbuk Institute Of Science & Technology Production method of metal oxide-supported carbon nanofiber electrode using electro deposition method, and energy storage device and filter, both using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062891A (en) * 2014-09-18 2016-04-25 テグ キョンバック インスティテュート オブ サイエンス アンド テクノロジーDaegu Gyeongbuk Institute Of Science & Technology Production method of metal oxide-supported carbon nanofiber electrode using electro deposition method, and energy storage device and filter, both using the same

Similar Documents

Publication Publication Date Title
CN104201390B (en) Flooded lead-acid battery and method of making the same
US5156935A (en) Lead-acid battery
CN107452947B (en) Lead paste for positive plate of lead storage battery, preparation method of lead paste and lead storage battery
CN1331257C (en) Positive lead cream of valve-controlled sealed plumbous acid accumulator for starting vehicle and production thereof
JPS61502646A (en) Improvement of nickel hydroxide positive electrode for alkaline storage batteries
JPH06505590A (en) Manufacturing method of rechargeable modified manganese-containing material by electrolytic deposition and related materials
JPH07262992A (en) Manufacture of positive electrode active material for lead-acid battery
JP3505850B2 (en) Lead storage battery and method of manufacturing the same
JP5659484B2 (en) Battery case formation method for lead acid battery
JPH0221098B2 (en)
US4507855A (en) Lead acid electric storage cell and a positive electrode therefor
JPH0773060B2 (en) Secondary battery
JPH05135761A (en) Lead-acid battery
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
US3585119A (en) Method for making a battery electrode
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JP4066509B2 (en) Manufacturing method of lead acid battery
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JP2929894B2 (en) Manufacturing method of sealed lead-acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP4390481B2 (en) Lead acid battery
US589842A (en) Henry leitxer
IE46174B1 (en) Electrodes for lead storage battery and cells and batteries containing them

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302