JPH0726220B2 - Manufacturing method of electrolytic iron - Google Patents

Manufacturing method of electrolytic iron

Info

Publication number
JPH0726220B2
JPH0726220B2 JP61000743A JP74386A JPH0726220B2 JP H0726220 B2 JPH0726220 B2 JP H0726220B2 JP 61000743 A JP61000743 A JP 61000743A JP 74386 A JP74386 A JP 74386A JP H0726220 B2 JPH0726220 B2 JP H0726220B2
Authority
JP
Japan
Prior art keywords
cathode
iron
anode
electrodeposited
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61000743A
Other languages
Japanese (ja)
Other versions
JPS62158892A (en
Inventor
喜充 沢田
進 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61000743A priority Critical patent/JPH0726220B2/en
Publication of JPS62158892A publication Critical patent/JPS62158892A/en
Publication of JPH0726220B2 publication Critical patent/JPH0726220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解鉄の製法に係り、より詳しく述べると、電
着表面の凹凸を小さくして陰極上により厚く鉄を電着す
ることができるようにする方法に関する。
The present invention relates to a method for producing electrolytic iron. More specifically, the present invention relates to a method for producing electrolytic iron. More specifically, the unevenness of the electrodeposited surface can be reduced, and iron can be electrodeposited thicker on the cathode. On how to do.

電解鉄は通常の軟鋼とか純鉄に比べ各種不純物が格段と
少ないため、磁性材料、電子材料、合金材料、試験研究
用ベースメタル材料等高品位を要求される分野に賞用さ
れている。
Electrolytic iron has much less impurities than ordinary mild steel or pure iron, so it has been prized in fields requiring high quality such as magnetic materials, electronic materials, alloy materials, and base metal materials for testing and research.

〔従来の技術〕[Conventional technology]

電解槽中に電解液を収容し、電解液中に水平回転軸を有
する回転ドラム型陰極と、板状の軟鋼または純鉄製陽極
とを対置させ、陰極を回転させながら電解して高純度鉄
を陰極曲面上に電着させる電解鉄の製造方法は公知であ
る。これは陰極表面付近で発生するガスの脱ガスのため
に陰極を回転させるものである。陰極として平板を用い
る電解法も公知であるが、その場合、脱ガスのために電
解液を強制循環するなどの手段が採用されている。
The electrolytic solution is contained in the electrolytic cell, the rotating drum type cathode having a horizontal rotating shaft in the electrolytic solution and the plate-shaped mild steel or pure iron anode are placed in opposition, and electrolysis is performed while rotating the cathode to produce high-purity iron. A method for producing electrolytic iron to be electrodeposited on a cathode curved surface is known. This is to rotate the cathode for degassing the gas generated near the surface of the cathode. An electrolysis method using a flat plate as a cathode is also known, but in that case, means such as forced circulation of an electrolytic solution for degassing is adopted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記の如く回転ドラム型あるいは平板型の陰極を用いた
場合には、電着鉄の厚みが増すと表面の凹凸が大きくな
る傾向があるために、電着鉄を厚さを大きくすることが
できず、またその結果電極引上回数が多くなるという欠
点がある。
When a rotating drum type or flat plate type cathode is used as described above, the thickness of the electrodeposited iron tends to increase as the thickness of the electrodeposited iron increases, so that the thickness of the electrodeposited iron can be increased. In addition, there is a drawback that the number of times the electrode is pulled up increases as a result.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者ら、上記問題点を解決すべく鋭意努力した結
果、陰極として陽極側に凹型の曲面を有するものを用い
れば、電着鉄の厚みが増しても表面の凹凸が大きくなら
ず、より厚い電着鉄を得ることを可能になることを見い
出し、本発明を完成するに至った。
The present inventors, as a result of diligent efforts to solve the above problems, if a cathode having a concave curved surface on the anode side is used, even if the thickness of the electrodeposited iron increases, the unevenness of the surface does not increase, and They have found that it is possible to obtain thick electrodeposited iron, and have completed the present invention.

すなわち、第1の形態の本発明は、第1鉄イオンと支持
電解質を主成分とする水溶液からなる電解浴中に、陽極
と陰極を対置させ、陰極上に高純度鉄を電着させる電解
鉄の製法において、陰極として陽極側に凹型に湾曲した
曲板を用いることを特徴とする電解鉄の製法にある。
That is, the present invention in the first form is an electrolytic iron in which an anode and a cathode are placed in opposition in an electrolytic bath composed of an aqueous solution containing ferrous ions and a supporting electrolyte as main components, and high-purity iron is electrodeposited on the cathode. In the manufacturing method of, the manufacturing method of electrolytic iron is characterized in that a curved plate concavely curved on the anode side is used as a cathode.

また、第2形態の本発明は、第1鉄イオンと支持電解質
を主成分とする水溶液からなる電解浴中に、陽極と陰極
を対置させ、陰極上に高純度鉄を電着させる電解鉄の製
法において、陰極として円筒状陰極を用い、かつ陽極と
して円筒状陰極内に非接触状に挿入できる陽極を用いそ
れを陰極内中心部に保持して電解を行なうことを特徴と
する電解鉄の製法にある。この第2形態の本発明におい
て、陽極と陰極が鉛直に保持されること、また陽極およ
び(または)陰極が回転されることが好ましい。
Further, the present invention in a second form is an electrolytic iron in which an anode and a cathode are placed in opposition to each other in an electrolytic bath composed of an aqueous solution containing ferrous ions and a supporting electrolyte as main components, and high-purity iron is electrodeposited on the cathode. In the production method, a cylindrical iron cathode is used as a cathode, and an anode that can be inserted in a cylindrical cathode in a non-contact manner as an anode is used to hold it in the center of the cathode to perform electrolysis. It is in. In the second aspect of the present invention, it is preferable that the anode and the cathode be held vertically and that the anode and / or the cathode be rotated.

〔作用〕[Action]

従来の平板型または凸面型の陰極で電着鉄の厚みが増す
と表面の凹凸が大きくなる理由は次のように考えられ
る。すなわち、第3図を参照すると、平板型陰極1の表
面に電着鉄の結晶粒2が成長すると、結晶粒の表面は平
坦でないので結晶粒2が形成する表面の表面積が陰極1
の表面積より増大し、そのために電流密度が小さくな
る。こうして電流密度が小さくなると、次に成長する結
晶粒3はより大きくなり、それによって形成される表面
積もより大きくなる。すると、電流密度がさらに小さく
なり、その上に成長する結晶粒4はさらに大きくなる。
このようにして、電着鉄の厚みが増すにつれて結晶粒が
大きくなり、その結果表面の凹凸が増幅されてゆくので
ある。第4図は、陰極が凸型の場合であるが、第3図の
平板型陰極と同様の理由から電着鉄の厚みの増加ととも
に表面の凹凸が増大してゆくのみならず、凸型表面で
は、その上に鉄が電着すると電着鉄の厚み方向に曲率半
径(r1→r2→r3→r4)が大きくなるのでそれによって表
面積が増大する性質が本来的にあり、その結果としても
電着鉄の厚みの増加とともに結晶粒が大きくなる傾向が
あるので、これらの相乗効果により、電着鉄の表面の凹
凸は著しく速く増大してゆく。第4図はこの様子を示
し、凸型陰極11上に電着鉄の結晶粒12,13,14が順次成長
してゆき、表面の凹凸が急速に拡大している。
The reason why the surface unevenness increases with increasing thickness of the electrodeposited iron in the conventional flat plate type or convex type cathode is considered as follows. That is, referring to FIG. 3, when the crystal grains 2 of electrodeposited iron grow on the surface of the flat-plate type cathode 1, the surface of the crystal grains 2 is not flat, so that the surface area of the surface formed by the crystal grains 2 is smaller than that of the cathode 1.
Of surface area, which results in a smaller current density. When the current density becomes smaller in this way, the crystal grains 3 that grow next become larger, and the surface area formed thereby also becomes larger. Then, the current density is further reduced, and the crystal grains 4 grown thereon are further enlarged.
In this way, the crystal grains become larger as the thickness of the electrodeposited iron increases, and as a result, the surface irregularities are amplified. FIG. 4 shows the case where the cathode has a convex shape, but for the same reason as in the flat plate type cathode of FIG. 3, not only the surface irregularities increase as the thickness of the electrodeposited iron increases, but also the convex surface. Then, when iron is electrodeposited on it, the radius of curvature (r 1 → r 2 → r 3 → r 4 ) increases in the thickness direction of the electrodeposited iron, so there is an inherent property of increasing the surface area. As a result, the crystal grains tend to become larger as the thickness of the electrodeposited iron increases, and the synergistic effect of these causes the irregularities on the surface of the electrodeposited iron to increase remarkably quickly. FIG. 4 shows this state, in which the crystal grains 12, 13, 14 of electrodeposited iron are successively grown on the convex cathode 11, and the surface irregularities are rapidly expanded.

〔実施例〕〔Example〕

第1図は陽極側に凹型の曲面を有する陰極を用いた電解
装置を示す。陽極1と陰極2とが対置され、陽極1は平
板状であるが、陰極2は陽極1側に凹型の曲面を有する
曲板である。陽極として用いる鉄材は一般軟鋼でもよい
が、少しでも純度を上げる目的で純鉄を用いても良い。
陰極は電解鉄が放電電着するものでステンレス鋼等で作
られた板状体もしくは回転ドラムが従来法同様用いられ
る。
FIG. 1 shows an electrolysis device using a cathode having a concave curved surface on the anode side. The anode 1 and the cathode 2 are placed opposite to each other, and the anode 1 is a flat plate, but the cathode 2 is a curved plate having a concave curved surface on the anode 1 side. The iron material used as the anode may be general mild steel, but pure iron may be used for the purpose of slightly increasing the purity.
As the cathode, electrolytic iron is electrodeposited by electro-deposition, and a plate-like body made of stainless steel or a rotating drum is used as in the conventional method.

陽極1および陰極2は電解浴3中に浸漬されているが、
電解浴は主要成分として硫酸第一鉄及び又は塩化第一鉄
を用い、これらの硫酸又は塩酸酸性浴に支持電解質とし
て電導性の良い、鉄よりも卑なる塩が用いられる硫酸ア
ンモニウム、塩化アンモニウム、硫酸ナトリウム、塩化
ナトリウム、硫酸カリ、塩化カリ、硫酸マグネシウム、
塩化マグネシウム、塩化カルシウム等が代表例として挙
げられる。
The anode 1 and the cathode 2 are immersed in the electrolytic bath 3,
The electrolytic bath uses ferrous sulfate and / or ferrous chloride as the main components, and in these sulfuric acid or hydrochloric acid acidic baths, salts having less conductivity than iron with good conductivity are used as supporting electrolytes. Ammonium sulfate, ammonium chloride, sulfuric acid Sodium, sodium chloride, potassium sulfate, potassium chloride, magnesium sulfate,
Representative examples include magnesium chloride and calcium chloride.

このような電解装置で実際に電解を行なった。その電解
条件は次の通りである。
Electrolysis was actually performed in such an electrolysis device. The electrolysis conditions are as follows.

陽極:840×820×50の軟鋼製板状体 陰極:陽極側が半径50の円弧105の凹型曲面を有し、高
さ1000,厚さ5のステンレス製曲板 極間距離:陰極中心部で150 電解浴 : FeCl2 140g/l NH4Cl 130g/l pH 4.5〜5.0 浴温 90〜98℃ 槽電圧 :0.8〜1.2V 電流密度:2.4A/dm2 こうして96時間電解を行ない陰極上に高純度鉄を厚さ6m
m電着させたが、電着鉄の表面は平滑であった。従来、
陰極として板状体を用い上と同様の条件で電解する場
合、表面が平滑な電解鉄の厚みはせいぜい3mm程度であ
った。
Anode: 840 × 820 × 50 mild steel plate Cathode: Anode side has a concave curved surface with a circular arc 105 of radius 50, height 1000, thickness 5 stainless steel curved plate Distance between electrodes: 150 at the center of the cathode Electrolysis bath: FeCl 2 140g / l NH 4 Cl 130g / l pH 4.5 to 5.0 Bath temperature 90 to 98 ℃ Bath voltage: 0.8 to 1.2V Current density: 2.4A / dm 2 Electrolysis is performed for 96 hours in this way with high purity on the cathode. 6m thick iron
Although m was electrodeposited, the surface of the electrodeposited iron was smooth. Conventionally,
When a plate-shaped body was used as the cathode and electrolysis was performed under the same conditions as above, the thickness of electrolytic iron having a smooth surface was about 3 mm at the most.

第2図は陰極が円筒状であり、陽極が陰極内に配置され
る電解装置を示す。同図中、5が陽極、6が陰極、7が
電解浴である。陰極6は中空円筒状であり、その内部、
特に中心部に棒状の陽極5を配置する。陽極5と陰極6
は同心円状に配置することによって陰極表面上での電解
条件を均一にする。ここで、陽極5と陰極6の一方また
は両方を回転するようにすれば、陰極表面上での電解条
件がより均一になり、好ましい。また、陽極5および陰
極6は、鉛直に配置することが電解条件の均一化のため
に好ましい。
FIG. 2 shows an electrolysis device in which the cathode is cylindrical and the anode is arranged inside the cathode. In the figure, 5 is an anode, 6 is a cathode, and 7 is an electrolytic bath. The cathode 6 has a hollow cylindrical shape, and inside thereof,
Particularly, the rod-shaped anode 5 is arranged at the center. Anode 5 and cathode 6
Are arranged concentrically to make the electrolysis conditions uniform on the cathode surface. Here, if one or both of the anode 5 and the cathode 6 are rotated, the electrolysis conditions on the cathode surface become more uniform, which is preferable. Further, it is preferable that the anode 5 and the cathode 6 are arranged vertically in order to make the electrolysis conditions uniform.

このような電解装置で実際に電解を行なった。その電解
条件は次の通りであった。
Electrolysis was actually performed in such an electrolysis device. The electrolysis conditions were as follows.

陽極:50mm×800mm角の軟鋼製棒状体 陰極:内径100mm,高さ1000mm,厚さ5mmのステンレス製円
筒体、 陰極回転速度:3r.p.m. 電解浴: FeCl2 140g/l NH4Cl 130g/l pH 4.5〜5.0 浴温 90〜95℃ 槽電圧 : 1.2〜1.8V 電流密度: 2.4A/dm2 こうして96時間電解を行ない陰極上に高純度鉄を厚さ6m
m電着させたが、電着鉄の表面は平滑であった。
Anode: 50 mm × 800 mm square mild steel rod cathode: Inner diameter 100 mm, height 1000 mm, thickness 5 mm stainless steel cylinder, cathode rotation speed: 3 r.pm Electrolysis bath: FeCl 2 140 g / l NH 4 Cl 130 g / l pH 4.5 to 5.0 Bath temperature 90 to 95 ° C Bath voltage: 1.2 to 1.8V Current density: 2.4A / dm 2 Electrolysis is carried out for 96 hours, and high purity iron with a thickness of 6m is deposited on the cathode.
Although m was electrodeposited, the surface of the electrodeposited iron was smooth.

〔発明の効果〕〔The invention's effect〕

本発明により、陰極の陽極側表面を凹型にすることによ
り、陰極上に高純度鉄が電着してその厚みが増す場合に
表面の凹凸が拡大することを防止できる。その結果、表
面が平滑なより厚い電着鉄を得ることができるととも
に、電極の引上回数が低減され、生産性が向上する。
According to the present invention, by making the surface of the cathode on the anode side concave, it is possible to prevent the surface irregularities from expanding when high-purity iron is electrodeposited on the cathode and its thickness increases. As a result, a thicker electrodeposited iron having a smooth surface can be obtained, and the number of times the electrode is pulled up is reduced, so that the productivity is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は陽極側が凹型曲面を有する板状陰極を用いた電
解装置の模式図、第2図は円筒状陰極と陰極内の棒状陽
極を用いた電解装置の模式図、第3図は平板状陰極上へ
の電着鉄の成長の様子を示す模式図、第4図は凸型陰極
上への電着鉄の成長の様子を示す模式図である。 1……平板状陰極、2,3,4……結晶粒、11……凸型陰
極、12,13,14……結晶粒、r1,r2,r3,r4……曲率半径。
FIG. 1 is a schematic diagram of an electrolysis device using a plate cathode having a concave curved surface on the anode side, FIG. 2 is a schematic diagram of an electrolysis device using a cylindrical cathode and a rod-shaped anode in the cathode, and FIG. 3 is a flat plate FIG. 4 is a schematic diagram showing how electrodeposited iron grows on the cathode, and FIG. 4 is a schematic diagram showing how electrodeposited iron grows on the convex cathode. 1 ...... flat cathode, 2,3,4 ...... grain, 11 ...... convex cathode, 12, 13, 14 ...... grain, r 1, r 2, r 3, r 4 ...... radius of curvature.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第1鉄イオンと支持電解質を主成分とする
水溶液からなる電解浴中に、陽極と陰極を対置させ、陰
極上に高純度鉄を電着させる電解鉄の製法において、陰
極として陽極側に凹型に湾曲した曲板を用いることを特
徴とする電解鉄の製法。
1. A method for producing electrolytic iron in which an anode and a cathode are placed in opposition in an electrolytic bath composed of an aqueous solution containing ferrous ions and a supporting electrolyte as main components, and high-purity iron is electrodeposited on the cathode. A method for producing electrolytic iron, characterized in that a curved plate that is concavely curved is used on the anode side.
【請求項2】第1鉄イオンと支持電解質を主成分とする
水溶液からなる電解浴中に、陽極と陰極を対置させ、陰
極上に高純度鉄を電着させる電解鉄の製法において、 陰極として中空円筒状陰極を用い、かつ陽極として該円
筒状陰極内に非接触状に挿入できる陽極を用いそれを該
陰極内中心部に保持して電解を行なうことを特徴とする
電解鉄の製法。
2. A method for producing electrolytic iron in which an anode and a cathode are placed in opposition in an electrolytic bath containing an aqueous solution containing ferrous ions and a supporting electrolyte as a main component, and high-purity iron is electrodeposited on the cathode. A method for producing electrolytic iron, characterized in that a hollow cylindrical cathode is used, and an anode that can be inserted into the cylindrical cathode in a non-contact manner is used as the anode, and the cathode is held in the center of the cathode for electrolysis.
【請求項3】陽極および陰極を鉛直に保持して電解鉄を
行なう特許請求の範囲第2項記載の製法。
3. The method according to claim 2, wherein electrolytic iron is carried out by holding the anode and the cathode vertically.
【請求項4】陽極および(または)陰極を回転しつつ電
解を行なう特許請求の範囲第2項または第3項記載の製
法。
4. The method according to claim 2 or 3, wherein electrolysis is performed while rotating the anode and / or the cathode.
JP61000743A 1986-01-08 1986-01-08 Manufacturing method of electrolytic iron Expired - Lifetime JPH0726220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000743A JPH0726220B2 (en) 1986-01-08 1986-01-08 Manufacturing method of electrolytic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000743A JPH0726220B2 (en) 1986-01-08 1986-01-08 Manufacturing method of electrolytic iron

Publications (2)

Publication Number Publication Date
JPS62158892A JPS62158892A (en) 1987-07-14
JPH0726220B2 true JPH0726220B2 (en) 1995-03-22

Family

ID=11482182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000743A Expired - Lifetime JPH0726220B2 (en) 1986-01-08 1986-01-08 Manufacturing method of electrolytic iron

Country Status (1)

Country Link
JP (1) JPH0726220B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460535B2 (en) * 2009-04-30 2013-06-11 Infinium, Inc. Primary production of elements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA764150B (en) * 1975-07-17 1977-06-29 Hall & Pickles Ltd Improvements in or relating to electrolysis particularly electrodeposition of metal foil

Also Published As

Publication number Publication date
JPS62158892A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
US4159231A (en) Method of producing a lead dioxide coated cathode
US2872405A (en) Lead dioxide electrode
US3821097A (en) Current density redistributing anode
CN202830195U (en) Fence-shaped anode plate for electro-deposition of nonferrous metals
US4008144A (en) Method for manufacturing of electrode having porous ceramic substrate coated with electrodeposited lead dioxide and the electrode manufactured by said method
US3203879A (en) Method for preparing positive electrodes
US4069116A (en) Electrochemical process for producing manganese dioxide
JPH0726220B2 (en) Manufacturing method of electrolytic iron
Rao et al. Electrocoating of silicon and its dependence on the time of electrolysis
CN110983386B (en) Method for preparing porous copper foil by one-step electrolysis method
CN109504987B (en) Titanium-based composite anode for electrolytic manganese and preparation method and application thereof
JP2005163096A5 (en)
JPH0726221B2 (en) Method for producing electrolytic iron
US3909369A (en) Method for the production of an electrode for cathodic protection
US3755113A (en) Method for electrorefining of nickel
JPH0336910B2 (en)
JPS62158894A (en) Manufacture of electrolytic iron
Mantell Electrodeposition of powders for powder metallurgy
JPS62161976A (en) Manufacture of electrolytic iron
Bushrod et al. Stress in anodically formed lead dioxide
US1423071A (en) Process for manufacturing electrodes
US3496078A (en) Electrolytic method of manufacturing monocrystalline iron
JPS6465285A (en) Production of rare earth metal or alloy of rare earth metal
JPH0651918B2 (en) Manufacturing method of high-purity electrolytic iron
JPS62161979A (en) Manufacture of electrolytic iron